Available online at www.dergipark.gov.tr

Research Article

INTERNATIONAL ADVANCED RESEARCHES and ENGINEERING JOURNAL International Open Access

Volume 02 Issue 02

August, 2018

Journal homepage: www.dergipark.gov.tr/iarej

-----F--8------

Effective relative storey drift limits in flexible jointed infill wall applications

M. M. Erdem^a, M. Bikçe^a*

^aDepartment of Civil Engineering, Iskenderun Technical University, Hatay, Turkey

ARTICLE INFO	ABSTRACT
Article history:	Relative storey drifts is limited by earthquake codes for earthquake safety of structures. In 2016
Received 09 March 2018	Turkish Earthquake Code (TEC 2016), which has yet in draft, the criteria for delimitation of
Received 24 May 2018	relative story drifts have been specified. Compared to the previous ones, this earthquake code
Accepted 29 May 2018	included the use of flexible jointed infill wall - frame joints which affect the relative storey drift
Keywords:	limit. In this study, the limitation rules of the effective relative storey drifts are explained in
Elastic design spectral	detail in the case of the use of flexible jointed infill wall-frame joints specified in the section
acceleration	"Calculation and Limitation of Effective Relative Storey Drifts" of the TEC 2016. In addition,
Flexible jointed infill wall	the maximum allowable effective storey drifts are calculated separately for each province center.
Relative story drift	
TEC 2016	© 2018, Advanced Researches and Engineering Journal (IAREJ) and the Author(s).

1. Introduction

Due to the fact that Turkey is located in the earthquake-prone area, the earthquake resistant structural design concept has a great importance in our country. Earthquake resistant structural design rules are determined by earthquake regulations. The earthquake regulations updated in the light of experiences obtained from earthquakes and scientific studies are in continuous development. TEC 2016, which is still in draft form, contains important changes according to previous earthquake codes. The limitations of the relative storey drifts and the application of the flexible jointed infill wall are the changes of this regulation [1].

In the design stage of a building, infill walls are one of the most complicated components to predict the effect on the building although there are several techniques to insert them to the building model [2,3]. The experiences obtained from the last earthquakes show that infill walls changes the dynamic behavior and damage mechanism of the buildings [4-8]. To overcome the problems caused by infill walls, flexible connections between infill wall and surrounding frame were proposed by researchers [9-11]. Flexible infill – frame connection method was also included to the 2016 TEC draft. Application of the flexible or conventional joints changes the relative storey drift limits [1]. Relative storey drifts is limited by earthquake codes in many countries [12]. These limitations are determined according to different rules in each code [13-15]. The effects on the lateral drifts of the structure and the damages taken during the earthquake of the infill walls were ignored in many earthquake codes including TEC 2007 [16] (2007 Turkish Earthquake Code) which is in force in our country. However, from the 1960s, in some countries' earthquake codes, it is taken into account in limitation of relative storey drifts. One of the important innovations in the draft TEC 2016 is the arrangement of the infill walls to avoid damage by determining the relative storey drift limits separately according to infill wall – frame joint types such as flexible jointed and adjoined [1,12].

In TEC 2016 draft, a relative storey drift limit interval involving all buildings can be defined by changing the parameters such as storey height, natural period, local site class and parameters depends on location of building. In this study, it was aimed to reveal the allowed maximum relative storey for buildings to be designed with flexible jointed infill wall – frame connection according to TEC 2016. For the parameters determining the relative storey drift limits, the storey height is fixed to 3 meters and the other parameters are arranged to obtain the maximum relative storey drift limit. Thus, the relative storey drift limit for each provincial center with latitudes and

^{*} Corresponding author. Tel.: +90 (326) 613 56 00; Fax: +90 (326) 613 56 13. E-mail addresses: *musab.erdem@iste.edu.tr*, *murat.bikce@iste.edu.tr*

longitudes is determined for a height of 3 meters.

$$S_{\rm DS} = S_S \times F_S \tag{4}$$

In TEC 2016 draft, rule of the limitation of effective relative storey drifts depends on some parameters such as storey height, type of infill wall – frame joint (adjoint or flexible jointed), natural period of building, distance to active fault plane, local site class, design spectral acceleration coefficient [1].

Limitation of effective relative storey drifts is calculated according to Equation (1) when the infill walls are manufactured adjoined to the frame and according to Equation (2) when flexible joints are used between the infill wall and frame.

$$\lambda \frac{\delta_{i,max}^{(X)}}{h_i} \le 0.008 \tag{1}$$

$$\lambda \frac{\delta_{i,max}^{(X)}}{h_i} \le 0.016 \tag{2}$$

In these equations, h_i is the storey height, $\delta_{i,max}^{(X)}$ is the maximum value of the effective relative story drift of the ith floor of the building in X direction, λ represents the ratio of elastic design spectral acceleration calculated according to earthquake DD3 (earthquake return period of 72 years) to elastic design spectral acceleration calculated according to earthquake DD2 (earthquake return period of 475 years) (Equation 3).

$$\lambda = \frac{S_{ae}(T)_{DD3}}{S_{ae}(T)_{DD2}} \tag{3}$$

One of the important changes in the calculation of effective relative storey drifts in the TEC 2016 is the inclusion of elastic design spectral accelerations. There is also a significant difference in the calculation method of the elastic design spectral accelerations at TEC 2016. The calculation of the elastic design spectral acceleration is also included in this study since the λ coefficient is obtained using the elastic design spectral accelerations in the calculation of the allowed maximum effective relative storey drifts.

In the calculation of the elastic design spectral acceleration, first of all, from the earthquake hazard map, the hazard map spectral acceleration coefficients S_S for the short period and S_1 for the period of 1 second are taken from the location at which the considered structure is to be constructed. Using the hazard map spectral acceleration coefficients, the design spectral acceleration coefficients S_{DS} and S_{D1} are obtained using Equation (4) and Equation (5).

$$S_{D1} = S_1 \times \gamma_E \times F_1 \tag{5}$$

In these equations, F_S and F_1 are the local site effect coefficients, and γ_F is the coefficient of distance of the faultline. The local site effect coefficients F_S and F_1 are obtained from Table 1 for the short period zone and from Table 2 for the 1 second period zone using the local site class and hazard map spectral acceleration coefficients. The coefficient of distance of the faultline is calculated according to the cases given in Equation (6). In this equation, L_F is the distance to the fault plane. γ_F is taken as "1" for DD-3 earthquake ground motions in this study [1].

Table 1. Local site effect coefficients for short period zone (TEC 2016, Table 2.1)

Local	Local Site	e Effect (Coefficient	for Sho	rt Period 2	Zone F _S
Site Class	S _S ≤0.25	S _S =0.5	S _S =0.75	S _S =1.0	S _S =1.25	S _S ≥1.5
ZA	0.8	0.8	0.8	0.8	0.8	0.8
ZB	0.9	0.9	0.9	0.9	0.9	0.9
ZC	1.3	1.3	1.2	1.2	1.2	1.2
ZD	1.6	1.4	1.2	1.1	1.0	1.0
ZE	2.4	1.7	1.3	1.1	0.9	0.8
ZF	Site-spe	cific soil l	behavior a	nalysis w	ill be perfo	ormed.

Table 2. Local site effect coefficients for 1.0 sec. Period (TEC 2016, Table 2.2)

Local	Local Site	Local Site Effect Coefficient for 1.0 sec. Period. F ₁											
Site Class	S₁≤0.1	S ₁ =0.2	S ₁ =0.3	S ₁ =0.4	S ₁ =0.5	S₁≥0.6							
ZA	0.8	0.8	0.8	0.8	0.8	0.8							
ZB	0.8	0.8	0.8	0.8	0.8	0.8							
ZC	1.5	1.5	1.5	1.5	1.5	1.4							
ZD	2.4	2.2	2.0	1.9	1.8	1.7							
ZE	4.2	3.3	2.8	2.4	2.2	2.0							
ZF	Site-spec	cific soil b	behavior a	malysis w	ill be per	formed							

$$\begin{array}{ll} \gamma_F = 1.2 & L_F \leq 15 km \\ \gamma_F = 1.2 - 0.02 (L_F - 15) & 15 \ km \leq L_F \leq 25 km \end{array} \tag{6}$$

Spectrum characteristic periods are calculated according to Equation (7). The natural period is denoted by T , and the transition period to the constant displacement region T_L is 6 seconds. Using this obtained data, the horizontal elastic design spectral accelerations are calculated according to the cases given in Equation (8).

$$T_A = 0.2 \times \frac{S_{D1}}{S_{DS}} \tag{7}$$

$$T_B = \frac{S_{D1}}{S_{DS}}$$

$$S_{ae}(T) = \left(0.4 + 0.6\frac{T}{T_A}\right) \times S_{DS} \qquad (0 \le T \le T_A)$$

$$S_{ae}(T) = S_{DS} \qquad (T_A \le T \le T_B)$$

$$S_{ae}(T) = \frac{S_{D1}}{T} \qquad (T_B \le T \le T_L)$$

$$S_{ae}(T) = \frac{S_{D1} \times T_L}{T^2} \qquad (T_L \le T)$$
(8)

3. Limitation of Effective Relative Storey Drifts in TEC 2016 Draft

In this study, the maximum effective relative storey drifts allowed for all provincial centers were calculated according to the rule in the section "*Limitation of effective relative storey drifts*" in the TEC 2016 draft. The storey heights in the calculations were determined to be 3 m, using statistical study by Azak et al. [17]. The variable parameters are the natural period and the hazard map spectral acceleration coefficients which vary depending on the location of the structure.

ZA and ZE local site classes have been used as strong and weak grounds defined in the TEC 2016 draft for the understanding of the effect of the site class on limiting the effective relative storey drifts. The initial value of the natural period, which is another effective parameter for limiting the effective relative storey drift, is selected as 0.2, which is increased by 0.1 intervals to calculate the maximum effective relative storey drifts for each province. The abbreviations for each case that is calculated are shown in Table 3. The maximum effective relative storey drifts calculated for cases where the infill wall-to-frame joint is flexible jointed are shown in Table 5 for each provincial center according to natural period and local site class. The latitudes and longitudes of the provincial centers where the effective relative storey drift limit is calculated are also presented in Table 4.

Fable 3. Parameters and abbreviation

Abbreviation	Local Site Class	Natural Period
D2A	ZA	T=0.2
D3A	ZA	T=0.3
D4A	ZA	T=0.4
D5A	ZA	T ≥0.5
D4E	ZE	$0.2 \ge T \ge 0.4$
D5E	ZE	T=0.5
D6E	ZE	T=0.6
D7E	ZE	T=0.7
D8E	ZE	T=0.8
D9E	ZE	T=0.9
D10E	ZE	T≥1.0
Dmax	Maximum effec	ctive relative storey drift

Table 4. Latitude and longitude of provincial centers where calculations are made

Province	Latitude	Longitude	Province	Latitude	Longitude	Province	Latitude	Longitude
Adana	37.1075	35.3825	Giresun	40.9177	38.3844	Samsun	41.2908	36.3361
Adıyaman	37.7628	38.2756	Gümüşhane	40.4594	39.4803	Siirt	37.9274	41.9422
Afyon	38.7573	30.5382	Hakkâri	37.5774	43.7366	Sinop	42.0266	35.1512
Ağrı	39.7193	43.0509	Hatay	36.2026	36.1602	Sivas	39.7505	37.015
Amasya	40.6562	35.8373	Isparta	37.767	30.5535	Tekirdağ	40.9786	27.5152
Ankara	39.9208	32.854	İçel	36.781	34.5877	Tokat	40.314	36.5513
Antalya	36.8869	30.7062	İstanbul	40.9878	29.0368	Trabzon	41.0064	39.7109
Artvin	41.1812	41.8205	İzmir	38.419	27.1277	Tunceli	39.0758	39.5337
Aydın	37.8471	27.8437	Kars	40.601	43.0944	Şanlıurfa	37.1601	38.7989
Balıkesir	39.6474	27.8864	Kastamonu	41.3777	33.7763	Uşak	38.6742	29.4057
Bilecik	40.1426	29.9793	Kayseri	38.7227	35.4869	Van	38.5038	43.3955
Bingöl	38.8832	40.4929	Kırklareli	41.7341	27.2191	Yozgat	39.8221	34.8081
Bitlis	38.4053	42.1079	Kırşehir	39.1462	34.1606	Zonguldak	41.4549	31.7886
Bolu	40.7327	31.6087	Kocaeli	40.7651	29.9445	Aksaray	38.3703	34.0272
Burdur	37.7183	30.2822	Konya	37.8718	32.5005	Bayburt	40.2593	40.2268
Bursa	40.1972	29.0615	Kütahya	39.4192	29.9853	Karaman	37.1701	33.223
Çanakkale	40.15	26.4027	Malatya	38.3487	38.3189	Kırıkkale	39.8437	33.5056
Çankırı	40.6002	33.6164	Manisa	38.6139	27.4337	Batman	37.8999	41.1311
Çorum	40.55	34.9539	K. Maraş	37.5775	36.9266	Şırnak	37.5212	42.4556
Denizli	37.7829	29.0963	Mardin	37.321	40.725	Bartın	41.6265	32.3299
Diyarbakır	37.9367	40.2075	Muğla	37.2152	28.3639	Ardahan	41.113	42.7022

Province	Latitude	Longitude	Province	Latitude	Longitude	Province	Latitude	Longitude
Edirne	41.6769	26.5529	Muş	38.7449	41.4998	Iğdır	39.9233	44.0457
Elazığ	38.6749	39.2208	Nevşehir	38.627	34.7207	Yalova	40.6585	29.2743
Erzincan	39.7468	39.491	Niğde	37.9703	34.6769	Karabük	41.1956	32.6231
Erzurum	39.9056	41.2684	Ordu	40.9845	37.8758	Kilis	36.7155	37.1141
Eskişehir	39.7658	30.5238	Rize	41.0271	40.5177	Osmaniye	37.0747	36.2465
Gaziantep	37.063	37.3792	Sakarya	40.8511	30.3164	Düzce	40.8403	31.1546

When the drift values obtained according to the natural periods are examined, a linear relationship cannot be established between the period and the maximum effective relative storey drifts. In some regions, higher drift values are obtained in buildings with higher natural periods, while in some regions, higher drift values are obtained in buildings with lower natural periods. The hazard map spectral acceleration coefficients vary according to the geological conditions and the fact that the horizontal elastic design acceleration spectrum is not linear cause a lack of a proportion or tendency in the change of the displacement to the period. It has been observed that the effective relative storey drift limit differs between 0.2 - 0.5 period intervals for ZA local site class, and does not change with larger period values greater than 0.5. In the calculations made according to the ZE local site class, it is seen that the effective relative storey drift limit changes between 0.2 - 0.4 period interval and no change in period values larger than 1.0, and the drift limit changes in 0.4 - 1.0 period interval.

Table 5. Effective relative storey drift limits for flexible jointed wall-to-frame connection (mm)

Province	D2A	D3A	D4A	D5A	D4E	D5E	D6E	D7E	D8E	D9E	D10E	Dmax
Adana	135.1	127.6	127.6	127.6	92.6	98.2	117.9	119.8	119.8	119.8	119.8	135.1
Adıyaman	123.6	123.6	155.4	155.4	81.0	81.0	90.8	105.9	121.0	126.3	126.3	155.4
Afyon	135.1	155.5	155.5	155.5	73.8	84.5	101.4	118.3	126.9	126.9	126.9	155.5
Ağrı	125.4	125.4	134.8	134.8	84.8	84.8	93.9	109.5	119.8	119.8	119.8	134.8
Amasya	122.3	126.9	154.5	154.5	66.6	66.6	66.6	77.8	88.8	99.9	104.4	154.5
Ankara	126.2	126.2	129.3	131.1	112.5	112.5	112.5	115.5	126.3	126.3	126.3	131.1
Antalya	120.0	117.5	117.5	117.5	80.0	84.4	101.3	105.6	105.6	105.6	105.6	120.0
Artvin	134.2	122.0	117.4	117.4	106.2	106.2	111.7	111.7	111.7	111.7	111.7	134.2
Aydın	140.2	180.1	180.2	180.2	67.3	67.3	72.9	85.0	97.2	109.4	113.4	180.2
Balıkesir	130.6	144.0	144.0	144.0	71.1	71.1	81.8	95.4	109.0	109.2	109.2	144.0
Bilecik	116.9	116.9	131.6	131.6	77.8	77.8	79.2	92.4	105.6	109.0	109.0	131.6
Bingöl	120.6	150.0	157.3	157.3	65.2	65.2	65.2	75.3	86.0	96.7	99.8	157.3
Bitlis	121.5	117.1	111.8	111.8	76.7	76.7	84.2	95.1	95.1	95.1	95.1	121.5
Bolu	131.6	158.2	177.8	177.8	65.4	65.4	65.7	76.6	87.6	98.5	108.0	177.8
Burdur	136.3	167.2	167.2	167.2	71.4	79.8	95.8	111.8	125.4	125.4	125.4	167.2
Bursa	128.0	135.4	144.0	144.0	70.5	70.5	77.1	90.0	102.8	107.0	107.0	144.0
Çanakkale	114.3	114.3	112.4	112.4	68.1	68.1	70.2	81.8	85.2	85.2	85.2	114.3
Çankırı	129.4	129.4	153.3	153.3	75.3	75.3	78.7	91.8	105.0	115.8	115.8	153.3
Çorum	121.3	121.3	142.6	142.6	74.6	74.6	76.5	89.2	102.0	110.1	110.1	142.6
Denizli	124.7	151.1	151.1	151.1	65.8	65.8	76.7	89.5	102.3	107.6	107.6	151.1
Diyarbakır	110.8	110.8	110.8	110.6	102.6	102.6	102.6	102.6	103.6	103.6	103.6	110.8
Edirne	149.2	149.2	118.3	118.3	118.6	118.6	118.6	109.1	109.1	109.1	109.1	149.2
Elazığ	127.9	128.0	128.0	128.0	69.8	69.8	75.0	87.4	90.9	90.9	90.9	128.0
Erzincan	139.0	156.5	179.8	179.8	67.1	67.1	67.1	77.3	88.3	99.4	109.6	179.8
Erzurum	151.7	153.9	161.2	161.2	73.3	73.3	76.2	88.9	101.6	111.2	111.2	161.2
Eskişehir	148.6	148.6	150.0	150.0	87.3	87.3	94.1	109.7	123.4	123.4	123.4	150.0
Gaziantep	122.6	122.6	119.4	119.4	102.0	102.0	102.0	109.9	109.9	109.9	109.9	122.6
Giresun	131.4	131.4	118.4	118.4	110.2	110.2	110.2	109.3	109.3	109.3	109.3	131.4

Province	D2A	D3A	D4A	D5A	D4E	D5E	D6E	D7E	D8E	D9E	D10E	Dmax
Gümüshane	129.0	129.0	116.2	116.2	101.8	101.8	101.8	104.3	104.3	104.3	104.3	129.0
Hakkari	134.3	156.6	156.6	156.6	74.3	84.5	101.4	118.2	130.3	130.3	130.3	156.6
Hatav	152.3	178.7	186.3	186.3	74.1	74.9	89.8	104.9	119.8	129.8	129.8	186.3
Isparta	123.9	145.8	145.8	145.8	71.3	84.3	101.2	118.0	125.3	125.3	125.3	145.8
İcel	135.0	129.8	116.8	116.8	124.0	124.0	118.3	118.3	118.3	118.3	118.3	135.0
İstanbul	119.6	132.2	141.8	141.8	66.9	66.9	71.6	83.6	95.5	101.6	101.6	141.8
İzmir	129.5	152.6	152.6	152.6	67.0	67.0	74.8	87.3	99.8	107.0	107.0	152.6
Kars	125.4	120.3	109.8	109.8	96.8	96.8	101.4	103.8	103.8	103.8	103.8	125.4
Kastamonu	122.5	122.5	153.3	153.3	73.4	73.4	78.4	91.4	104.6	115.8	115.8	153.3
Kayseri	176.7	176.7	175.4	175.4	139.5	139.5	155.8	172.6	172.6	172.6	172.6	176.7
Kırklareli	139.5	139.5	116.6	116.6	116.6	116.6	116.6	108.7	108.7	108.7	108.7	139.5
Kırşehir	136.3	136.3	138.8	141.8	136.6	136.6	136.6	142.2	145.7	145.7	145.7	145.7
Kocaeli	126.2	155.8	169.4	169.4	67.9	67.9	67.9	78.2	89.4	100.6	104.5	169.4
Konya	146.4	150.6	150.6	150.6	137.0	145.5	154.2	154.2	154.2	154.2	154.2	154.2
Kütahya	170.8	170.8	167.6	167.6	85.4	85.4	94.8	110.6	126.4	127.9	127.9	170.8
Malatya	127.1	131.3	131.3	131.3	70.6	70.6	82.6	96.4	98.8	98.8	98.8	131.3
Manisa	132.4	156.0	156.0	156.0	67.0	67.0	74.5	86.9	99.3	108.1	108.1	156.0
K. Maraş	134.2	157.3	168.0	168.0	72.0	74.1	88.9	103.8	118.6	124.9	124.9	168.0
Mardin	120.0	120.0	120.0	108.8	119.8	119.8	119.8	119.8	119.0	110.6	110.6	120.0
Muğla	119.9	136.5	137.4	137.4	68.1	68.1	78.8	91.9	105.0	105.5	105.5	137.4
Muş	117.9	117.9	136.6	136.6	68.1	68.1	70.2	81.8	93.6	101.6	101.6	136.6
Nevşehir	139.8	139.8	148.6	148.6	140.9	140.9	140.9	151.0	151.0	151.0	151.0	151.0
Niğde	152.7	152.7	164.0	164.0	143.2	143.2	156.8	163.0	163.0	163.0	163.0	164.0
Ordu	119.8	119.8	119.8	119.5	105.9	105.9	105.9	105.9	107.0	107.0	107.0	119.8
Rize	162.1	128.6	117.6	117.6	112.9	112.9	112.2	112.2	112.2	112.2	112.2	162.1
Sakarya	132.0	150.4	167.5	167.5	65.5	65.5	68.2	79.5	90.9	102.3	108.9	167.5
Samsun	122.6	122.6	132.0	132.0	85.3	85.3	85.3	92.2	105.4	108.8	108.8	132.0
Siirt	128.2	130.7	137.3	137.3	84.9	84.9	100.2	116.8	124.1	124.1	124.1	137.3
Sinop	148.3	148.3	148.3	128.8	132.6	132.6	132.6	132.6	120.6	120.0	120.0	148.3
Sivas	121.9	121.9	120.0	118.6	100.3	100.3	100.3	100.3	104.6	104.6	104.6	121.9
Tekirdağ	124.0	135.0	149.0	149.0	67.5	67.5	71.7	83.6	95.5	105.2	105.2	149.0
Tokat	120.1	120.1	144.7	149.4	69.1	69.1	69.1	78.2	89.4	100.6	106.7	149.4
Trabzon	163.2	139.6	121.3	121.3	122.1	122.1	117.4	117.4	117.4	117.4	117.4	163.2
Tunceli	131.4	131.4	147.3	147.3	72.5	72.5	74.4	86.8	99.2	108.6	108.6	147.3
Şanlıurfa	129.5	129.5	129.5	141.0	129.9	129.9	129.9	129.9	134.9	141.1	141.1	141.1
Uşak	113.8	126.6	126.6	126.6	71.3	75.3	90.3	105.4	111.3	111.3	111.3	126.6
Van	135.6	139.7	142.2	142.2	83.0	83.0	98.3	114.7	123.5	123.5	123.5	142.2
Yozgat	122.8	122.8	122.8	113.1	116.6	116.6	116.6	116.6	106.6	106.3	106.3	122.8
Zonguldak	145.8	143.9	122.5	122.5	100.4	100.4	100.4	108.2	108.2	108.2	108.2	145.8
Aksaray	215.6	209.8	202.1	202.1	193.3	193.3	198.6	198.6	198.6	198.6	198.6	215.6
Bayburt	134.5	132.3	110.6	110.6	91.0	91.0	91.0	96.0	96.0	96.0	96.0	134.5
Karaman	153.0	127.4	125.4	125.4	152.1	133.8	129.4	129.4	129.4	129.4	129.4	153.0
Kırıkkale	135.2	135.2	139.4	139.4	104.9	104.9	106.4	124.2	129.8	129.8	129.8	139.4
Batman	119.5	119.5	116.5	108.0	109.6	109.6	109.6	109.6	102.6	102.6	102.6	119.5
Şırnak	149.5	168.0	168.0	168.0	/9.6	94.5	113.4	132.2	141.0	141.0	141.0	168.0
Bartin	148.6	141.2	122.6	122.6	102.6	102.6	102.6	109.0	109.0	109.0	109.0	148.6
Ardanan	134.8	135.0	135.0	135.0	84.0	89.0	106.9	119.4	119.4	119.4	119.4	135.0
Igair	135.9	141.0	144.0	144.0	88.2	88.2	104.8	122.2	128.6	128.6	128.6	144.0
r alova	122.2	145.4	134.2	134.2	02.9	02.9	02.9	12.0	o3.0	93.4	99.5	134.2

Province	D2A	D3A	D4A	D5A	D4E	D5E	D6E	D7E	D8E	D9E	D10E	Dmax
Karabük	132.3	132.3	158.6	158.6	74.6	74.6	77.6	90.6	103.5	116.4	118.1	158.6
Kilis	131.3	131.3	149.1	149.1	94.4	94.4	98.2	114.6	131.0	131.8	131.8	149.1
Osmaniye	133.4	146.0	158.3	158.3	75.5	78.2	93.8	109.5	125.1	126.5	126.5	158.3
Düzce	140.7	156.3	169.9	169.9	66.7	66.7	68.1	79.4	90.8	102.2	108.9	169.9

4. Conclusions

In this study, according to TEC 2016 draft, maximum effective storey drift values have been calculated in varying natural periods for local site class of ZA and ZE of selected points in each city center. The following results are obtained from the drift values obtained from the calculations:

• In the vast majority of provinces, it is seen that the limits of effective relative storey drifts are higher for the ZA local site class than for the ZE local site class. However, it is unable to make generalizations because of the existence of opposite conditions.

• Where the infill wall-frame connection is flexible jointed, it is allowed to drift twice as much as the adjoined connection.

• Drift limit should be calculated for the point at which the structure will be constructed, because effective relative storey drifts depend on parameters that are not linear and have no particular tendency.

• The obtained drift limits will help to determine the gap or flexible joint sizes for the wall-frame joints to be developed.

Finally, for the flexible jointed infill wall applications, this study reveals the reduced relative storey drift limits of each city center for a wide natural period range which could be often encountered in application. It is expected that the obtained drift values would be the helpful to determine the flexible joint size.

References

- 1. TEC. *Türkiye Bina ve Deprem Yönetmeliği* (Draft), T.C. Disaster and Emergency Management Presidency, 2016, Ankara. (in Turkish)
- 2. Mainstone, R.J., On the Stiffness and strength of infilled frame, in Proceeding of the Institution of Civil Engineers, Supplement IV, pp. 57-90.
- 3. Stafford Smith, B., and C. Carter, A method of analysis for infill frames, in Proceeding of the Institution of Civil Engineers, Vol. 44, 1969, London U.K.
- Jazany, R.A., I. Hajirasouliha, H. Farshchi, *Influence of masonry infill on the seismic performance of concentrically braced frames.* Journal of Constructional Steel Research, 2013. 88; 150–163.
- 5. Dolšek, M., P. Fajfar, *The effect of masonry infills on the seismic response of a four storey reinforced concrete frame a probabilistic assessment,* Engineering Structures,

2008. 30; 3186–3192.

- 6. Yuen, Y.P., J.S. Kuang, Nonlinear seismic responses and lateral force transfer mechanisms of RC frames with different infill configurations, Engineering Structures, 2015. **91**; 125–140.
- Koutromanos, I., A. Stavridis, P.B. Shing, K. Willam, Numerical modeling of masonry - infilled RC frames subjected to seismic loads. Computers and Structures, 2011. 89; 1026–1037
- 8. Bikçe, M., T.B. Çelik, Failure analysis of newly constructed RC buildings designed according to 2007 Turkish Seismic Code during the October 23, 2011 Van earthquake. Engineering Failure Analysis, 2016. 64; 67–84.
- Ju, R.S., H.J. Lee, C.C. Chen, C.C. Tao, *Experimental* study on separating reinforced concrete infill walls from steel moment frames. Journal of Constructional Steel Research, 2012. **71**; 119–128.
- Jiang, H., X. Liu, J. Mao, Full-scale experimental study on masonry infilled RC moment-resisting frames under cyclic loads. Engineering Structures, 2015. 91; 70–84.
- 11. Kuang, J.S., Z. Wang, Cyclic load tests of RC frame with column-isolated masonry infills. in Proceedings of the 2nd European Conference on Earthquake Engineering and Seismology, 2014. Istanbul, Turkey.
- Sindel, Z., R. Akbaş, and S.S. Tezcan, *Drift control and damage in tall buildings*, Engineering. Structures, 1996. 18(12); 957–966.
- 13. Eurocode 8 (EC8), *Design of structures for earthquake* resistance - Part 1: General rules, seismic actions and rules for buildings. European Committee for Standardization, 2004, Brussels.
- ATC 40, Seismic Evaluation and Retrofit of Concrete Buildings, ATC-40 Report, Applied Technology Council, 1996. Redwood City, California
- FEMA 450, NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures. Federal Emergency Management Agency, 2003. Washington, D.C.
- 16. TEC. *Deprem Bölgelerinde Yapılacak Binalar Hakkında Esaslar*, The Ministry of Public Works and Settlement, 2007, Ankara. (in Turkish)
- Eroğlu Azak T., B.Ö. Ay, and S. Akkar, A Statistical Study on Geometrical Properties of Turkish Reinforced Concrete Building Stock, in 2nd European Conference on Earthquake Engineering and Seismology 2014, Istanbul, Turkey.