

ARSUZ-İSKENDERUN (HATAY) YÖRESİNDE GÖZLEMLENEN KUMTAŞLARININ MATRİKS ASİTLEME İLE MİKROPOROZİTE DEĞİŞİMLERİ

Melda AVCU

YÜKSEK LİSANS PETROL VE DOĞALGAZ MÜHENDİSLİĞİ ANABİLİM DALI

İSKENDERUN TEKNİK ÜNİVERSİTESİ MÜHENDİSLİK VE FEN BİLİMLERİ ENSTİTÜSÜ

Haziran 2019

Melda AVCU tarafından hazırlanan "ARSUZ-İSKENDERUN (HATAY) YÖRESİNDE GÖZLEMLENEN KUMTAŞLARININ MATRİKS ASİTLEME İLE MİKROPOROZİTE DEĞİŞİMLERİ" adlı tez çalışması aşağıdaki jüri tarafından OY BİRLİĞİ ile İskenderun Teknik Üniversitesi Petrol ve Doğalgaz Mühendisliği Anabilim Dalında YÜKSEK LİSANS TEZİ olarak kabul edilmiştir.

Danışman: Dr. Öğr. Üyesi Meryem YEŞİLOT KAPLAN (Petrol ve Doğalgaz Mühendisliği Ana Bilim Dalı, İskenderun Teknik Üniversitesi) Bu tezin, kapsam ve kalite olarak Yüksek Lisans Tezi olduğunu onaylıyorum.

Başkan: Prof. Dr. Şuayıp KÜPELİ (Jeoloji Mühendisliği Ana Bilim Dalı, Konya Teknik Üniversitesi) Bu tezin, kapsam ve kalite olarak Yüksek Lisans Tezi olduğunu onaylıyorum.

Üye: Doç. Dr. Yakup KAR (Petrol ve Doğalgaz Mühendisliği Anabilim Dalı, İskenderun Teknik Üniversitesi) Bu tezin, kapsam ve kalite olarak Yüksek Lisans Tezi olduğunu onaylıyorum.

Tez Savunma Tarihi: 10/06/2019

Jüri tarafından kabul edilen bu tezin Yüksek Lisans Tezi olması için gerekli şartları yerine getirdiğini onaylıyorum.

Pro AND REE Mühendislik ve Fen Brinnleri Enstitüsü Müdürü

ETİK BEYAN

İskenderun Teknik Üniversitesi Mühendislik ve Fen Bilimleri Enstitüsü Tez Yazım Kurallarına uygun olarak hazırladığım bu tez çalışmasında;

- Tez üzerinde Yükseköğretim Kurulu tarafından hiçbir değişiklik yapılamayacağı için tezin bilgisayar ekranında görüntülendiğinde asıl nüsha ile aynı olması sorumluluğunun tarafıma ait olduğunu,
- Tez içinde sunduğum verileri, bilgileri ve dokümanları akademik ve etik kurallar çerçevesinde elde ettiğimi,
- ☑ Tüm bilgi, belge, değerlendirme ve sonuçları bilimsel etik ve ahlak kurallarına uygun olarak sunduğumu,
- Tez çalışmasında yararlandığım eserlerin tümüne uygun atıfta bulunarak kaynak gösterdiğimi,
- 🗹 Kullanılan verilerde herhangi bir değişiklik yapmadığımı,
- Bu tezde sunduğum çalışmanın özgün olduğunu

bildirir, aksi bir durumda aleyhime doğabilecek tüm hak kayıplarını kabullendiğimi beyan ederim.

İmza MELDA A 10/06/2019

ARSUZ-İSKENDERUN (HATAY)YÖRESİNDE GÖZLEMLENEN KUMTAŞLARININ MATRİKS ASİTLEME İLE MİKROPOROZİTE DEĞİŞİMLERİ

(Yüksek Lisans Tezi)

Melda AVCU

İSKENDERUN TEKNİK ÜNİVERSİTESİ MÜHENDİSLİK VE FEN BİLİMLERİ ENSTİTÜSÜ

ÖZET

Bu çalışma Arsuz-İskenderun (Hatay) yöresinde gözlemlenen kumtaşlarının saha ve petrografik özelliklerini belirlemek ve asitleme asamalarında mikro boyutta porozite değişimlerini saptamak amacıyla yapılmıştır. Sahada kumtaşları kiltaşları ile ardışımlı olarak gözlemlenmektedir. Aktepe formasyonunda kiltaşları ve kumtaşları orta tabakalıdırlar. Kiltaşlarının kalınlığı 20 cm ile 33 cm arasında değişirken, kum taşlarının kalınlığı 25 cm ile 40 cm arasındadır. Kızıldere formasyonunda ise kumtaşı ve kiltaşı ardışımları yaygın olarak gözlemlenmekte, gri-sarı renkli kumtaşlarının kalınlıkları 10-50 cm arasında, gri renkli kiltaşları ise 2-30 cm kalınlığındadırlar. Her iki formasyonda da tektonik çatlaklar ve oksidasyon izleri gözlemlenmektedir. Çok ince taneli kumtaşı özellikleri gösteren Aktepe formasyonu kumtaşlarında kuvars taneleri değer bileşenlere göre daha fazladır ve bağlayıcı malzeme matrikstir. Kızıldere formasyonunda ise kayaç kırıntıları kuvars ve feldspat tanelerine nispeten fazla gözlemlenmektedir. Kayaç kırıntıları, fosil kavkıları, kireçtaşı taneleri ve magmatik kayaç parçalarından oluşmaktadır. Bağlayıcı malzeme kalsit çimentodur ve litik arenit olarak isimlendirilmiştir. Rezervuar kayaç asitleme işleminin ilk aşaması olan HCl asitleme işlemi deneysel olarak kapilarite yoluyla sağlanmıştır. Seyreltme oranları %7,5-%15-%30 olan HCl asit çözeltilerinin 100 dk sonrasında etki mesafeleri sırasıyla 0,6-0,8-1,1 cm ve çözülmüş kayaç miktarları sırasıyla 32,82-34,02-35,54 gramdır. Asitlenme işleminde pratikte en çok uygulanan % 15 seyreltilmiş asit ve asitlenmemiş örneklerin Micro-CT ile porozite ortalamaları % 39,6'dır. Kuyu logları ile ölçülen porozite değerleri ile eşdeğer sonuçlar elde edilmiştir. Asitleme işlemiyle porozitede yaklaşık % 16 oranında artış söz konusudur. Asitleme ile boşluklar birbirine bağlanmış ve boyutları yaklaşık % 20 oranında artmıştır. Boşluk boğazı uzunluğunda asitleme ile değişim ise % 51 oranındadır. Micro-CT ve görüntü işleme yöntemleri ile kayaçların porozitelerinin hesaplanması diğer yöntemlere göre daha hızlı yapılabilmektedir. Kızıldere formasyonuna ait kumtaşlarının da hesaplanan porozite değerleri hazne kaya olabileceğini göstermektedir.

Anahtar Kelimeler : İskenderun Havzası, Hazne Kaya, Porozite, Micro-CT, ImageJ

MATRIX ACIDING AND MICROPOROSITY CHANGES OF THE FABRICS

OBSERVED IN ARSUZ-ISKENDERUN (HATAY) AREA

Melda AVCU

ISKENDERUN TECHNICAL UNIVERSITY ENGINEERING AND

SCIENCE INSTITUTE

ABSTRACT

This study aims are determining the field and petrographic properties of sandstones observed in Arsuz-İskenderun (Hatay) region and micro-size porosity changes in acidizing stages. In the field, sandstones are observed sequentially with claystones. Claystones and sandstones are medium-thick bedded in the Aktepe formation The thickness of the claystones varies between 20 cm and 33 cm, while the thickness of the sandstones is between 25 cm and 40 cm. In the Kızıldere Formation, sandstone and claystone sequences are commonly observed, the thicknesses of gray-yellow sandstones are between 10-50 cm and the thickness of gray-colored claystones are between 2-30 cm. Tectonic cracks and oxidation are observed in both formations. The sandstones of the Aktepe formation which shows very fine-grained sandstone characteristics have more quartz grains than the other components and the binding material is matrix. Rock fragments are observed relatively to quartz and feldspar grains in the Kızıldere formation sandstones. It consists of rock fragments, fossil shells, limestone grains and igneous rock fragments. The binding material is calcite cement and sandstone is named as lytic arenite. The first step of reservoir rock acidizing is HCl acidizing and process is experimentally provided by capillarity. The dilution rates of 7.5% -15% -30% HCl acid solutions 100 minutes of effective distances of 0.6-0.8-1.1 cm and dissolved rock amounts 32.82-34.02-35.54 g, respectively. In acidizing process, the average porosity analysed with Micro-CT is 39.6% of acidified samples with 15% diluted acid, that are most commonly applied in well production, .and non-acidified samples. Equivalent results were obtained with porosity values measured by well logs. There is an increase in porosity of about 16% with acidizing. Pores were bonded together by acidizing and pore size increased by about 20%. The change in the pore throat by acidizing is 51%. Calculation of porosity of rocks by Micro-CT and image processing methods can be analysed faster than other methods. The porosity values of the sandstones of Kızıldere formation indicate reservoir rock.

Keywords:Iskenderun Basin, Reservoir Rock, Porosity, Micro-CT, ImageJSayfa Adedi:62

:

TEŞEKKÜR

Çalışmamda her zaman bilgisi ve deneyimleriyle bana yol gösteren Sayın Dr. Öğr. Üyesi Meryem YEŞİLOT KAPLAN'a teşekkür ederim. Ayrıca çalışmamım laboratuvar aşamasıda yardımlarını esirgemeyen Sayın Prof. Dr. Yakup KAR'a teşekkür ederim. Ayrıca tez çalışmamda görüşlerinden dolayı Sayın Dr. Öğr. Üyesi Bayram Ali MERT'e teşekkür ederim. Petrografik incelemelerinde desteklerini esirgemeyen Prof. Dr. Kemal GÜRBÜZ ve Arş. Gör. Gökhan ÇEVİK' e teşekkür ederim. Annem Mehtap AVCU, babam Mehmet AVCU ve ablam Meltem UYAR'da manevi desteklerinden dolayı teşekkür ederim.

İÇİNDEKİLER

Sayfa

ÖZETi
ABSTRACTii
TEŞEKKÜRiii
ÇİZELGELERİN LİSTESİ vi
ŞEKİLLERİN LİSTESİ vii
RESİMLERİN LİSTESİ viii
HARİTALARIN LİSTESİix
SİMGELER VE KISALTMALAR x
1. GİRİŞ1
2. ÖNCEKİ ÇALIŞMALAR3
3. KAYNAK ARAŞTIRMASI5
3.1. Genel Jeoloji ve Stratigrafi
3.1.1. Koçali Karmaşığı ve Kızıldağ Ofiyoliti7
3.1.2. Kalecik Formasyonu
3.1.3. Horu Formasyonu7
3.1.4. Kızıldere Formasyonu
3.1.5. Haymanseki Formasyonu
3.1.6. Aktepe Formasyonu
3.1.7. Menzelet Formasyonu
3.1.8. Erzin Formasyon
3.2. Matriks Asitleme

3.3. Porozite ve Özellikleri	
3.4. Kapilarite	
3.5. Micro- CT ile Porozite Tayini	
4. MATERYAL METOD	
4.1. Saha Öncesi Çalışmalar	
4.2. Saha Çalışmaları	
4.3. Laboratuvar Çalışmaları	
4.4. Saha Sonrası Çalışmalar	
5. ARAȘTIRMA ve BULGULAR	19
5.1. Arazi Gözlemleri	
5.2. Kumtaşlarının Petrografik Özellikleri	
5.3. Kapilarite ve Asitleme Deneyleri ve Sonuçlar	
5.4.Micro-CT Görüntülerinin İncelenmesi	
5.6. Görüntü İşleme Programı ile Porozitenin Bulunması	
5.7. Micro-CT Sonuçlarının Değerlendirilmesi	
5.8. Porozite Boyutları	
5.9. Boşluk Boğazı (Pore-Throat) Uzunlukları	
6. TARTIŞMA	47
7. SONUÇLAR	49
KAYNAKLAR	
ÖZGEÇMİŞ	
DİZİN	62

ÇİZELGELERİN LİSTESİ

Çizelge	Sayfa
Çizelge 5.1. Kapilarite ve asitleme deneylerinde örneklerin süre/kütle değişimi	27
Çizelge 5. 2. Deneylerde kullanılan örneklerin boyutları ve asit etki hacimleri	28
Çizelge 5.3. Micro -CT analizine göre kumtaşlarında hesaplanan porozite değerleri	33
Çizelge 5.4. Micro-CT analizi sonucu elde edilen görüntülerden hesaplanan	

```
Porozite değerleri ......40
```

ŞEKİLLERİN LİSTESİ

Şekil	Sayfa
Şekil 3.1. İskenderun Körfezi ve çevresinin genelleştirilmiş stratigrafik sütun kesiti	.6
Şekil 5.2. Asitleme ve Kapilarite deneylerinin zamana bağlı kütle değişim grafikler	29
Şekil 5.3. Asitlenme ve kapilarite yönü ve asitlenme bölgeleri	37
Şekil 5.4. Micro-CT analizi sonucu elde edilen görüntülerden ImageJ programı ile	
hesaplanan porozite değerlerinin dağılımı	39
Şekil 5.5. Porozite çevre uzunluklarının asitlenmeye bağlı değişimi	.45

RESIMLERIN LISTESI

Resim	Sayfa
Resim 5.1. Aktepe formasyonu kumtaşlarının saha görünümü	20
Resim 5.2. Kızıldere formasyonuna ait kumtaşlarının saha görünümü	21
Resim 5.3. Aktepe formasyonu kumtaşı örneğinin mikroskop görüntüsü	23
Resim 5.4. Kızıldere Formasyonu kumtaşlarında gözlemlenen kayaç	
kırıntılarının mikroskop görüntüsü	24
Resim 5.5. Kızıldere formasyonu kumtaşlarında görülen biyoklastların	
mikroskop görüntüsü	25
Resim 5.6. Deneyde kullanılan örnekler ve asit etki yüzeylerinin görünümü	28
Resim 5.8. Micro-CT uygulanan asitlenmiş kumtaşı örneğinin üç boyutta gösterimi	32
Resim 5.9. X-Işınlarının kumtaşı örneklerinde yayılımı	.35
Resim 5.10. Görüntünün gri tonlama değerlerine dönüştürülmesi	38
Resim.5.11. Porozite hesaplamaları için ölçüm ayarların belirlenmesi	38
Resim 5.12. Gözenek boğazlarının hesaplama yöntemi.	46

HARİTALARIN LİSTESİ

Harita	Sayfa	
Harita 1.1. Calısma alanın ver bulduru haritası	2	

SİMGELER VE KISALTMALAR

Bu çalışmada kullanılmış simgeler ve kısaltmalar, açıklamaları ile birlikte aşağıda sunulmuştur.

Simgeler	Açıklamalar
%	Yüzde
μm	Mikrometre
1/mm	1/Milimetre
1/mm ³	1/Milimetreküp
cm	Santimetre
mm	Milimetre
mm ²	Milimetrekare
mm ³	Milimetreküp
nm	Nanometre
Kısaltmalar	Açıklamalar
Conn	Bağlantı
Conn. Dn	Bağlantı Yoğunluğu
I.S	Arakesit Yüzeyi
Micro-CT	X-Işını Tomografi
NMR	Nükleer Manyetik Rezonans Spektroskopisi
Obj. V	Nesne Hacmi
Obj. N	Obje Sayısı
Obj. S	Nesne Yüzeyi
Obj. S / Obj.V	Nesne Yüzeyi/ Hacim Oranı
Obj. S / TV	Nesne Yüzey Yoğunluğu
Obj. V / TV	Yüzde Nesne Hacmi
Obj. V / TV	Yüzde Nesne Hacmi
Po (cl)	Kapalı Gözeneklilik (yüzde)
Po (op)	Açık Porozite (yüzde)
Po (tot)	Toplam Gözeneklilik (yüzde)

Po. N (cl)	Kapalı Gözenek Sayısı
Po. S (cl)	Kapalı Gözeneklerin Yüzeyi
Po. V (cl)	Kapalı Gözeneklerin Hacmi
Po. V (op)	Açık Gözenek Boşluğu Hacmi
Po. V (tot)	Toplam Gözenek Boşluğu Hacmi
SEM-EDX	Taramalı Elektron Mikroskobu Enerji Yayılım Analizi
TEM	Geçirimli Elektron Mikroskop
TS	Toplam VOI Yüzeyi
TS Toplam	VOI Yüzeyi
TV	Toplam VOI Hacmi
XRD	X-Işını Kırınım Yöntemi

1. GİRİŞ

Bu çalışma Arsuz-İskenderun (Hatay yöresinde gözlemlenen kumtaşlarının jeolojik ve petrografik özelliklerini belirlemek ve bu kumtaşlarında gerçekleşebilecek matriks asitleme sonrası porozite değerlerinde gelişimleri mikron boyutunda ölçmek amacıyla yapılmıştır. Hidrojeolojide ve petrol sektöründe porozite önemli bir rol oynamaktadır. Fakat gözeneklerin ve özelliklerinin sayısal olarak belirlenmesi kolay değildir. Rezervuar kayaçlarda petrolün birikmesi taşınması ve litolojik özelliklerinin belirlenmesi için gözeneklilik oranı önemli bir parametredir. Kristalleşme veya çökelme sırasında oluşan porozite birincil olarak isimlendirilir, çökelme sonrasında diyajenez, deformasyon, hidrotermal etkenler ile ikincil porozite gelişir. Porozite bağlarının iyi geliştiği ve sıvı akışına izin veren poroziteye effektif kapalı gözenekliğe ise effektif olmayan porozite ismi verilmektedir. Karmaşık matrikslerde gözeneklilik X-Işını ve nötron saçılması ile incelenebilmektedir ve gözenek tiplerinin belirlenebilmeside gerçekleştirilebilmektedir. Gözenekliliğin bir kayaçta mineraller ile olan ilişkisini tanımlamak için doğrudan görüntülenme yöntemleri mevcuttur. Bunlar arasında polarizan mikroskop, XRD (X-Işını Kırınım Yöntemi), SEM- EDX (Taramalı Elektron Mikroskobu Enerji Yayılımlı X-Işını Analizi), TEM (Geçirimli Elektron Mikroskop), NMR (Nükleer Manyetik Rezonans Spektroskopisi) ve X-Ray tomografisi bulunmaktadır (Noiriel, 2015). Son zamanlarda mikro boyutda porozite şekli ve bağıntılarını belirlemede Micro-CT yöntemi kullanılmaktadır. Optik petroloji yönetiminde mineral sınırları ile gözenek boyutlarının tipinin ve gözenek sisteminin tayini yapılabilir. İnce kesitlerin tek ve çift nikolde incelenmeleri ve görüntülenmeleri ile geometrik şekillerin ışık yansımalarına bağlı olarak değişimini gözlemlemek mümkündür. Gözenek Görüntü Analizi (Pore Image) olarak isimlendirilen programlar gözenek miktarı ve gözenek boğazlarının tipini elde etmede kullanılır. Genellikle gözenek ölçümlerinde Fiji/ImageJ programı kullanılmaktadır

Çalışma alanı, Türkiyenin güneyinde yer alan P35- B2-B4 ve O36-D4-D3 paftalarında yer alan Hatay ilinin Arsuz ve İskenderun ilçelerini kapsamaktadır (Harita 1.1).

Harita 1.1. Çalışma alanının yer bulduru haritası

2. ÖNCEKİ ÇALIŞMALAR

Hatay il sınırları içerisinde bulunan çalışma alanı, jeolojik ve jeofizik özelliklerinden dolayı, 1800'lerin sonundan günümüze kadar, birçok araştırmacının ilgisini çekmiştir. Bölgenin en eski jeolojik çalışmaları Schmid (1935) ve Dubertret (1953), tarafından İskenderun formasyonları incelenerek yapılmıştır. Schmidt (1961) Kızıldere formasyonunu araştırmış, birimlerin adlandırılmasıyla birlikte formasyonun tabanındaki merceksi resifal kireçtaşların da ayrı formasyon ayırtlamıştır.

Yeniay (1983), İskenderun havzasının tabanındaki Miyosen öncesi birim üstünde yer alan Kalecik konglomeraları ile resifal Horu kireçtaşlarını incelemiş ve Menzelet formasyonunun yaşının Orta Miyosen olduğunu belirlemiştir.

Kozlu (1987) Misis-Andırın-Adana–İskenderun bölgesinin jeolojisini incelemiş ve petrol olup olmadığı konularında çalışmalar yapmıştır. İskenderun havzasında Neojen istifi Orta Miyosen transgresyonu ile başlamıştır. Çalışma sahasında tabanda yer alan Premiyosen birim üzerine uyumsuz olarak gelen Miyosen istifi transregresif bir istif olarak tanımlanmıştır.

Şafak (1993) Antakya ve çevresinde Alt Miyosen–Pliyosen aralığında oluşan birimlerin üzerinde çalışmıştır. Çalışma sahası içinde yer alan birimlerin litolojik özellikleri ile birlikte birimlerde yer alan ostrakod fosillerinin biyostratigrafisini incelemiştir.

Kozlu (1997) İskenderun ve çevresinde yer alan bölgenin tektonik özellikleri üzerinde çalışmıştır.

Efeçinar (2001) İskenderun'da yer alan Miyosen yaşlı birimler üzerinde, stratigrafik modelleme yöntemi ile çalışarak, bölgeyi hidrokarbon varlığı konusunda araştırmıştır.

Daniel ve diğerleri (2004), İskenderun Körfezi üzerine yaptıkları jeofizik araştırmalarında coğrafi tehlikeler üzerinde durmuş çalışma kapsamında bölgede bulunan fay sistemlerinin olarak belirlemiştir. Stratigrafisini ise sismik anomalilerle (genlik ve frekans) deneştirilerek düşük gaz riskinin mevcut olduğunu belirlemişlerdir.

Öztürk (2005) İskenderun Körfezinde yer alan Miyosen yaşlı istifleri sonik log yöntemi ile hazne kaya özellikleri açısından incelenmiştir. Ulaşılan kuyu log ve gözeneklilik değerleri ile Horu kireçtaşları, Kızıldere formasyonundaki kumtaşları için yorumlamıştır.

Tekin, Varol, Ayyıldız ve Kozlu (2010), İskenderun Havzasında Messiniyen yaşlı evaporit sedimantolojisinden yola çıkarak İskenderun basenini sınıflandırmış ve bölgede bulunan evaporitlerin depolanma ortamı hakında yorum yapmıştır.

Boulton, Robertson, Ellam, Şafak ve Ünlügenç (2007), Hatay grabeninin stratigrafisi üzerinde durarak stronsiyum izotop ve paleontolojik konularında detaylı incelemeler yapmıştır. Bu kapsamda Hatay grabeninin yaşını Orta-Genç Miyosen olarak belirlemiştir.

Bilim, Aydemir ve Ateş (2017) İskenderun Körfezinin termal yapısını manyetik farklılık verileri ile incelemiş, iki boyutlu manyetik anomalileri araştırmıştır.

Güçtekin (2018) İskenderun Körfezinde yer alan Kuvaterner yaşlı alkali lavların metasomatize litosfer mantosunun kanıtı olarak yorumlamıştır.

Yaşar (2018) İskenderun havzasında petrol jeolojisi hakkında yapılan çalışmaları derlemiştir.

Kılınç ve Yeşilot Kaplan (2019), Kızıldere Formasyonu kiltaşlarında TOC ve iz element sonuçlarına göre bölgenin organik maddenin korunumu ve hidrokarbon üretiminin gerçekleşmesi için gerekli olan anoksik ortam koşullarına sahip olduğunu ve Arsuz yöresinin petrol üretme ve depolama için uygun jeolojik koşulları taşıdığını belirtmişlerdir.

3. KAYNAK ARAŞTIRMASI

3.1. Genel Jeoloji ve Stratigrafi

Çalışma alanı (Hatay) İskenderun sahil şeridini ve etrafını kapsar, Miyosen-Kuvaterner yaşındadır. Kuzeydoğu, Güneybatı yönünde uzanan Miyosen havzası, Arap Platformu ve örtü birimlerinin üst bölümünde yer alır. İskenderun bölgesi Aktif Ölü Deniz fayı ve Yumurtalık Bindirme fayı nedeniyle yapısal olarak aktif bir bölgedir. İskenderun Körfezi bir graben içerisinde yer almaktadır (İlhan, 1976; Özelçi, 1975).İskenderun Körfezi'nde ve çevresinde geniş jeolojik zaman dilimlerine ait birimlere rastlanmaktadır. İskenderun Körfezi ve çevresinde Kambriyen zaman diliminden günümüze kadar çeşitli yaş ve türde kayaçlar yer alır. Amanos Dağları levha tektoniği bakımından Anadolu Levhasını ve Arabistan Levhasının arasında ve Afrika Levhası'nında kuzeyindedir. Bunların üzerine Mesozoyik yaşlı kalkerler ve ofiyolitik kayaçlar gelir. Bu birimleri de Paleosen-Eosen yaşlı kalkerler ve Orta Miyosen yaşlı şeyl ve kalkerler takip eder. İskenderun sınırları içinde yer alan Amanos Dağlarını oluşturan otokton birimler; Palezoik yaşlı kumtaşları ve yeşil renkli şistlerdir.

Sratigrafik olarak Pre-Miyosen yaşlı temel kaya olan kalkerler üzerinde yer alan Orta Miyosen yaşlı şeyller ve ofiyolitik kayaçlar, şeylerin üzerinde yer almaktadır. Birimlerin üstlerinde Miyosen yaşlı kaba klastiklerle ifade edilen Kalecik formasyonu uyumsuz olarak yerleşmiştir. Kalecik formasyonu üstünde uyumlu olarak Horu formasyonuna ait kireçtaşları yer alır. Horu formasyonu üstünde kumtaşı-şeyl ardışımlı olarak Kızıldere formasyonu uyumlu olarak yerleşmiştir. Kızıldere formasyonu üstünde ise uyumlu olarak Haymanseki formasyonu yerleşmiştir. Haymanseki formasyonu üstüne ise Aktepe formasyonu uyumlu olarak yerleşmiştir. Aktepe formasyonu üstüne Erzin formasyonu uyumsuz olarak yerleşmiştir. En üste yer alan alüvyonlar ise altaki tüm birimler üzerine uyumsuz olarak yerleşmiştir (Tendam, 1951; Schmidt, 1961; Sigal, 1963; İprepoğlu ve Aksu, 1964; Kozlu, 1982, 1987).

İskenderun'da çalışma sahası içinde yer alan litostratigrafik birimler, Kızıldağ ofiyoliti, Kalecik formasyonu Horu formasyonu, Kızıldere formasyonu, Haymaseki formasyonu, Aktepe formasyonu, Erzin formasyonu ve alüvyonlardır (Şekil 3.1).

Şekil 3.1. İskenderun Körfezi ve çevresinin genelleştirilmiş stratigrafik sütun kesiti (Tekin ve diğerleri, 2010)

3.1.1. Koçali Karmaşığı ve Kızıldağ Ofiyoliti

Çona Grubu olarakda tanınan Amanos Dağlarındaki Miyosen öncesi temeli oluşturan Kızıldağ ofiyolit serisi, İskenderun sahil kısmının doğusunda yer almaktadır. Volkanotortullardan oluşan Koçali Karmaşığı, Geç Triyas-Erken Kretase döneminde oluşmuştur. Kızıldağ ofiyoliti adını ilk kez Selçuk (1985) kullanmıştır. Ultrabazik kayaçlardan oluşan Kızıldağ ofiyoliti genç çökeller tarafından uyumsuz olarak örtülmektedir. Kızıldağ ofiyolit Tekeli ve Erendil (1986) tarafından incelenmiş ve Tektonit Peridotit, Poiklitik Zon, Tabakalı Gabro, İzotrop Gabro, Dayk Kompleksi ve Volkanik Karmaşık olarak ayırtlanmıştır.

3.1.2. Kalecik formasyonu

İskenderun ve Arsuz yöresinde yüzeyleyen kırmızı renkli çakıltaşı birimini Schmidt (1966) 'Kalecik Konglomerası' olarak isimlendirmiştir. İskenderun ve Arsuz yöresindeki bu formasyon için taban çakıltaşları adı Kozlu (1982, 1977) tarafından teklif edilmiştir. Oligosen-Alt Miyosen yaşlı bu birim, uyumsuz olarak ofiyolitik birim üzerine gelmektedir. Çakıllardan oluşan formasyon içerisinde daha yaşlı farklı kayaç türleri bulunmaktadır. Bunlar ofiyolitik kayaçlar, kireçtaşları, kuvars ve arenitlerdir.

3.1.3. Horu formasyonu

Kozlu (1962) tarafından adlandırılmış olan birim, sürekliliği olmayan resifal kireçtaşlarından meydana gelmiştir. Horu formasyonu Alt Serravaliyen yaşındadır (Yeniay, 1983). Kireçtaşı farklı boyutlarda bol miktarda fosil içermektedir, hatta bazı kesimlerde kayacın tamamına yakını fosillerden meydana gelmektedir. Formasyonun üsttü bej ve tonları renklerinde silttaşı biriminden oluşmaktadır. Ara katman olarak kireçtaşı birimi içermektedir. Birim taze yüzeylerinde gri renkli kalın ve ardalanmalı silttaşı ve kireçtaşı biriminden oluşmaktadır. Temel kaya üzerine uyumsuz olarak gelen Horu formasyonu Kalecik çakıltaşı birimi ile yanal düşey geçişli, Kızıldere Formasyonu ile uyumlu ve yatay geçişlidir.

3.1.4. Kızıldere formasyonu

İlk kez Schmidt (1961) tarafından adlandırılan Kızıldere formasyonu tanımlanırken, formasyon içine alt kısımda yer alan merceksel resifal kireçtaşlarıda dahil edilmiştir. Kızıldere formasyonunun altında bulunan Menzelet formasyonu ile uyumlu olan üstünde bulunan Aktepe formasyonu ile uyumsuz olarak yerleşmiştir. Kızıldere Formasyonun yaşı Kozlu (1997) tarafından Orta-Geç Miyosen olarak belirlenmiştir. Kalınlığını ise 800-2500m aralığında verilmiştir. Kızıldere Formasyonu gri renkli orta-kalın katmanlı kumtaşı ve şeyl seviyelerinin ardalanmasından oluşmuştur. Kozlu (1997), yaptığı çalışmalarda formasyon içinde kömürleşmiş bitkisel kırıntılıları olabileceğini belirtmiştir, İztan ve Harput (1988) ise yaptıkları çalışmalarında organik kırıntıları desteklemiş ve hidrokarbon aramalarının pozitif sonuçlanabileceğini savunmuşlardır. Kılınç ve Yeşilot Kaplan (2018) Kızıldere formasyonunun şeylleri üzerinde iz element ve TOC (Toplam Organik Karbon) deneyleri ile birimin anoksik ortam şartlarında çökelmiş olduğu ve karbon üretebileceğini ifade etmişlerdir.

3.1.5. Haymanseki formasyonu

Kozlu (1982), Arsuz civarını kapsayan birimi ilk defa Haymanseki formasyonu olarak isimlendirmiştir. Birimin kirli sarı renkli, laminalı kumlu şeyl, boyutları ve miktarları değişken merceksel konumlu evaporit, ara birim olarakta kumtaşı içerdiği belirtmiştir (Tekin ve diğerleri, 2010). Messiniyen döneminde oluşan birim, Kızıldere formasyonunun üstünde denizin giderek çekilmesi ile birlikte evaporitli seviyeler şeklinde çökelmiştir. Aktepe formasyonuna ait denizel birimler ile devam etmiştir. Arsuz'un civarını kapsayan bölgede formasyonun gözlemlenen kısımlarındaki özellikleri ise iyi boylanmalı, karbonat çimentolu, çapraz tabakalı kumtaşları ve evaporitli düzeylerlerden oluşur (Kozlu, 1982).

3.1.6. Aktepe formasyonu

Kozlu (1982) tarafından adlandırılan birim, Messiniyen zaman diliminde deniz çekilmesini takip eden yeniden deniz yükselmesi sırasında meydana gelmiştir (Kozlu, 1997). Yeniay (1983) tarafından formasyonun yaşı Alt Pliyosen olarak belirlenmiştir. Kozlu (1997)

çalışmalarında formasyonun kalınlığını ortalama 200 metre olarak belirtmiştir. Aktepe formasyonu gri renkli kiltaşı, kumtaşı, silttaşı ve ardalanmasından meydana gelmiştir (Donat, 2009).

3.1.7. Menzelet formasyonu

Kahramanmaraş yöresinde Gül (1987) tarafından adlandırılan birim, Çuhadar (1991) tarafından Köpekli formasyonu kapsamında değerlendirmiştir. Birim Serravaliyen yaşında olup, birbirleriyle iki yönde dereceli geçişli olan biyoklastik kireçtası ara katmanlı, kumtaşı bantlı beyaz-açık gri renkli kumlu marnlardan meydana gelmiştir. Birim resif önü ve gerisinden çökelmiştir. Bazen engebeli şelf üzerindeki çukur alanlarıda içine alır. Birimde bentonik ve planktonik foraminifer fosilleri yaygın olarak gözlemlenmektedir.

3.1.8. Erzin formasyon

Erzin Formasyon Pleistosen yaşlıdır. İçerisinde fosil olmayan formasyon gevşek yapılı, kalın katmanlı kalsit ile çimentolanmış çakıl taşlarından meydana gelmiştir. Tabanı aşınmalı olarak çökelen formasyon kendinden önce daha yaşlı tüm birimler üzerine uyumsuz olarak yerleşmiştir. Brim tipik akarsu fasiyesleriyle temsil edilmektedir.

3.2. Matriks Asitleme

Matriks asitleme kuyularda genellikle temizleme işlemleri için kullanılan bir yöntemdir. Minerolojik olarak karmaşık olmayan karbonatlı kayaçlarda ilk olarak diğer verim artırma yöntemleri ile uygulanmış daha sonra kumtaşlarında da yapılmaya devam edilmiştir. Asitleme yöntemi diğer uygulamalarına göre uygun maliyetli olduğunda tercih edilmektedir. Matriks asitleme sırasında dikkat edilen en önemli unsur düşük basınç ile rezervuar kayaca enjekte edilmesidir. Bunun nedeni enjeksiyon esnasında basınçtan kaynaklanan kırıkların oluşmasını engellemektir.

Asit reaksiyonlarının kireçtaşlarına oranla kumtaşlarında etkisinin az olduğu gözlemlenmiştir. Etkinin birkaç cm olduğu bilinmektedir. Matriks asitleme tıkanmış olan gözeneklerin temizlenmesi amacıyla yapılır ve doğal gözeneklilik tekrar elde edilir. HF (hidroflorik asit) genellikle yalnızca kalsit, feldispat ve kuvars parçalarını eritebilir. HF asit

ile HCl asit belli oranda karıştırılarak asitleme operasyonları gerçekleştirilmiştir. Asitleme öncesi %7,5 ile %15 oranında asitle ilk ön yıkama gerçekleştirilir (Pre-flush). Matriks asitleme reaksiyonları minerallerde şu şekilde gerçekleşir:

Kolayca HCI çözünür mineraller kalsit, dolomit ve siderittir. Çökeltiler oluşturur. Tepkimeler;

Kalsit 2HCl+CaCO₃ ------CaCl₂+H₂O + CO₂ Dolomit 4HCl + CaMg(CO₃) ₂ ------CaCl₂ + MgCl₂ + 2H₂O + 2CO₂ Siderit 2HCl + FeCO₃ ------FeCl₂ + H₂O + CO₂ Kuvars, kumtaşı, kil ve feldispatlar ana silisli parçacıklardır Kumtaşı asitlemesinde birincil kimyasal reaksiyonlar Kuvars SiO₂ + 4HF --- SiF₄ (silikon tetraflorür) + 2H₂O SiF₄ + 2HF ----- H₂SiF₆ (fluosilik asit) Killer (kaolinit) A₁₄Si₄O₁₀ (OH) $_{8}$ + 24HF + 2H₂ + ----- 4AlF₂ + 4SiF₄ + 18H₂O (montmorillonit) A₁₄Si₈O₂₀ (OH) $_{4}$ + 40HF + 2H₂ + ----- 4AlF₂ + 8SiF₄ + 24H₂O Feldispat (Mg, Na veya K) KAISI₃O₈ + 14HF + H₂ + K + AlF₂ + 3SiF₄ + 8H₂O

Matriks asitleme planlamasında rezervuar kayacın gözeneklilik geçirgenlik ve rezervuar akış dinamiği önem taşır. Karot örneklerinden elde edilen deneyler ile bu parametreler ölçülerek planlama yapılır. Asitleme işlemi, ön yıkama (preflush), ana asitleme işlemi (HF), asitleme sonrası (postflush) ve son yıkama (final flush) aşamalarından oluşmaktadır. Ana asitleme aşamasından HF asit reaksiyonları ve ürün çökelimi gelişir. İkinci reaksiyon ise fluosilisik asit (H₂SiF₆) reaksiyonları gerçekleşebilir ve reaksiyona alüminyum silikatlar, killer ve feldispatların ilk ürünleri katılır. Bu reaksiyonların hidratlaşmış silika çökelimi meydana getirmesinden dolayı olumsuz etkileri olduğu düşünülmektedir. Ayrıca HF asit feldispat, kuvars ve killer reaksiyona girerek matriksi zayıflatır ve formasyonların bozulmasına neden olur (Gomez, 2006).

HF asit işlemleri düzgün bir şekilde planlanmamış ise HF asit ve matriks çözünme ve ürün çökelim işlemi genişleyecek ve reaksiyonlar daha şiddetli olacaktır. İşlem planlanmasında kimyasal katkı kullanımları ve işlem hacimleri olumsuz etkileri azaltmak için doğru hesaplanmalıdır.

Asitlenme işlemlerinde rezervuar kayacın heterojen yapıda olması asitlenmenin etki

düzeyini de etkilemektedir. Heterojenliğin gözlemlendiği kumtaşlarında asit etkilenmesi ile geçirgen kayaçlar oluşur ve bunlara "wormhole" (solucan deliği) ismi verilir. Bu yapıların oluşum mekanizmalarını araştıran birçok araştırmacı bulunmaktadır. Kumtaşlarında matriks asitlemede öngörüler ve planlar hiçbir şey kesin kabul edilmez. Kumtaşlarının karmaşık ve heterojen yapısından dolayı asitlemede etkili olan faktörler farklı minerallerin varlığı, yüzey morfolojileri, gözenek boyut dağılımı, sıcaklık, basınç ve kimyasal bileşimleridir.

3.3. Porozite ve Özellikleri

Petrol ve doğalgaz arama çalışmaları için, petrolün içinde oluştuğu ve üretim yapılabilen rezervuar kayaçların gözeneklilik, geçirgenlik ve doygunluk özellikleri önemli parametreleridir (Rahnera, Halischb, Fernandesa, Wellerc ve Santiago, 2018). Bu parametreler arasındaki ilişkinin matematiksel işlemlerle sayısal olarak ortaya konulması gerekir (Anovitz ve Cole, 2015). Geçirgenlik akışkanlığın ana parametrelerinden birisidir (Ramia ve Martín, 2015). Geçirgenliği hesaplamak için akış modellemesi kullanımı yaygın ve güvenilir bir yöntemdir; çıkan sonuca göre geçirgenlik özelliğine dışardan müdahale edilebilir, asitleme gibi yapay teknikler ile artırılabilen bir özelliktir (Buijse, Boer, Breukel, Burgos ve Klos, 2003; Gouze ve Luquot, 2011). Geçirgenlik parametresinin açıklanabilmesi için gözeneklerin morfolojik özeliklerinin ve bağlantılı olup olmadığı bilinmesi gerekir (Heshmati ve Piri, 2018).

Gözeneklilik, kayacın meydana geldiği taneciklerin yapısının, dağılımının, boyutlarınının etki ettiği bir parametredir. Tane büyüklüğü, tane paketlenmesi, tanecik şekli ve tane büyüklüklerinin dağılımı gözenekliliği etkileyen mikro yapısal etmenlerdir.

Gözeneklilik yapısının açıklanabilmesi birçok bilim dalı ve alt dalında problemlerin çözümü için önem taşır. Yer biliminde ise hidrokarbon rezervinin hesaplanması, petrol ve doğal gaz rezervuarın özelliklerinin ve kapasitesinin açıklanması gibi konuların aydınlatılmasını sağlamaktadır (Du, Pang ve Shi, 2018). Rezervuar karakteri için gözenek yapısının mikroskopik ve makroskopik özelliklerinin sayısal olarak ifade edilmesi önem taşımaktadır. Bunun nedeni ise gözeneklerin hidrokarbon depolama alanı olmalarındandır (Geng, Zhang ve Yang, 2018). Kayacın gözenek yapısı, özellikleri ve gözenek boğaz

geometrisinin ortaya konulması, hidrokarbon, petrol ve birikimin, rezervuar kalitesinin belirlenmesinde önem taşımaktadır (Xi ve diğerleri, 2016; Li, Kang ve Haghighi, 2017).

Rezervuar kayaçlarının gözenek yapısının ortaya konulması için son zamanlarda birçok yöntem geliştirilmiştir. Bu yöntemlerden bazıları yüksek basınçlı cıva enjeksiyon ve kılcal basınç (MICP) ölçümü (Wang, Yao ve Jiang, 2017), düşük sıcaklık azot adsorpsiyonu (Xiao ve diğerleri 2017), elektronik mikroskopi taraması, geleneksel SEM, odaklanmış iyon ışın taramalı elektron mikroskobu (FIB-SEM) ve transmisyon elektron mikroskobu (Guo, Xu, Wu, Wei ve Liu, 2015), X-Işını mikro bilgisayarlı tomografi (µ-CT) yöntemleridir.

Gözeneklilik saptanması kolay fakat boyutlarının matematiksel olarak hesaplanması zor olan bir özelliktir. Bunun sebebi gözeneklerin farklı boyutlarda (nanometreden santimetreye kadar değişken olması) ve farklı değişken özelliklere sahip olmasıdır (Laia ve diğerleri, 2017) Ayrıca yapısal bakımdan zayıf olan gözeneklilik, kolayca çevresinden etkilenebilir. Kayaç delme, asitleme, kırılma gibi doğal ve yapay çevresel etkiler gözenek yapısını değiştirebilir (Heshmati ve Piri, 2018).

Porozite geçirgenlik ilişkileri nicelik açısından yorumlanmaya çalışılırken bilgisayardan yararlanılarak çözünürlük ve model geometrisi belirlenir. Bu model geometrisi "Gözenek ağı"dır (Dong ve Blunt, 2009; Nogues ve diğerleri 2013). Gözenek ölçekli modelleme, daha çok yönlü ve doğrudan bir yöntem sağlar. Kayaç özelliklerinin nasıl geliştiğini değerlendirir (Kutchko, Goodman, Rosenbaum, Natesakhawat ve Wagner, 2013). Ayrıca gözek oranı ve gözenek yapısının özelliklerini açıklar (Gharedaghlooa, Pricea, Rezanezhadb ve Quintonc, 2018).

Kumtaşları heterojen karmaşık gözenek geometrisi ve yapısına sahiptir. Kumtaşlarının gözenek yapısı rezervuar kalitesini ve sıvı akışını etkileyen ana etmenlerdir (Laia ve diğerleri, 2018). Kumtaşlarının gözenekleri oluştukları bölgeye ve türedikleri kayaç yapısına göre farklılıklar gösterir veya kimyasal özellikleri lazer gibi yapay etkilerle değiştirilebilir. Kumtaşlarının mikroporozitesinin sayısal değerine ulaşılması petrol sahası geiştirilmesi ve geri kazanılması açısından önemlidir. Kumtaşlarında mikron boyutundaki çatlaklar ve boşluklar bile önemli rezervuar hacmi oluşturur (Lai ve diğerleri, 2018).

3.4. Kapilarite

Kapilarite tanım olarak ifade edilirse, kayaç içinde bulunan suyun bulduğu boşluklardan yerçekimine karşı yukarıya doğru hareket etmesidir. Kapilarite kılcal (0,10-0,001mm) boşluklu ve boşlukları bağıntılı kayaçlarda meydana gelir. Kapilarite adnezyon, kohezyon ve yüzey gerilme kuvvetlerine bağlı olarak gelişir. Kapilaritenin gelişmesinde gözenek boyutunun önemi büyüktür. Kapilaritede gözenek boyutu ile su seviyesi ters orantılıdır (Feilden, 1982). Kayaç içinde gelişen kapilarite hareketinin mesafesi ve sıvının miktarı değişmektedir. Kapilariteyi etkileyen etmenler; sıvıyla temas eden yüzey alanı genişliği suyun geçiş süresi ve malzemenin kapilarite katsayısıdır. Suyun kayaçta yükselebilmesi için, malzemeye giren su miktarı ile buharlaşma arasında bir denge olmamalıdır.

Bir rezervuar hakkında çalışılırken rezervuarın sınıfını belirlemek için kılcal verilerin ortaya konulması gerekir. Rezervuarın içinde bulunan sıvıların akışkanlık özellikleri dış etkenlerin etkisiyle değişir. Sıvıyı oluşturan moleküller farklı sıvı veya katı moleküllerle karşılaştığında oluşan kuvvetler ile kılcal basıncı meydana getirir. Sıvılar bu kuvvetler kılcal yollarla hareket ederler. Kayacın akışkanlık özelliğinin belirtilmesinde gözenek boyutu ve miktarı önemlidir (Degruyter, Burgisser, Bachmann ve Malaspinas 2010; Peszynska, Trykozko, Iltis, Schlueter ve Wildenschild, 2016). Kayaç içinde hesaplanan gözenekleri boşluk yapılarını dolduran sıvı akışı tanımlanabilir (Geng, Wang, Lee, Chen ve Chang, 2016). Sıvının akış özelliklerini, belirlemek için sayısal modellemede simülasyon yöntemi, iki boyutlu mikro modeller ve ağ modeli kullanılmaktadır. Petrofizik modellerde kayaçlarda gözenekleri dolduran akışınkan fraktal davranışları olarak tanımlanır (Geng ve diğerleri, 2016).Malzemenin önemli fiziksel özelliklerinden olan kapilariteyi saptamak için kapilarite deneyi yapılmaktadır.

3.5. Micro- CT İle Porozite Tayini

Micro-CT yer biliminde ve diğer bilim dallarında ekonomik, numuneye zarar vermeyen ve diğer yöntemlerden daha az zaman alan bir yöntem olduğu için yaygın olarak kullanılmaktadır (Smal, Gouze, Rodriguez ve Montpellier, 2018). Micro-CT yönteminin canlı ve cansız numunelerin üzerinde uygulanabilir olması, birçok bilim dalında

problemlerin çözümüne kolaylık sağlar. Micro-CT yöntemi ile çok farklı dallardaki sorunların çözümüne net ve detaylı olarak ulaşılmaktadır (Yakıncı, Onar, Depci, Orhan ve Turan, 2016).

Micro-CT' de numunenin petrofizik yapısı incelenirken dikkate alınan parametreler gözenek gövdeleri, yapı kanalları ve boğaz yapılarıdır. Bu modelden ayrıca 3 boyutlu olarak gözeneklilik değerine ve modelden bağımsız olarak oluşan mineralleride incelenebilir (Sharmaa ve diğerleri, 2018). Micro-CT den belirlenen minerallerin iki boyutlu görüntülerinden yola çıkılarak 3 boyutlu görüntülerinin kesitleri oluşturulur, kumtaşlarının kimyasal çözünme hızları ve çözünmeye bağlı değişiklikler ölçülebilir (Liu, Shabaninejad ve Mostaghimi, 2018).

Micro-CT de kayacı meydana getiren minerallerin parlaklık özelliğinden yola çıkılarak mineral tipine ulaşılabilir. Dezavantajı ise X-Işınının zayıflaması, üst üste binmesi veya farklı mineraller benzer yoğunluklara sahip olması nedeniyle doğru sonuçlara ulaşılamada karşılaşılan güçlüklerdir (Golab ve diğerleri 2013; Zhanga ve diğerleri, 2018). Mineraller ve akışkanlar birinci dereceden ilişkili olduğu için hidrojeoloji çalışmalarında da Micro-CT kullanılmaktadır (Liu ve diğerleri, 2018). Micro-CT yönteminde kayaç gözenek yapılarının özelliklerinin tayininin yapılmasının yanında optik mikroskopta kısıtlı olarak incelenebilen opak minerallerin özellikleri de ayrıntılı olarak ortaya çıkarılabilir (Guoa ve diğerleri, 2018).

Gözenekler hidrokarbon depolama alanları olduklarından dolayı petrol ve doğalgaz açısından büyük bir önem taşımaktadırlar (Clarkson, 2013; Zhang ve Weller, 2014). Gözenek yapısının 3 boyutlu olarak ortaya konulması ve gözenek verilerinin sayısal olarak ifade edilmesi Micro-CT yöntemiyle mümkündür (Habrat, Madejski ve Dohnalik, 2018). Kayaçta gözenek karakterini belirlemek için gözenek boyutunu, dağılımını, oluşma nedenini, diğer gözeneklerle bağlantılı durumu incelenerek formasyonun rezervuar kaya olma olasılığı incelenir.

Micro–CT, X-Işınlarından yararlanılarak oluşturulan görüntünün, farklı açılardan ve yönlerden üç boyutlu olarak meydana getirilmesidir. Micro-CT, jeoloji ve diğer yerbiliminde gözeneklerin yapısı ve sayısal verilerinden yolla çıkılarak kayacın karakterini belirlemek için kullanılabilir (Yang, Huang, Jing ve Liu, 2014). Micro-CT yöntemi ile

yerbilimde özellikle porozite oranları, poroziteye bağlı özelliklerin, geçirimlilik ve bu konulara bağlı olarak kayaç yapısının tanımlanması mümkündür (Wu ve diğerleri, 2018).

Micro-CT deneyinin voksel aralığı diğer tomografi yöntemlerine göre küçük olmasından kaynaklı çözünürlüğü yüksektir (voksel aralığı 1–50 µm). Yüksek çözünürlük mikron boyutunda olan gözenek, çatlak gibi kayacın kapsadığı mikro yapısal unsurların sayısal olarak ifade edilmesini sağlar.

Micro- CT 'nin temeli olan X-Işınının piksel değerler ile mineralin yoğunluğu hesaplanabilir ve kayacı oluşturan minerallerin yoğunluk haritası oluşturulabilir. Böylece kayaç hakkında daha doğru yorumlar yapılabilir (Gharedaghloo, Price, Rezanezhad ve Quinton, 2018).

Micro-CT analiz yönteminde rezervuar kayaç örneklerinin nitel değerlerden yola çıkılarak, gözenek boşluğunun yapısının kantitatif olarak değerlendirilmesi yapılabilir (Bielecki ve diğerleri, 2013). Micro-CT de görüntülemede kullanım alanlarından biride üç boyutlu gözenek yapısının, özelliklerini ve alanları hesaplanmaya çalışarak gözenek haritasını meydana getirip yorumlamaktır. Meydana gelen gözenek haritasından gözenek ağları ortaya çıkarılarak akışkanlık ve taşıma süreçleri değerlendirilir. Gözenek ağ sistemi genellikle değişime uğrayan bir sistemdir ve mikron boyutunda olan akış deformasyon sorunlarının çözümünde etkilidir (Yuan, Chareyre ve Darve, 2015)

Micro-CT kaya mekaniğinde de kayacın mikro yapısından yola çıkılarak kayacın mekanik özelliklerini ortaya konulmasında kullanılmaktadır. Mikron boyutunda bulunan kayaç çatlaklarının yayılımı ve çatlak büyümesi sayısal olarak ifade edilebilir. Mikro değişimlerin sayısal verilerle ortaya konulması oluşabilecek büyük değişimlerin tahminini de sağlar (Zhou ve Xiao, 2017). Ayrıca mikron boyutunda olan çataklar rezervuar açısından büyük önem taşır (Lai ve diğerleri, 2018). Örneklerin kırılma yapısı açıklanmaya çalışılır (Skarżyński, Marzec ve Tejchman, 2019). Micro-CT ile kayacın iç çatlak yapısı ve hasarı, ortaya konularak kayacın mukavemet ve şekil değiştirmesi üç boyutlu görüntülerden açıkça tespit edilebilir (Yang, Yin, Huang ve Cheng, 2019). Micro-CT yöntemini tarayıcının sabitlenmiş numune üzerine X-Işını gönderilmesi ve görüntünün sayısal verilere aktarılmasıdır. Micro-CT'de birinci aşamada zayıflatılmış görüntünün algoritma yardımıyla görüntü yeniden oluşturulur (Kak ve Slaney, 2002).

Micro-CT işleyiş yöntemi ise tarayıcıdan çıkan görüntünün iki boyutlu görüntülerden ve matematikten yola çıkılarak üç boyutlu veriye dönüştürülmesidir. Dijital görüntü işlemenin temeli bilgisayar algoritmasına dayanmaktadır. Micro-CT yöntemi uygulandıktan sonra elde edilen görüntüleri istenilen sayısal veriye dönüştüren ImageJ, MATLAB, ICY, Avizo, Image Pro gibi analiz programlarıdır (Grove ve Jerram, 2011; Yang ve diğerleri 2014). Görüntü işleme yöntemlerinde görüntünün kalitesinine ve kullanılan programın niteliklerine göre farklı sonuçlara ulaşılabilir. ImageJ Java tabanlı olduğundan, Java eklentileri ile sürekli gelişen bir programdır. Image programının birinci aşaması görüntünün büyüklüğüne ve verinin çeşidine göre değişen verilerin aktarılması ve kaydedilmesidir. İkinci aşamas ise ölçeklendirme evresi olup gri skala 16 bit veriye sahiptir. Üçüncü aşamada 2D medyan filtreleme işlemi gerçekleştirilmektedir. Dördüncü aşamada ise gri tonlamalar üzerinden gözenek boşluğunun hesaplanmasıdır (Ridler ve Calvard, 1978). Son aşamada ise normalleştirme gerçekleştirilmektedir.

Micro-CT'de 2D ve 3D teknikleri gözeneklerin özelliklerini ortaya koyup tanımlama mümkündür. Micro-CT 2D görüntü yönteminin uygulanması ile gözenek şekli, boyutu ve bu boyutun dağılımı gibi gözeneklerin morfolojik özelliklerinin sayısal karşılığına ulaşılır. 2D görüntünün ortaya çıkma prensibi X-Işınının numunenin taranması ve bir X-Işını detektörü yardımıyla görüntülerin elde edilmesidir. Detektör ile elde edilen görüntülerin radyografi ile 2 boyutlu gri ve tonları içeren renk grubu ile görüntüsünün oluşmasıdır. Farklı açısal konumları ile radyografiler elde edilmek için, numune kendi ekseni etrafında tamamiyle dönene kadar küçük açılarla konumunu değiştirir. Numune kalınlığı fazla ise tarama süreleri uzar ve görüntü kaliteside düşer. Laboratuvar Micro-CT yöntemi ile polikromatik röntgen çeşitlerinden daha iyi görüntü sağlanır.Micro-CT incelemelerinde tek renkli X-Işınları kullanılabilir ve sonuçlanır (Geneci, 2017).

4. MATERYAL METOD

Çalışma genel olarak saha öncesi, saha çalışmaları, laboratuvar çalışmaları, saha sonrası çalışmalar olmak üzere dört aşamada gerçekleştirilmiştir

4.1. Saha Öncesi Çalışmalar

Bu aşamada çalışma alanı ve çevresi ile ilgili bütün jeolojik verilere ilişkin literatür derlemesi yapılmış gerekli bilgiler toplanıp, literatürde mevcut bulunan jeoloji haritaları derlenmiştir. Saha çalışmalarında kullanmak üzere gerekli bilgiler temin edildikten sonra arazi çalışmalarına başlanmıştır.

4.2. Saha Çalışmaları

Aktepe ve Kızıldere kumtaşlarının karakteristik olarak en iyi gözlemlendiği yerden ölçülü stratigrafik kesitler çizilmiş ve genel olarak gözlemlenen kumtaşı-kiltaşı ardalanmasından kumtaşı ve kiltaşı örnekleri alınmıştır. Kumtaşlarının saha özellikleri tanımlanmış ve lokasyonları GPS ile belirlenmiştir ve haritada işaretlemiştir. Saha özellikleri not edilmiş ve örneklerin litolojik ardalanmaları ve örnekler içinde/üzerinde gözlemlenen ayrışma, oksidasyon, tektonik özellikler fotoğraflanmıştır.

4.3. Laboratuvar Çalışmaları

Kumtaşlarının petrografik özelliklerini belirlemek üzere mostradan alınan örnekler İstanbul Teknik Üniversitesi ince kesit laboratuvarında hazırlanmıştır. Hazırlanan ince kesitler ayrıntılı olarak optik mikroskopta incelenmiş ve kumtaşlarını oluşturan tanelerin tane boyu, tane şekli, bağlayıcı malzeme ve taneler arası petrografik özellikleri belirlemek üzere görüntüler kaydedilmiştir. Petrografik incelemeler sonucu bağlayıcı malzemesi kalsit çimento olan örnek üzerinde porozite değişimlerinin incelenmesine karar verilmiştir.

Mikron boyutunda asit etkisi ile porozite değişimlerini belirlemek amacıyla asitlenme ve kapilarite deneyleri yapılmıştır. Kumtaşı örnekleri önce asitleme deneyi ve daha sora kapilarite deneyi uygulanmıştır. Numuneler önce % 7,5, % 15, % 30 oranlarında seyreltilmiş HCl asitte tabi tutulmuş, belirlenen dakikalar da hassas terazi ile ölçüm

yapılmış elde edilen değerler tablo haline getirilmiştir. Daha sonra kapilarite deneyinde kumtaşı örneklerinin kuru ağırlarını hassas tartı ile tartıp, kapilaritenin gelişmesi için alttan üste doğru örneğin içinde sıvı hareketini gözlemlemek amacıyla örnek su olan bir kaba yerleştirilmiştir. Belli aralıklarda kütleleri ölçülüp, elde edilinen değerlerin karşılaştırılma grafikleri çizilmiştir. Kapilarite deneyi baz alınarak 1, 4, 9, 16, 25, 36, 49, 64, 81, 100 dakikalarda örnekler tartılmıştır. Deney gidişatı takip etmek amacıyla fotoğraflar çekilmiştir.

Asitleme sonrası porozite değişimlerini iki ve üç boyutlu gözlemlemek için asitlenmiş ve asitlenmemiş örnekler uygun boyutta getirilerek ODTÜ Biyomalzeme ve Doku Mühendisliği Uygulama ve Araştırma Merkezi'nde Micro-CT deneyi yapılmıştır. Micro-CT cihazıyla içyapıdaki değişimler ve porozite değerleri ölçülmüştür. X-Işını yansımalarının örnekler boyunca değişimi gözlemlenmiştir.

4.4. Saha Sonrası Çalışmalar

Saha öncesi yapılan literatür çalışması, saha çalışmaları, stratigrafik kesit, laboratuvar çalışmaları derlenerek rapor haline getirilmiştir. Petrografik veriler derlenerek uygun örneklerin üzerinde yapılan deneylerin sonuçları grafikler, tablolar halinde sunulmuştur. Laboratuarda yapılan kapilarite, asitleme deneylerinin sonucunda ulaşılan değerler tablo ve grafik halinde tezde yer verilmiştir. Micro-CT deneyi sonuçları ImageJ programında değerlendirilip sonuçları tablo ve grafik haline getirilmiştir.

5. ARAŞTIRMA ve BULGULAR

5.1. Arazi Gözlemleri

Arazide örnek alınan mostra kiltaşı ve kumtaşı ardalanmasından meydana gelmektedir. Aktepe formasyonunun kumtaşı-kiltaşı profili 165 cm kalınlığındadır. Bölgede kiltaşı ve kumtaşları genellikle orta tabakalıdırlar. Kil taşlarının kalınlığı 20 cm ile 33 cm arasında değişirken, kum taşlarının kalınlığı 25 cm ile 40 cm arasındadır (Resim 5.1). Gri renkli kiltaşı–kumtaşı ardalanması güneye doğru eğimlidir ve konkodial kırılma yüzeyleri gözlenmektedir. Kiltaşları bol çatlaklı kırılgan, dışı koyu gri, iç yüzeyi açık gri renklidir ve kumtaşı üzerinde ayrışma yüzeyleri belirgin olarak gözlenmektedir. Kumtaşı örnekleri ise kırmızımsı gri renkli ve orta tabakalıdırlar. Bol çatlaklı kumtaşlarında gözlemlenen aşınma yüzeyleri ise nispeten daha koyu kırmızı renktedir. Bol çatlaklı ve koyu gri renkli kiltaşları kumtaşlarıyla ardışımladırlar. Kumtaşının dış yüzeyi koyu gri renklidir ve oksidasyon izleri bulunmaktadır (Resim 5.1A). Orta tabakalı bol çatlaklı kumtaşında ayrışma belirtileri sık olarak görülmektedir (Resim 5.1.B).

Arsuz ve İskenderun yörelerinde rezervuar kaya özellikleri gösteren birim Orta-Geç Miyosen yaşlı Kızıldere formasyonudur. Kızıldere formasyonunda rezervuar olabilecek kumtaşı ile ardışımlı kiltaşları bulunmaktadır ve bu kiltaşlarının hidrokarbon üreten kaynak kaya olduğu bilinmektedir. Formasyonda üst kısımlarda örtü kaya niteliğinde evaporitler görülmektedir. Kumtaşı ve kiltaşı ardışımlarının yaygın olduğu formasyonda gri-sarı renkli kumtaşlarının kalınlıkları 10-50 cm arasında ve orta-kalın tabakalı, gri renkli kiltaşları ise 2-30 cm arasında ve ince-orta tabakalıdırlar (Kılınç ve Yeşilot Kaplan, 2019). Bölgede tüm birimlerde tektonik çatlaklar yaygın olarak gözlemlenmektedir (Resim 5.2A-B). Evaporitik birimler ile marnlar ardışımlıdırlar ve kumtaşları, kiltaşları ve marnlarda organik madde kalıntılarına rastlamak mümkündür.

Resim 5.1. Aktepe formasyonu kumtaşlarının saha görünümü; A) Kumtaşı- kiltaşı ardalanması, B) Kumtaşlarında gözlemlenen çatlaklar ve ayrışma

Resim 5.2. Kızıldere formasyonuna ait kumtaşlarının saha görünümü; A) ince tabakalı kiltaşları ile orta tabakalı kumtaşlarının ardışımı, B) kumtaşlarında sıklıkla gözlemlenen tektonik çatlaklar
5.2. Kumtaşlarının Petrografik Özellikleri

Çok ince taneli kumtaşı özellikleri gösteren Aktepe formasyonu kumtaşlarında kuvars taneleri ağırlıklı olarak görülmektedir ve kumtaşını oluşturan feldispat ve kayaç kırıntıları gibi diğer bileşenler ise seyrek gözlemlenmektedir (Resim5.3).

Feldispat taneleri ise kuvars taneleri ile eşit boydadır (15-30µm) ve ikizlenme göstermektedirler. Yuvarlaklığı orta–iyi olan feldispat taneleri genellikle plajiyoklas taneleridir

Kayaç kırıntıları genellikle mika taneleri ve opak minerallerdir. Yer yer kalsit çimento gözlenmesinde bağlayıcı malzeme matrikstir ve yaklaşık %20 oranında bulunmaktadır ve kumtaşı " kuvars vake" olarak isimlendirilmiştir.

Kızıldere formasyonunda kiltaşları ve ardışımlı gözlemlenen kumtaşlarında bazik ve ultrabazik kayaçlarda türemiş kayaç kırıntıları hâkimiyet göstermektedir (Resim5.4).Tane boyu değişken olup, boyutları 20 µm ile 200 µm arasındadır. Ancak yaygın tane boyu 120-200µm dir.

Kayaç kırıntısı kuvars ve feldispat tanelerine nispeten fazla gözlemlenmektedir. Kayaç kırıntıları, fosil kavkıları, kireçtaşı taneleri ve magmatik kayaç parçalarından oluşmaktadır. Boylanma kötüdür ve tüm taneler köşelidir (Resim 5.5). Bağlayıcı malzeme kalsittir ve litik arenit olarak isimlendirilmiştir.

Resim 5.3. Aktepe formasyonu kumtaşı örneğinin mikroskop görüntüsü; A) polarize ışık görünümü (Q=Kuvars; M= Matriks), B) normal ışık görünümü

Resim 5.4. Kızıldere Formasyonu kumtaşlarında gözlemlenen kayaç kırıntılarının mikroskop görüntüsü (polarize ışık)

Resim 5.5. Kızıldere formasyonu kumtaşlarında görülen biyoklastların mikroskop görüntüsü; A) polarize ışık görünümü, B) normal ışık görünümü

5.3. Kapilarite ve Asitleme Deneyleri ve Sonuçlar

Bir kuyuyu üretime açmak veya azalan hidrokarbon üretimini arttırmak matriks asiteleme işlemiyle mümkün olmaktadır. Bu işlem esnasında rezervuar kayanın durumuna bağlı olarak asitleme gerçekleştirilmektedir. Asitleme pompalama ile gerçekleşmektedir ancak kuyu içerisine giren asit formasyonun kapilarite özelliğine bağlı olarak formasyonun içine nüfuz etmektedir. Asit etki miktarını belirleme amacıyla iki deney tasarlanmıştır, bunlar; kapilarite ve asitleme deneyleridir.

Asitleme esnasında madde kaybını hesaplamak amacıyla saf su ile kapilaritedeneyi gerçekleştirilmiştir. Belli zaman aralıklarında aralıklarla suyun ve seyreltilmiş HCl asitin etkisini belirlemek amacıyla hassas terazide ölçümler gerçekleştirilmiş ve değişimler Çizelge 5.1'de verilmiştir.

Sahada asitleme işlemlerinde en fazla kullanılan asit seyreltme oranlar % 7,5, % 15 ve % 30 dur. Çizelge 5.2'de deneyde üç tip asitlemede kullanılan örneklerin hacimleri, yüzey alanları ve seyreltilmiş asitin en az ve en çok etki miktarları verilmiştir. Buna göre % 7,5 HCl asit uygulanan örneğin alt yüzeyi 4,6 x 4,3 cm boyutlarındadır ve ortalama asit etki boyu 1.6 cm gözlemlenmiştir. %15 HCl asit uygulanan örneğin alt yüzeyi 4,5x4,5 cm boyutlarındadır ve kapilariteyle asit etkisi ortalama 2 cm gerçekleşmiştir. % 30 HCl asit uygulanan örnekte ise ortalama 2,5 cm asit etki yüksekliği gözlemlenmiştir ve örnek alt yüzeyi 4,5x 4,6 boyutlarındadır. Resim 5.6'da deneyde kullanılan örnekler ve asit etki boyları görülmektedir.

Asitleme esnasında örnek içerisinde belli miktarlarda çözülmelerin gelişmesi beklenen durumdur. Çözülen kayaç parçacıkları tüketilen asit ile birlikte yerçekiminin etkisiyle örnekten uzaklaşır. Çözülen kayaç parçacıklarından dolayı, belli sürelerde ölçülen kütle miktarı sadece seyreltilmiş asitin miktarını belirlemede kullanılamayacağından kapilarite deneyi de yapılmıştır. Kapilarite deneyinde ise kayacın saf suyu bünyesine alma miktarları ölçülmüştür ve böylece aradaki farktan çözünen kayaç parçacıklarının miktarları belirlenmiştir.

Asitleme ve kapilarite deneylerinde zamanla örnekte meydana gelen kütle değişimlerinin grafikleri Şekil 2.2.'de verilmiştir. Seyreltilme oranı % 7,5 HCl olan asitleme işleminde ilk

ölçülen kütle miktarı asidin çözme etkisiyle düşmüş ve bu düşüş deneyin başlangıcından 25 dakika sonraya kadar devam etmiştir. Bu süreden sonra çözme etkisinin azalmasıyla sadece gözeneklerin kapilariteyle tüketilmiş asit ile dolmasıyla ölçülen kütle miktarı yükselmiştir. Saf su ile yapılan kapilarite deneyinde ise gözeneklerin hızla su ile doldurulması 16 dakika sürmüştür, bu süreden itibaren kütle artış miktarı azalmıştır.

Seyreltilme oranı % 15 olan HCl asit ile yapılan deneyde çözme etkisi 36 dakika sürmüştür ve daha sonra da çözme etkisi az miktarda da olsa devam etmiştir. Aynı örneğin kapilarite deneyinde ise sürekli devam eden ve az miktarlarda kütle artışı gözlemlenmiştir.

Diğerlerine oranla daha yüksek çözme etkisine sahip % 30 HCl asit deneyinde ise deneyin başlarında yüksek miktarda çözme işlemi gerçekleşmiş ancak 25 dakika sonrasında etkisi en düşük seviyelere gelmiştir. Aynı örneğin kapilarite deneyinde örneğin zamana bağlı olarak suyu bünyesine eşit miktarlarda aldığı gözlemlenmiştir.

ASİTLEME	E DENEYİ		KAPİLARİTE DENEYİ			
Süre (dak	KD-12-	KD-12-	KD-12-	KD-12	KD-12-	KD-12-
	A7.5	A15	A30	A7.5	A15	A30
0	26,5982	41,9689	78,9777	26,2032	41,6620	77,9306
4	26,5540	41,8733	78,4182	26,3705	41,6626	77,9488
9	26,5102	41,8330	78,2686	26,4988	41,6629	77,9621
16	26,5001	41,8155	78,2090	26,6324	41,6840	77,9897
25	26,4983	41,8067	78,1649	26,6733	41,7025	78,0345
36	26,5898	41,8094	78,2354	26,6879	41,7083	78,0517
49	26,6190	41,7982	78,1290	26,6877	41,7066	78,0311
64	26,6376	41,7925	78,1274	26,6990	41,7173	78,0377
81	26,6921	41,7968	78,1276	26,7157	41,7244	78,0474
100	26,7218	41,8080	78,1250	26,7251	41,7376	78,0609

Çizelge 5.1. Kapilarite ve asitleme deneylerinde örneklerin süre/kütle değişimi

Seyreltme	Örnek boyutları-	Örnek	Ort. Asit	Çözünen	Asit etki
Oranı	en/boy/yükseklik	Hacmi	Etki	madde	hacmi (cm ³)
	(cm	(cm^3)	mesafesi	miktarı(g)	
			(cm		
% 7,5	46/2,92,9	38,686	06	32,8180	21,344
%15	45/2,5/2,6	29,25	08	34,0243	22,5
%30	46/4,5/4,5	93,15	1,1	35,5433	51,75

Çizelge 5. 2. Deneylerde kullanılan örneklerin boyutları ve asit etki hacimleri

Resim 5.6. Deneyde kullanılan örnekler ve asit etki yüzeylerinin görünümü

Şekil 5.2. Asitleme ve Kapilarite deneylerinin zamana bağlı kütle değişim grafikleri

5.4. Micro-CT Görüntülerinin İncelenmesi

Micro-CT numuneyi oluşturan tanecik yapısının nitel özelliklerinin aydınlatılması konusunda son derece etkindir. Micro-CT'de numunenin üç boyutunun mikron boyutunda ortaya konulması numunenin şeklinin ve petrografik özelliklerinin incelenmesine olanak sağlar. Petrolün rezervuar kayaçtaki miktarının tahmin edilebilmesi için porozite ve diğer fiziksel özelliklerinin ortaya konulması gerekmektedir. Petrolün göç ettiği kayaçların fiziksel özelliklerini tahmin etmek için Micro-CT görüntülerinden yola çıkılarak verilere dönüştürülür. Zamandan tasarruf sağlaması, çeşitli kayaçlarda yapılması açıkça gözlemlenmesi bu yöntem jeolojide yaygın olarak kullanır (Guptaa ve diğerleri, 2018). Eğer numune hasar aldıysa veya çeşitli kimyasal bozunmalar varsa bu yöntemle ayırt edilimesi mümkündür (Kurt ve Orhan, 2016).

Micro-CT deneyi asitleme ve kapilarite deneyine tabi tutulmuş ve tututlmamış olmak üzere örnekler hazırlanmıştır. Bunlar ilki % 15 seyreltilmiş asit deneyinden elde edilmiş olan örnektir ve örnekte asitleme etkisinin başlayıp bittiği ve etki etmediği alandan 1.5 cm boyunda bir kesit elde edilmiştir. Diğeri ise deneye tabi tutulmamış olan 1.5 cm boyunda K-12 örneğidir.

Bu çalışma kapsamında Micro-CT analizinde 13 mikron aralıklarla iki boyutlu görüntüler kaydedilmiştir. Resim 5.7'de asitlenmemiş örneğin (K-12) üç boyutlu olarak en, boy ve yüksekliklerine göre porozite değişimi gözlemlenmektedir. Resimlere göre asitlemenin yön seçimli olarak poroziteyi tüm yönlerde değiştirdiği gözlemlenmiştir. Resim 5.8 ise asitlenmiş örneğin (K-12-15) asitleme yönüne göre porozite değişiminin en, boy ve yüksekliklerine göre görüntülere yer verilmiştir. Asitlenmemiş örnekte porozitenin tüm yönlerde az da olsa farklılık gösterdiği gözlemlenmektedir.

Micro-CT uygulanan asitlenmiş ve asitlenmemiş örnekler üzerinde kullanılan piksel değeri 13,7521µm dir. Analiz işleminde kullanılar renk skalasınsa alt gri eşik değeri 110, üst gri eşik değeri 255 olarak alınmıştır.

Micro-CT yöntemiyle örneklerin açık, kapalı ve toplam porozite oranlarını analiz etmek mümkündür. Asitlenmiş K-12 örneği ile asitlenmemiş K-12-A-15 örneği arasında porozite

değerlerinde farklılık gözlemlenmiştir. Buna göre açık porozite yüzdesi asitlenmemiş örnekte % 35,46118674 iken asitlenmenin etkisiyle diğer örnekte % 39,53906226 değerine çıkmıştır ve % 11 oranında artış gözlemlenmiştir. Kapalı porozite yüzdesi ise asitlenmemiş örnekte asitlenmemiş örnekte % 4,22378743 iken bu yüzde değeri asitlenme ile gözeneklerin açılması işleminden sonra asitlenmiş örnekte % 2,41823951 ölçülmüştür. Asitleme işlemi ile toplam porozite değerleri ise asitlenmemiş örnekte % 38,18716902, asitlenmiş örnekte % 41,00115255 yüzde değerine yükselmiştir. Bu artış asitlemenin porozite değerlerinde yaklaşık % 2,8 oranında bir artışa neden olduğunu göstermektedir.

Resim.5.7. Micro-CT uygulanan asitlenmemiş kumtaşı örneklerinin en boy kalınlıklarına göre gösterimi

Micro-CT analizinde porozite dışında kalan tanelerin tarandığı bölgeler yüzde nesne hacmi olarak hesaplanır. Bu oran asitlenmemiş örnekte % 61,81 oranında iken asitleme işlemi ile nesne hacim yüzdesi % 58,99 değeri ölçülmüştür. % 15 oranında seyreltilmiş HCl asit etkisiyle nesne hacim yüzdesi % 2,8 azalmıştır.

Resim 5.9'da X-Işınlarının asitlenmiş ve asitlenmemiş numune üzerindeki yayılımı görünmektedir. Asitlenmemiş numune içinden geçen X-Işınlarının süreklilik göstermediği (Resim 5.9.A), asitlenmiş numunede ise X-Işınlarının süreklilik gösterdiği görülmektedir (Resim 5.9.B).

Resim.5.8. Micro-CT uygulanan asitlenmiş kumtaşı örneğinin üç boyutta gösterimi

Özellik	Kısaltma	K12 (Asitlenmemiş)	K12-A15 Asitlenmiş
Katman sayısı	-	1281	1628
Alt dikey konum	-	03025469, mm	42081523, mm
Üst dikey konum	-	17,9052753, mm	26,5828703, mm
Piksel boyutu	-	13,75213158, µm	13,75213158, µm
Alt gri eşik	-	110	110
Üst gri eşik		255	255
Toplam VOI hacmi	TV	2433 14350868, mm ³	1697 88251575, mm ³
Nesne hacmi	Obj. V	1503 99488449, mm ³	1001 73111536mm ³ ,
Yüzde nesne hacmi	Obj.V / TV	% 61 81283098	% 58 99884745
Toplam VOI yüzeyi	TS	1187 45857257, mm ²	947 03489485, mm ²
Nesne yüzeyi	Obj.S	9737 25755439, mm ²	2483 92743178, mm ²
Arakesit yüzeyi	i.S	67 89576796, mm ²	13 40039917, mm ²
Nesne yüzeyi /	Obj.S /	6 47426242,1/mm	2 47963490,1/mm
hacim oranı	Obj.V		
Nesne yüzey	Obj.S / TV	4,00192488,1/mm	1,46295601,1/mm
yoğunluğu			

Çizelge 5.3. Micro-CT analizine göre kumtaşlarında hesaplanan porozite değerleri

Çizelge 5.3.(Devam) Micro-CT analizine göre kumtaşlarında hesaplanan porozite değerleri

Özellik	Kısaltma	K12 (Asitlenmemiş)	K12-A15 Asitlenmiş
Obje sayısı	Obj.N	2692	997
Kapalı gözenek	Po.N (cl)	222097	34744
sayısı			
Kapalı	Po.V (cl)	66,32706090, mm ³	24,82457530, mm ³
gözeneklerin hacmi			
Kapalı	Po.S (cl)	4938 62913662 mm ²	1306 10447038 mm ²
gözeneklerin			
yüzeyi			
Kapalı gözeneklilik	Po (cl)	% 4,22378743	% 2,41823951
(yüzde			
Açık gözenek	Po.V (op)	862,82156329, mm ³	671,32682509, mm ³
boşluğu hacmi			
Açık porozite	Po (op)	% 35, 46118674	% 39,53906226
(yüzde			
Toplam gözenek	Po.V (tot)	929 14862419 mm ³	696 15140039, mm ³
boşluğu hacmi			
Toplam	Po (tot)	% 38,18716902	% 41,00115255
gözeneklilik(yüzde)			
Bağlantı	Conn	45478	7128
Bağlantı yoğunluğu	Conn.Dn	18,69101612, 1/mm ³	419816153,1/mm ³

Resim 5.9. X-Işınlarının kumtaşı örneklerinde yayılımı; A) asitlenmemiş örnek B) asitlenmiş örnek

5.5. Görüntü İşleme Programı ile Porozitenin Bulunması

İki boyutlu görüntülerde porozite yüzdesini hesaplanmak amacıyla yerbilimlerinde kullanılan görüntü işlemi programları bulunmaktadır. ImageJ programı gerek kullanılabilirlik gerekse literatürde diğer porozite hesaplamalarına göre doğru sonuçlar verdiğinden dolayı tercih edilmiştir. Programda kullanılmak üzere % 15 HCl asit ile deneye tabi tutulmuş örneklerin iki boyutlu görüntüleri kullanılmıştır. Asitleme deneyi sonucunda örnekte asit etkisine göre 3 (üç) ayrı alan gözlemlenmiştir. Bu alanlar kapilarite yönüne bağlı olarak asitlenmiş, yarı asitlenmiş ve asitlenmemiş bölgeler şeklinde tanımlanmıştır (Şekil 5.3).

Porozite hesaplamalarında porozitenin kayaçtan ayrımlanabilmesi için görüntünün gri tonlarında kullanılması gerekmektedir. Micro-CT ve SEM (Taramalı Elektron Mikroskobu) görüntüleri gri tonlarında elde edilmesine rağmen optik mikroskopta çift ve tek nikolde elde edilen görüntülerin tonlamalı ayarları gri olarak değiştirilmelidir. Image/Adjust/Brightness/Contrast komutu, görüntüyü 8 bit biçiminde yapmak için kullanılır (Image/Type/8-bit; Resim 5.9). Görüntü 8 bit gri tonlamalı görüntülerde farklı gri tonlama değerlerinden oluşur. Gri değer aralıkları G = $\{0, 1, 2, 255\}$ olarak ifade edilir. Image/Adjust/Threshold komutu genellikle gri tonlamalı bir görüntüden ikili görüntü oluşturmak için kullanılır (Resim 5.10). Bu komut renkli görüntülerle de kullanılabilir. Gri renkli görüntüden ikili forma görüntü, eşik değerin üzerindeki parlaklık değerleri 255 iken, eşik değerin altındaki parlaklık değerleri 0'dır. Dolayısıyla görüntü parlaklık değeri sadece iki değerden oluşur. Porozite ölçümleri Kızıldere Formasyonu kumtaşlarında asitlenmiş, yarı asitlenmiş ve asitlenmemiş olarak üç farklı bölgede incelendiğinden görüntü üzerinde "Select" komutu ile seçilmiş bölge ölçülmüştür.

Olası ölçüm kriterleri listesini değiştirmek ve yeni kriterler eklemek için The Analyze/Set Measurements komutu açılabilir (Resim 5.11). Gözeneklilik dağılım yüzdesi ölçümü için, "Alan Fraksiyonu" seçilmelidir. Ve sonra görüntünün sonucu kaydedilebilir (Resim 5.12).

Şekil 5.3. Asitlenme ve kapilarite yönü ve asitlenme bölgeleri

Resim.5.9. Görüntünün gri tonlama değerlerine dönüştürülmesi

Resim 5.10. Görüntünün gri tonlama değerlerine dönüştürülmesi

Resim 5.11. Porozite hesaplamaları için ölçüm ayarlarının belirlenmesi

Resim 5.12. Porozite hesaplamaları için Analyze/Measure komutunun açılması

5.6. Micro-CT Sonuçlarının Değerlendirilmesi

Micro-CT analiz sonuçları Imagej programında incelenmiştir. Imagej programından çıkan sonuçlara göre asitlenmiş bölgede porozite oranı % 35-40 arasında değişen değerler üzerinde yoğunlaştığı görülmektedir. Yarı asitlenmiş bölgede % 30-40 değerleri arasında değişim gözlemlenmektedir. Asitlenmemiş bölgede bu değer daha da düşmekte ve % 20-45 arası değerlerde bulunmaktadır. Porozite oranı en az asitlenmemiş bölgede gözlenmektedir. Asitleme ile porozitenin doğru orantılı olarak hareket ettiği görülmektedir (Şekil 5.4).

Şekil 5.4. Micro-CT analizi sonucu elde edilen görüntülerden ImageJ programı ile hesaplanan porozite değerlerinin dağılımı

		% Toplam		Yarı	
Görüntü No	Alan	Porozite	Asitlenmiş	Asitlenmiş	Asitlenmemiş
K12 A-15 -rec0030	300120	29,199	37,552	28,692	21,316
K12 A-15- rec0035	330512	28,939	34,033	29,912	22,847
K-12 A-15-rec0040	347700	35,133	39,361	38,410	27,261
K12 A-15-rec0045	354160	32,676	35,873	35,899	26,452
K-12 A-15 -rec0050	384992	33,177	36, 715	35,092	27,799
K-12 A-15 -rec0055	381200	34,842	37,781	37,319	29,405
K12 A-15 -rec0060	377088	34,599	36, 499	36, 770	30,573
K-12 A-15 -rec0065	379620	37,232	39,648	38,987	33,012
K12 A-15-rec0070	402000	33,644	36,703	34,968	29,211
K12 A-15-rec0075	416120	36,020	39,088	37,276	31,710
K12 A-15-rec0080	421064	34,707	37,592	36, 500	29,999
K12 A-15-rec0085	435072	33,880	37,408	35,616	28,819
K12 A-15-rec0090	433048	34,218	38,049	35,661	28,582
K12 A-15 -rec0095	428526	34,281	37,002	36, 862	29,131
K12 A-15-rec0100	450684	34,664	37,996	36, 149	29,707
K12 A-15-rec0105	470652	29,059	32,997	30,338	23,904
K12 A-15-rec0110	487982	29,286	33,587	29,539	24,691
K-12 A-15_rec0115	495388	29,246	34,043	29,953	27,277
K-12 A-15_rec0120	493132	31,979	36, 551	33,538	26,006
K-12 A-15_rec0125	513205	29,159	33,572	30,273	23,857
K-12 A-15_rec0130	520784	31,893	35,183	33,047	27,578
K-12 A-15_rec0135	482944	34,167	38,010	36, 351	28,513
K-12 A-15_rec0140	525370	36,612	40,671	37,742	31,608
K-12 A-15_rec0145	522720	35,913	39,315	37,357	31,034
K-12 A-15_rec0150	490361	35,732	38,778	37,148	31,064
K-12 A-15_rec0155	511575	35,610	39,127	36,399	31,195
K-12 A-15_rec0160	510272	35,721	39,099	36, 221	31,947
K-12 A-15_rec0165	507927	35,107	38,618	35,985	30,980
K-12 A-15_rec0170	506456	35,275	38,142	36, 087	32,025
K-12 A-15_rec0175	5008716	37,778	40,502	39,226	33,523
K-12 A-15_rec0180	503100	34,552	36,009	36,009	30,705
K-12 A-15_rec0185	519114	34,253	35,597	36,005	31,120
K-12 A-15_rec0190	517186	34,169	34,432	36, 228	32,022
K-12 A-15_rec0195	504972	33,842	33,375	36,090	31,905
K-12 A-15_rec0200	510614	33,642	33,706	35,482	31,564
K-12 A-15_rec0205	512652	33,059	33,663	35,325	30,404
K-12 A-15_rec0210	509803	35,701	37,387	37,487	32,188

Çizelge 5.4. Micro-CT analizi sonucu elde edilen görüntülerden ImageJ'le hesaplanan porozite değerleri

K-12 A-15_rec0215	497097	33,084	36, 745	34,172	28,450
K-12 A-15_rec0225	491130	34,061	40,632	32,794	28,631
K-12 A-15_rec0230	516240	35,229	42,273	33,749	29,665
K-12 A-15_rec0235	520674	34,354	39,999	33,874	29,228
K-12 A-15_rec0240	495880	34,989	40,377	35,103	29,328
K-12 A-15_rec0245	496930	36,783	41,335	37,824	31,114
K-12 A-15_rec0250	492649	36,566	40,506	37,590	31,588
K-12 A-15_rec0255	505582	36,369	40,085	37,348	31,681
K-12 A-15_rec0260	513000	33,539	36,959	34,626	29,061
K-12 A-15_rec0265	516000	36, 035	38,477	37,382	32,189
K-12 A-15_rec0270	505440	35,810	38,072	37,691	31,660
K-12 A-15_rec0275	515424	33,111	35,091	35,480	28,439
K-12 A-15_rec0280	515984	33,166	35,295	35,814	28,299
K-12 A-15_rec0285	508368	35,675	37,678	38,244	31,104
K-12 A-15_rec0290	514976	32,673	35,374	34,255	28,431
K-12 A-15_rec0295	522720	35,054	37,485	36, 229	31,395
K-12 A-15_rec0300	533328	34,909	37,570	35,343	31,781
K-12 A-15_rec0305	505440	35,064	37,656	35,155	32,396
K-12 A-15_rec0310	516912	35,218	38,205	34,313	33,259
K-12 A-15_rec0315	522720	35,026	36, 702	35,253	33,124
K-12 A-15_rec0320	531712	34,780	37,003	35,348	31,959
K-12 A-15_rec0325	512640	34,910	37,709	35,472	31,584
K-12 A-15_rec0330	510720	37,877	40,665	38,433	34,509
K-12 A-15_rec0335	497408	35,052	37,801	36,035	31,276
K-12 A-15_rec0340	523136	38,053	39,763	39,787	34,615
K-12 A-15_rec0345	504096	35,578	38,523	36, 853	31,406
K-12 A-15_rec0350	508368	35,683	37,750	38,032	31,260
K-12 A-15_rec0355	516912	35,753	37,317	38,649	31,269
K-12 A-15_rec0360	518848	35,995	36, 908	39,355	31,729
K-12 A-15_rec0365	504560	36, 142	36, 949	39,552	31,748
K-12 A-15_rec0370	529392	35,668	37,162	38,464	31,357
K-12 A-15_rec0375	531712	35,129	36, 719	38,122	30,703
K-12 A-15_rec0380	540288	29,976	31,225	32,835	25, 852
K-12 A-15_rec0385	527744	32,631	33,371	35,702	28,726
K-12 A-15_rec0390	504096	33,523	34,163	37,121	29,285
K-12 A-15_rec0395	503568	33,582	34,261	37,537	28,904
K-12 A-15_rec0400	507744	33,372	34,348	36, 199	29,564
K-12 A-15_rec0405	525456	30,303	31,027	33,422	26,489
K-12 A-15_rec0410	521792	32,769	33,753	35,080	29,520

Çizelge 5.4.(Devamı) Micro-CT analizi sonucu elde edilen görüntülerden ImageJ'le hesaplanan porozite değerleri

		% Toplam	Asitlenmiş	Yarı	
Görüntü No	Alan	Porozite		Asitlenmiş	Asitlenmemiş
K-12 A-15_rec0415	527744	34,906	35,517	37,656	31,512
K-12 A-15_rec0420	541983	32,081	32,271	35,484	28,368
K-12 A-15_rec0425	512848	35,132	35,753	39,132	30,531
K-12 A-15_rec0430	518655	35,251	36, 601	38,538	30,522
K-12 A-15_rec0435	514632	35,193	37,077	37,965	30,470
K-12 A-15_rec0440	526500	34,970	37,942	36, 723	30,280
K-12 A-15_rec0445	509076	32,230	35,540	33,482	28,678
K-12 A-15_rec0450	509548	35,241	37,234	36, 309	32,540
K-12 A-15_rec0455	534290	30,401	33,133	30,898	27,281
K-12 A-15_rec0460	513252	32,883	35,201	34,212	29,277
K-12 A-15_rec0465	545412	28,494	31,454	28,520	25, 493
K-12 A-15_rec0470	503607	32,745	36, 322	32,779	29,128
K-12 A-15_rec0475	517186	32,877	36, 379	32,897	29,283
K-12 A-15_rec0480	525264	33,225	36, 650	32,988	30,003
K-12 A-15_rec0485	513040	34,938	38,317	35,263	31,180
K-12 A-15_rec0490	522996	34,434	37,404	35,757	30,216
K-12 A-15_rec0495	531930	32,027	34,653	34,070	27,397
K-12 A-15_rec0500	511131	35,096	37,718	36, 346	31,148
K-12 A-15_rec0505	527424	27,107	28,982	28,318	23,947
K-12 A-15_rec0510	549673	21,876	22,922	22,437	20,470
K-12 A-15_rec0515	532062	34,494	35,532	35,342	32,625
K-12 A-15_rec0520	528104	34,416	36, 098	33,955	33,180
K-12 A-15_rec0525	528320	34,293	35,308	33,392	33,996
K-12 A-15_rec0530	533180	36, 912	38,789	35,560	36, 281
K-12 A-15_rec0535	540252	31,621	34,011	30,261	30,653
K-12 A-15_rec0540	530000	34,284	36, 924	33,068	33,023
K-12 A-15_rec0545	535940	34,208	36, 854	33,222	32,509
K-12 A-15_rec0550	530352	34,222	36, 539	33,866	32,324
K-12 A-15_rec0555	551769	34,159	36, 694	33,494	32,323
K-12 A-15_rec0560	533520	37,225	39,724	37,363	34,547
K-12 A-15_rec0565	536640	37,648	39,985	37,610	35,324
K-12 A-15_rec0570	530965	37,569	39,876	38,435	34,309
K12 A-15_rec0575	537672	34,562	36, 951	35,262	31,350
K-12 A-15_rec0580	540768	32,658	36, 440	32,476	28,969
K-12 A-15_rec0585	541620	35,756	39,617	35,239	32,603
K-12 A-15_rec0590	539756	27,789	31,773	27,952	23,792
K-12 A-15_rec0595	513084	32,660	36, 297	33,278	28,422

Çizelge 5.4. (Devamı) Micro-CT analizi sonucu elde edilen görüntülerden ImageJ'le hesaplanan porozite değerleri

		% Toplam		Yarı	Asitlenmemiş
Görüntü No	Alan	Porozite	Asitlenmiş	Asitlenmiş	
K-12 A-15_rec0600	534864	32,762	35,784	33,464	29,105
K-12 A-15_rec0605	529932	32,677	34,980	33,125	29,911
K-12 A-15_rec0610	532312	35,577	38,542	35,250	33,060
K-12 A-15_rec0615	525288	35,787	38,757	35,608	32,968
K-12 A-15_rec0620	537160	31,047	33,495	31,020	28,410
K-12 A-15_rec0625	527875	33,604	36, 488	33,790	30,442
K-12 A-15_rec0630	535920	33,541	36, 869	33,196	30,532
K-12 A-15_rec0640	526320	32,742	35,538	32,779	29,889
K-12 A-15_rec0645	528230	35,764	37,396	36, 346	33,540
K-12 A-15_rec0650	538384	35,838	36, 808	36, 604	34,109
K-12 A-15_rec0655	542010	30,340	31,496	30,845	28,730
K-12 A-15_rec0660	521180	35,804	37,251	35,803	34,293
K-12 A-15_rec0665	518064	36, 151	37,995	36, 216	34,228
K-12 A-15_rec0670	523523	35,758	38,048	35,215	33,963
K-12 A-15_rec0675	528192	30,598	32,843	30,244	28,784
K-12 A-15_rec0680	528264	41,693	43,820	40,823	40,312
K-12 A-15_rec0685	529360	35,605	37,866	34,546	34,387
K-12 A-15_rec0690	527773	35,348	37,587	34,194	34,243
K-12 A-15_rec0695	526138	35,851	37,973	35,125	34,439
K-12 A-15_rec0700	517104	36, 082	38,515	35,755	34,036
K-12 A-15_rec0705	522708	36, 566	39,612	35,509	34,610
K-12 A-15_rec0710	520709	36, 893	40,022	36, 091	34,567
K-12 A-15_rec0715	530874	31,608	35,359	31,125	28,381
K-12 A-15_rec0720	514415	34,556	38,000	34,049	31,603
K-12 A-15_rec0725	531168	29,523	32,868	29,143	26,547
K-12 A-15_rec0730	519036	32,312	35,961	31,550	29,330
K-12 A-15_rec0735	512064	34,859	39.038	34,464	31,149
K-12 A-15_rec0740	510549	35,189	38,254	36,020	31,417
K-12 A-15_rec0745	508470	32,989	35,908	34,370	28,471
K-12 A-15_rec0750	516311	33,196	35,807	34,517	29,188
K-12 A-15_rec0755	501354	32,969	36, 313	33,852	28,732
K-12 A-15_rec0760	492993	33,177	36, 633	32,869	30,078
K-12 A-15_rec0765	520741	33,549	35,469	32,574	32,466
K-12 A-15_rec0770	500906	33,928	35,167	32,996	33,588
K-12 A-15_rec0775	514976	31,320	32,725	29,824	31,761
K-12 A-15_rec0780	500580	33,646	35,595	31,748	33,860

Çizelge 5.4. (Devamı) Micro-CT analizi sonucu elde edilen görüntülerden ImageJ'le hesaplanan porozite değerleri

		% Toplam		Yarı	
Görüntü No	Alan	Porozite	Asitlenmiş	Asitlenmiş	Asitlenmemiş
K-12 A-15_rec0785	494656	35,910	37,378	34,504	35,927
K-12 A-15_rec0790	499720	35,771	37,013	34,103	36, 300
K-12 A-15_rec0795	498750	35,463	36, 731	34,437	35,268
K-12 A-15_rec0800	494844	35,420	38,081	33,886	34,293
K-12 A-15_rec0805	498802	32,588	35,927	30,970	30,863
K-12 A-15_rec0810	479232	35,479	38,036	34,337	34,160
K-12 A-15_rec0815	496485	38,295	40,306	36, 982	37,697
K-12 A-15_rec0820	485224	35,618	37,090	33,859	35,750
K-12 A-15_rec0825	492237	35,234	36, 489	33,658	35,438
K-12 A-15_rec0830	471600	37,902	38,727	36, 914	37,922
K-12 A-15_rec0835	470844	34,644	34,998	33,938	35,015
K-12 A-15_rec0840	488482	35,251	36, 112	33,443	36, 303
K-12 A-15_rec0845	477360	39,352	40,908	36, 791	40,143
K-12 A-15_rec0850	471076	36, 199	38,401	33,610	36, 639
K-12 A-15_rec0855	440000	34,014	35,961	31,765	34,373
K-12 A-15_rec0860	466440	37,652	38,464	35,461	39,014
K-12 A-15_rec0865	476715	35,315	35,788	33,378	36, 794
K-12 A-15_rec0870	451308	34,760	35,278	33,695	35,297
K-12 A-15_rec0875	469176	35,871	36, 852	34,109	36, 733
K-12 A-15_rec0880	450585	38,062	38,744	36, 399	38,945
K-12 A-15_rec0885	453995	35,130	36, 386	34,063	35,118
K-12 A-15_rec0890	471040	32,515	33,300	31,287	32,954
K-12 A-15_rec0895	447849	34,513	36, 276	33,568	33,726
K-12 A-15_rec0900	470028	31,852	34,250	31,040	30,487
K-12 A-15_rec0905	466036	28,768	31,991	27,596	26,834
K-12 A-15_rec0910	443504	37,109	39,350	35,643	36, 400
K-12 A-15_rec0915	469050	34,622	37,085	32,223	34,732
K-12 A-15_rec0920	457625	34,443	36, 207	32,222	35,031
K-12 A-15_rec0925	451707	37,241	37,792	34,534	39,678
K-12 A-15_rec0930	454312	28,504	30,489	25,924	28,979
K12 A-15_rec0935	442575	34,010	33,224	32,075	36, 789
K-12 A-15_rec0940	431289	36, 977	35,166	36, 786	39,135
K-12 A-15_rec0945	450604	31,282	29,665	31,611	32,478
K-12 A-15_rec0950	436205	37,532	34,558	37,863	40,199
K-12 A-15_rec0955	421575	34,189	31,221	35,777	35,810
K-12 A-15_rec0960	441856	35,191	32,134	34,436	38,997
Ortalama		34,207	36, 546	34,649	31,455

Çizelge 5.4. (Devamı) Micro-CT analizi sonucu elde edilen görüntülerden ImageJ'le hesaplanan porozite değerleri

5.7. Porozite Boyutları

yarı asitlenmiş ve asitlenmemiş olarak ayrılmış olan bölgelerde Asitlenmiş, porozitesayıları ve poroziteçevre uzunlukları ölçülmüştür. Asitleme islemi neticesinde porozitesayılarında % 28 değerinde bir azalma gerçekleşmesine rağmen porozite çevre uzunluklarında (dolayısıyla boyutlarında) asitlenme ile artış gerçeklesmiştir. ImageJ/Analyze Participle ölçme özelliği kullanılarak toplam 2995 adet porozite belirlenmiştir. Buna göre asitlenmemiş bölgede porozite sayısı 1.130 adet iken bu değer asitlenmis bölgeve doğru giderek azalmış ve asitleme işlemi ile porozitelerin birleşmesi sonucu yarı asitlenmiş bölgede 1052 adet asitlenmiş bölgede ise 813 adet porozite ölçülmüştür. Asitlenmiş bölgede ortalama poroziteçevresi 42,726 µm iken yarı asitlenmiş ve asitlenmemiş bölgelerde sırasıyla 39,069 µm ve 31,514 µm olarak ölçülmüştür.

Bölgelere göre porozite büyüklükleri değişmekte olup Şekil 5.5'te bu ortalama çevre uzunluk değişim grafiği verilmiştir. % 15 seyreltilmiş HCl asit etkisinin gözlemlendiği bölgelerde porozite çevre uzunluk değerleri 20 µm uzunluğa kadar olan küçük çaplı porozitelerde değişim gözlenmezken çevre uzunluğu 30 µm ve daha fazla olan porozite miktarında artış gözlemlenmiştir. En fazla artış çevre uzunluğu 120 µm den daha büyük boyutlarda olan porozitelerdir.

Şekil 5.5. Porozite çevre uzunluklarının asitlenmeye bağlı değişimi

5.8. Boşluk Boğazı (Pore-Throat) Uzunlukları

Asitleme işlemi ile gözeneklerin boyutlarında artışların yanı sıra birbiri ile bağlantılı olarak gözlemlenen gözeneklerin arasındaki uzaklıkların yani boşluk boğazlarının da arttığı gözlemlenmiştir. Yöntem olarak asitlenmiş örneğin 2 boyutlu görüntüsü üzerinde bağlantılı gözenekler tespit edilmiş ve bu gözeneklerin içine sığabilecek en büyük çaplı daireler çizilmiştir. İki daire arasında kalan mesafeler ölçülerek boşluk boğazlarının uzunlukları tespit edilmiştir (Şekil 5.5; Freire-Gormaly, Ellis, MacLean ve Bazylak, 2016).

Resim 5.12. Gözenek boğazlarının hesaplama yöntemi, gözenek içerisine çizilecek en büyük daireler yeşil renkte, gözenekler siyah renkte gösterilmiştir (Freire-Gormaly ve diğerleri).

Asitlenmemiş bölgede tespit edilen gözenek boğazı 9 adet iken yarı asitlenmiş ve asitlenmiş bölgede toplam 23 adettir.

6. TARTIŞMA

Çalışma havzsında yapılan araştırmaların ortak noktası bölgenin hidrokarbon yönünden zengin olduğu düşüncesidir. İztan ve Harput 1988 'te yaptığı araştırma ve daha sonra yapılan birçok araştırmalarda bu düşünceden yola çıkılmış bölgedeki hidrokarbon oranları incelenmiştir. Bu çalışma, potansiyel hidrokarbon üretebilen, hazne kaya özelliği taşıdığı ortaya konulan, Kızıldere formasyonu ve Aktepe formasyonuna ait kumtaşları üzerinde yapılmıştır. Birimlerin petrografisi üzerinde yapılan çalışmada ise birimlerin kumtaşı olması ve organik madde kalıntılarına rastlanması daha önce yapılan çalışmaları ve bu çalışmayı desteklemektedir.

Matrik asitleme, petrol ve gaz kuyularında verimliliği artırmak ve geri kazanımı artırmak için kullanılan son zamanların popüler yöntemlerinden birisidir (Gomez, 2006). Bu çalışmada asitleme deneyi uygulayarak kumtaşlarının HCl asitte kütle değişimleri (asitin seyreltilme derecelerine ve zamana bağlı olarak (% 7,5, %15, %30) incelendi. %30 HCl ile seyreltilmiş örneğin kütle değişimi en fazla olduğu belirlenmiştir. Kumtaşı örnekleri üzerinde seyreltilme derecelerinin asit etki miktarları ile doğru orantılı olarak değiştiği gözlemlenmektedir. En fazla HCl asit etkisinin ilerleme oranı %30 oranında seyreltilmiş asitle kumtaşı örneğinde görülmüştür.

Çalışma kapsamında kumtaşı örneği üzerinde asitleme deneyinden sonra yapılan kapilaritedeneyi uygulanmıştır. Kumtaşı örneklerinin saf suyla çözünme hızına ve suyu bünyesine alış zamnına belirlenmiştir. Zamana bağlı suyun hareketi dikate alındığında seyreldilme derecelerine göre % 30 oranında HCl ile asitlenmiş örnekte 100'üncü dakika sonunda çözünme hızının en fazla olduğu görülmektedir.

Micro-CT analizinde asitlenmiş ve asitlenmemiş örneğin çekilmiş resimlerinden (en-boyyükseklik) yönlere göre porozite değişimleri görülmüştür. Ayrıca Micro-CT resimleri sayısallaştırılarak kayacın akışkanlık özelliğide belirlenebilmektedir. Micro-CT görüntüleri ayrıca Micro-CT sonuçları ImageJ programı ile değerlendirilmiş, bölgelere ayrılan toplam porozite % 34,207 asitlenmiş örnekte % 36,546 yarı asitlenmiş örnekte % 34,649 asitlenmemiş örnekte % 31,455 olarak bulumuştur. Porozite oranları dikkate alındığında asitlemenin poroziteyi artırdığı porozitedeğerlerinin % 36,546 ya kadar yükseldiği görülmektedir.

Micro-CT sonuçları bir grafikte değerlerinde ise porozite oranlarının dağılımı dikkate alınacak olursa, asitlenmiş bölgede porozite oranları % 35-40 arasında dağılım gösterdiği, yarı asitlenmiş bölgede % 30-40 değerleri arasında ve asitlenmemiş bölgede % 20-45 arası değerlerde dağılım gösterdiği görülmektedir. Asitleme derecelerine göre değişimi poroziteoranların dağılımı farklılık göstermektedir.

Imagej programı ile toplam 2995 tane porozite noktaları incenmiş, porozite sayısı asitlenmemiş bölgede 1130 adet, yarı asitlenmiş bölgede 1052 adet ölçülmüş ve asitlenmiş bölgede ise 813 adet porozite ölçülmüştür. Asitin etkisi artıkça porozitelerin birleştiğinden büyüdükleri sayısının ise azaldığı görülmektedir. Ortalama poroziteçevresi asitlenmiş bölgede 42,726 µm, yarı asitlenmiş bölgede 39,069 µm ve asitlenmemiş bölgede 31,514 µm olarak belirlenmiştir. Ortalama porozite çevresinin asitleme ile doğru orantılı olarak geliştiği görülmektedir.

Bölgede yapılan petrol jeolojisi çalışmalarında Kızıldere formasyonu kumtaşlarıiçin yaklaşık % 35-40 arasında yer almış bu çalışmada ise % 20-45 arasında saptanmıştır. Son zamanlarda Micro-CTkonusunda yapılan birçok tez ve makale de yayınlanmaktadır . Micro-CT yönteminin görüntü kalitesinin yüksek olması, laboratuar ortamında doğru porozite değerlerine ulaşılmasını sağlamaktadır (Guoa ve diğerleri, 2018). Bu çalışmada Micro-CT ile bölgede yer alan kumtaşlarının poroziteleri ve diğer özellikleri incelenmiştir. Bölgede HCl asit etkisinin poroziteye olan etkisi değerlendirilmiştir.

7. SONUÇLAR

Bu çalışmada Arsuz (Hatay) yöresinde gözlemlenen kumtaşlarının farklı şekillerde porozitesi ölçülürken ortaya çıkan özellikler ortaya konulmuştur. Çalışma kapsamında kumtaşlarının farklı oranlarda seyreltilmiş HCl asitten etkilenme ve kapilarite ile suyun gözeneklerde yükselme hızları ve mesafeleri ölçülmüştür. Arsuz ve İskenderun yörelerinde rezervuarkaya özellikleri gösteren bu birimler Orta-Geç Miyosen yaşlı Kızıldere ve Erken Pliyosen Aktepe formasyonlarına ait kumtaşlarıdır.

Saha çalışması sırasında derlenen kırıntılı numunelerin petrografik incelemelerinde birimler kumtaşı, silttaşı, litik arenit kumtaşı, kalkerli kumtaşı şeklinde adlandırılmışlardır. Birimler bol çatlaklı ve organik maddece zengin kalıntlar içerir. İncelenen Aktepe ve Kızıldere formasyonlarına ait örnekler ise Aktepe formasyonu kuvars vake ve Kızıldere formasyonu ise litik arenit olarak belirlenmiştir.

Matriks asitlemeile artan porozite özelliği incelenen kumtaşı örnekleri için hazırlanan %7,5, %15, % 30'luk HCl asit çözeltileri kullanılarak test edilmiştir. Zamana bağlı olarak %7,5'luk hacim asit etki miktarları 21,344 cm³, % 15'luk hacim asit etki miktarları 22,5 cm³ ve %30 hacim asit etki miktarları 51,75 cm³ bulunmuştur. Kapilarite deneyinde % 7,5 hızla suyun örneğin bünyesine alınma süresi 16 dakikada gerçekleşmiştir, bu süreden itibaren kütle artış miktarı düşmüştür. %15'luk HCl asitte süreklidevam eden az miktarlarda artış ve % 30'luk asitte HCl örneklerin suyu bünyesine eşit miktarlarda aldığı gözlemlenmiştir. Deneyler sonucu kalan madde miktarı ise (hot-plate ile kurutulan) %7,5'luk asitte 32,8180 g, %15'luk asitte 34,0243 g, %30'luk asitte 35,5433 g olarak ölçülmüştür.

Micro-CT sonucu elde edilen iki boyutlu görüntülerin ImageJ programı ile poroziteleri hesaplanmıştır. Micro-CT analizi yapılan örnek alan asitlenmiş yarı asitlenmiş ve asitlenmemiş olarak üç ayrı bölüme ayrılmıştır. Herbir alanın porozite değeri hesaplanmıştır. Toplam ortalama porozite oranı % 34,207, asitlenmiş numunede % 36,546, yarı asitlenmiş numunede % 34,649 ve asitlenmemiş numunede %31,455'dir. Asitlenmiş

numunenin porozite oranı asitlenmemiş ve yarı asitlenmiş örneklere göre daha yüksek çıkmıştır.

Porozite sayısında asitlenme ile artış sözkonusudur aynı zamanda mevcut porozitelerin de genişlemesi ve büyümesi de gerçekleşmektedir. Asitlenmiş bölgede ortalama porozite çevresi 42,726 µm iken yarı asitlenmiş ve asitlenmemiş bölgelerde sırasıyla 39,069 µm ve 31,514 µm olarak ölçülmüştür.

Boşluk boğazlarının asitlenme ile açılması veya artması mümkündür. Boşluk boğazlarının asitlenmemiş, yarı asitlenmiş ve asitlenmiş bölgede ölçülen gözenek boğazı ortalamaları ise sırasıyla 2,44, 4,61 ve 5,00 µm dir. Asitleme etkisiyle boşluk boğazı uzunlukları yaklaşık % 51 oranında artmıştır.

Micro-CT yöntemiyle üç boyutlu analizler mümkünken, ImageJ programı ile ise iki boyutlu görüntüler üzerinde işlem yapılır. Micro-CT ile % 15 HCl ile asitlenmiş örneğin porozite değerleri yaklaşık % 41 bulunmuştur, 2 boyutlu görüntü analizinde ise asitlenmiş bölgede porozite oranları da en fazla % 42 olarak hesaplanmıştır. Kuyu logları ile formasyonun porozite değeri yaklaşık % 40 olarak belirtildiğine göre her iki yöntem de mikroporozitenin makroporozite değerleri ile uyuştuğunu göstermektedir. Bu yöntemlerin hem uygun hem de hızlı sonuç elde etmek için kuyu log kayıtları alımına alternatif olarak kullanılması mümkündür.

KAYNAKLAR

- Anovitz, L. M., Cole, D. R. (2015). Characterization and Analysis of Porosity and Pore Structures. Reviews in Mineralogy and Geochemistry, 80(1), 61-164.
- Bielecki, J., Jarzyna, J., Bozek, S., Lekki, J., Stachura, Z., Kwiatek, W.M. (2013). Computed Microtomography and Numerical Study of Porous Rockgül Samples. Radiation Physics and Chemistry, 93, 59–66.
- Bilim, F., Aydemir, A., Ateş, A. (2017). İskenderun Körfezi'ndeki (Güney Türkiye) Aeromanyetik, Sondaj ve Sismik Verilerden Tektonik ve Termal Yapı, Geothermics, 70, 206-221.
- Boulton, J.S., Robertson, A.H.F., Ellam, R.M., Şafak, Ü., ve Ünlügenç, U.C. (2007). Strontium Isotopic and Micropaleontological Dating Used to Help Redefine the Stratigraphy of the Neotectonic Hatay Graben, Southern Turkey, Turkish J. Earth Sci,16, 141-179.
- Buijse, M., de Boer, P., Breukel, B., Klos, M., Burgos, G. (2003, January). Organic Acids in Carbonate Acidizing. In SPE European Formation Damage Conference. Society of Petroleum Engineers, 8-19.
- Clarkson, C.R. (2013). Production Data Analysis of Unconventional Gas WellsWorkflow. International Journal of Coal Geology, 109, 101-146.
- Clecio, R.B., Compan, M. A. L., Correia, M. D., Jesus, M., Souza, A. L., Márcio, P.,Albuquerquea, M. P., Elisângela, Fariaa, L. (2018). Estimation of Permeability and Effective Porosity Logs Using Deep Autoencoders in Borehole Image ogs From the Brazilian Pre-Salt Carbonate, 170, 315-330.
- Çuhadar, Ö. (1991). Akdeniz'de Açılmış olan Offshore Kuyularına ait Formasyon Dokanakları Litoloji Paleontoloji ve Jeokimyasal Bilgileri Raporu: TPAO Rapor

- Daniel, A.G. G., Orange, L., Norman, M.M., Adam S.H., Fortierc G. S., Malone A. (2004). Geophysical Evidence for Gas Geohazards off Iskenderun Bay, SE Turkey. Marine and Petroleum Geology Volume Issue, 10, 21, 1255-1264.
- Degruyter, W., Burgisser, A., Bachmann, O., & Malaspinas, O. (2010). Synchrotron X-Ray Microtomography and Lattice Boltzmann Simulations of Gas Flow Through Volcanic Pumices. Geosphere, 6(5), 470-481.
- Donat, D.(2009). Sinanlı-Samandağ ve Arsuz-İskenderun (Hatay) Yöresi Miyo-Pliyosen Geçişinde Yer Alan Çökellerin Mikropaleontolojik İncelemesi ve Ortamsal Yorumu. Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Jeoloji Mühendisliği Anabilim Dalı, Yüksek Lisans Tezi, 133.
- Dong, H., Blunt, M. J. (2009). Pore-Network Extraction from Micro-Computerized-Tomography Images. Physical Review E, 80(3).
- Du, S., Pang, S., Shi, Y. (2018). Quantitative Characterization on the Microscopic Pore Heterogeneity of Tight Oil Sandstone Reservoir by Considering Both the Resolution and Representativeness. Journal of Petroleum Science and Engineering, 169, 388– 392.
- Dubertret, L. (1953). Géologie des Roches Vertes Nord-Ouest de la Syrie et du Hatay (Turquie) Mus. NAT. D.'HIST. NATURELLE. Notes et Mém. Sur le Moyen-Orient, Paris 6.
- Efeçinar, T. (2001). İskenderun Miyosen As Baseninin Sekans Stratigrafik Hidrokarbon Potansiyeline Yönelik Ön Degerlendirme Raporu (II.Bölüm), TPAO Rap no. 4222.
- Feilden, B. M. (1982). Conservation of Historic Buildings. Butterworth and Co. Pub. Ltd., Chatham, 345.
- Freire-Gormaly, M., Ellis, J. S., MacLean, H. L., & Bazylak, A. (2016). Pore Structure

Characterization of Indiana Limestone and Pink Dolomite From Pore Network Reconstructions. Oil & Gas Science and Technology–Revue d'IFP Energies nouvelles, 71(3), 33.

- Geng, J., Wang, L., Lee, J.Y., Chen, C.K., Chang, K.T. (2016). Phosphorylation of Synaptojanin Differentially Regulates Endocytosis of Functionally Distinct Synaptic Vesicle Gharedaghloo Pools, Journal of Neuroscience, 36(34), 8882-8894.
- Geng, Z., Zhang, Y., Yang, J. (2018). An Improved Method of Characterizing the Pore Structure in Tight Oil Reservoirs: Integrated NMR and Constant-Rate-Controlled Porosimetry Data. Journal of Petroleum Science and Engineering, 166, (778–796).
- Gharedaghloo, B., Price, J. S., Rezanezhad, F., Quinton, W. L. (2018). Evaluating the Hydraulic and transport Properties of Peat Soil Using Pore Network Modeling and X-ray Micro Computed Tomography. Journal of Hydrology, 561, 494-508.
- Golab, A., Ward, C.R., Permana, A., Lennox, P., Botha, P. (2013). High-Resolution Three-Dimensional Imaging of Coal Using Microfocus X-Ray Computed Tomography, With Special Reference to Modes of Mineral Occurrence. Int. J. Coal Geol. 113, 97–108.
- Gomez, N., J. (2006). Desing, Set-up, and Testing of a Matrix Acidizing Apparatus, (Doctoral Dissertation, Texas A&M University), 1-79.
- Gouze, P., Luquot, L. (2011). X-Ray Microtomography Characterization of Porosity, Permeability and Reactive Surface Changes During Dissolution. Journal of Contaminant Hydrology, 120, 45–55.
- Grove, C., & Jerram, D. A. (2011). jPOR: An ImageJ Macro to Quantify Total Optical Porosity From Blue-Stained Thin Sections. Computers & Geosciences, 37(11), 1850-1859.
- Guo, C., Xu J., Wei, M., Jiang, R., (2015). Experimental Study and Numerical Simulation of Hydraulic Fracturing Tight Sandstone Reservoirs. Fuel,159, 334–44.

- Guo, C., Xu J., Wu, K., Wei, M., Liu, S. (2015). Study on Gas Flow Through Nano Pores of Shale Gas Reservoirs. Fuel, 143, 107–17.
- Guoa C., Wangb, X., Wangc, H., Hea, S., Liud, H., Zhue, P. (2018). Effect of Pore Structure on Displacement Efficiency and Oil-Cluster Morphology by Using Micro Computed Tomography (μCT). Technique Fuel, 230,430-439.
- Guptaa, L.P., Tanikawa, W., Hamadaa, Y., Hirosea, T., Ahagona, N., Sugiharab, T., Abec, N., Nomurad, S., Wuc, H.Y., Masakie, Y., Linf, W., Kinoshitag, M., Yamadac, Y., (2018). Examination of Gas Hydrate-Bearing Deep Ocean Sediments by X-Ray Computed Tomography and Verification of Physical Property Measurements of Sediments. Marine and Petroleum Geology, 2-10.
- Güçtekin, A. (2018). İskenderun Körfezi'nden (Güney Türkiye) Plio-Kuaterner Plak İçi Kıtasal Alkali Lavların Petrojenezi: Metasomatize Litosfer Mantosunun Kanıtı. Jeofizik Sayı, 4, (78), 521-53.
- Gül, M. A.(1987). K. Maras yöresinin jeolojisi ve Petrol Olanakları: TPAO rap.2359.
- Heshmati, M., Piri, M., (2018). Interfacial Boundary Conditions and Residual Trapping: A Pore-Scale Investigation of the Effects of Wetting Phase Flow Arte and Viscosity Using Micro-Particle Image Velocimetry, Fuel 224, 560-578.
- İlhan, E. (1976). Turkiye Jeolojisi, Middle East Technical University, School of Engineering, Pub. No:51.
- İprepoğlu, İ., Akarsu, İ. (1964). Misis Dağları ve İskenderun Körfezi Civarı Hakkında Jeolojik Rapor. TPAO. Rap.No.280.
- İztan H., Harput B., (1988). Geochemical Analyses of Ten Cutting Samples from Iskenderun Sea -1 Well. TPAO Araştrıma Merkezi Rap. No. 1263.
- Kak, A.C., Slaney, M., Wang, G. (2002). Principles of Computerized Tomographic.

Imaging Medical Physics, 29(1), 107-107.

- Kılınç, E., Yeşiilot Kaplan M. (2018). Source Rock Characterictic of The Kızıldere Clays (Arsuz-Hatay). Cumhuriyet Science Journal, 39(2), 524-530.
- Kılınç, E., Yeşilot Kaplan M. (2019). Paleoenvironmental Conditions, Geochemistry and Hydrocarbon Pontential of Kızıldere Formation Hatay –Turkey. Fresenius Environmental Bulletin, 28, 3519-3526.
- Kozlu, H.(1982). İskenderun Baseni Jeolojisi ve Petrol Olanakları : TPAO Rapor no.1921.
- Kozlu, H. (1987). Structural Development and Stratigraphy of Misis–Andirin Region. In Proceedings of the 7th Petroleum Congress of Turkey. Turkish Association of Petroleum Geologists, 104-116.
- Kozlu, H. (1997). Doğu Akdeniz Bölgesinde Yer Alan Neojen Basenlerinin (İskenderun Misis-Andırın) Tektono-Stratigrafi Birimleri ve Bunların Tektonik Gelişimi Fen Bilimleri Enstitüsü, Jeoloji Müh. ABD, Doktora Tezi, 188.
- Kurt ,H. M., Orhan, K. (2016). Diş Hekimliğinde Mikro-Bilgisayarlı Tomografi Kullanımı Turkiye Klinikleri J Oral Maxillofac Radiol-Special Topics. 2(1),14-21.
- Kutchko, B. G., Goodman, A. L., Rosenbaum, E., Natesakhawat, S., Wagner, K. (2013).
 Characterization of Coal before and After Supercritical CO₂ Exposure Via Feature
 Relocation Using Field-Emission Scanning Electron Microscopy. Fuel, 107, 777-786.
- Lai, J., Wang, G., Wang, Z., Chen, J., Pang, X., Wang, S., Zhou, Z., Zhibo, H., Qin, Z., Fan, X., (2018). A Review on Pore Structure Characterization in Tight Sandstones Earth-Science Reviews, 177, 436-457.
- Laia, J., Wanga, G., Wangc, Z., Chen, J., Pang ,X., Wang, S., Zhou, H., Heb, Z.,Qind, Z., Fan, X. (2018). A Review on Pore Structure Characterization in Tight Sandstones Journal of Petroleum Science and Engineering, 166, 778-796.

- Lee, J.Y., Gil, Y.C., Shin, K.J., Kim, J.N., Joo, S.H., Koh, K.S., Song, W.C. (2016). An Anatomical and Morphometric Study of the Coccyx Using Three-Dimensional Reconstruction. The Anatomical Record, 299(3), 307-312.
- Li, X., Kang, Y., Haghighi, M. (2017). Investigation of Pore Size Distributions of Coals With Different Structures by Nuclear Magnetic Resonance (NMR) and Mercury Intrusion Porosimetry (MIP). Measurement, 116, 122-128.
- Liu, M., Shabaninejad M., Mostaghimi P. (2018). Predictions of Permeability, Surface Area and Average Dissolution Rate During Reactive Transport in Multi-Mineral Rocks. Journal of Petroleum Science and Engineering, 170, 130-138.
- Nogues, M., Medrano, M., Yilmaz, M.O., Martorell, I., Roca, J. and Cabeza, L.F. (2009). Experimental Evaluation of Commercial Heat Exchangers for Use as PCM Thermal Storage Systems, Applied Energy, 86, (2047-2055).
- Noiriel, C. (2015). Resolving Time–Dependent Evolution of Pore–Scale Structure, Permeability and Reactivity Using X–Ray Microtomography. Reviews in Mineralogy and Geochemistry, 80(1), 247–285.
- Özelçi, H. F. (1973). Doğu Akdeniz Bölgesi Gavite Anomalileri. M.T.A. Dergisi, 80, 54-88.
- Öztürk, E. (2005). Körfezi Miyosen Yaşlı İstiflerin Yer Altı Jeolojisi ve Hazne Kayaç Özelliklerinin İncelenmesi. Ankara Üniversitesi, Fen Bilimleri Enstitisü Yüksek Lisans Tezi, 94, 45-94.
- Peszynska, M., Trykozko, A., Iltis, G., Schlueter, S., Wildenschild, D. (2016). Biofilm Growth in Porous Media: Experiments, Computational Modeling at the Porescale, and Upscaling. Advances in Water Resources, 95, 288-301.
- Rahnera, S. M., Halischb, M., Fernandesa, P.C., Wellerc, A., Santiago, V.S.S. (2018). Fractal Dimensions of Pore Spaces in Unconventional Reservoir Rocks Using Xray Nano- and Micro-Computed Tomography. Journal of Natural Gas Science and

Engineering, 55, 298-311.

- Ramia, M. E., Martín, C. A. (2015). Sedimentary Rock Porosity Studied by Electromagnetic Techniques: Nuclear Magnetic Resonance and Dielectric Permittivity. Applied Physics A, 2,(118), 769–777.
- Ridler, T. W., Calvard, S. (1978). Picture Thresholding Using an Iterative Selection Method. IEEE Transactions on Systems, Man and Cybernetics, 8(8), 630-632.
- Roels, S., Ott H., Zitha, P. (2014). Mikro-CT Analysis and Numerical Simulation of Drying Effects of co 2, Injection Into Brine-Saturated Porous Media. Int J Greenhouse Gas Control, 27(6),146–54.
- Geneci, F. (2017). Erişkin Kadavralarda Vertebrae Coccygeae'nın Gross-Anatomik ve Mikro-BT cihazı ile Morfometrik Olarak Değerlendirilmesi. Anatomi Programı Doktora Tezi, Hacettepe Üniversitesi Sağlık Bilimleri Enstitüsü Ankara, 109
- Schmidt, G.C., (1961). Stratigraphic Nomenclature for the Adana Region Petroleum District VII. Petroleum Administration Bulletin, 6, 47-63.
- Selçuk, H. (1985). Kızıldağ-Keldağ-Hatay Dolayının Jeolojisi ve Jeodinamik Evrimi. MTA Genel Müdürlüğü Jeoloji Etütleri Dairesi Başkanlığı, Ankara.
- Sharmaa, V., Olga, M.O., Araujo K., Nicolini, J. V., Strakac, R., Ferraza, H. C., Lopesb, R. T., Tavaresa, F. W. (2018). Laser-Induced Alteration of Microstructural and Microscopic Transport Properties in Porous Materials: Experiment, Modeling and Analysis. Materials and Design, (155) 307–316.
- Sigal, J. (1963). I. ve VII. Bölgeler Stratigrafi Etüdü (I.F.P. 1962-1963). TPAO. Rap. no. 300.
- Skarżyński, L., Marzec, I., Tejchman, J. (2019). Fracture Evolution in Concrete Compressive Fatigue. Experiments Based on X-Ray Micro-CT Images. International Journal of Fatigue, 122, 256-272.
- Smal, P., Gouze, P., Rodriguez, O., Montpellier, G. (2018). An Automatic Segmentation Algorithm for Retrieving SUB-Resolution Porosity From X-Ray Tomography Images. Journal of Petroleum Science and Engineering, 166, 198-207.
- Şafak, Ü. (1993). Antakya Havzası Ostrakod Biyositratigrafisi,. Türkiye Jeoloji Bülteni, 36(2), 115-13.
- Tekeli, O. ve Erendil, M. (1986). Kızıldağ Ofiyolitinin (Hatay) Jeolojisi ve Petrolojisi. Maden Tetkik ve Arama Dergisi,107(107), 24-40.
- Tekin, E., Varol, B., and Ayyıldız, T. (2010)Sedimentology and Paleoenvironmental Evolution of Messinian Evaporites in the İskenderun-Hatay Basin Complex, Southern Turkey. Sedimentary Geology, 229/4, 282-298.
- Tendam, A., (1951). İskenderun Havzasındaki Sedimantasyon ve Fasiyesleri. Türkiye Jeoloji Kurulu Bülteni, Ankara 2, 5-66.
- Ünlügenç, U.C., Akıncı, A.C. (2017). Kızıldere-Güveloğlu (Ceyhan-Adana) Civarının Tektono-Stratigrafisi. Çukurova Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 32(2), 85-100.
- Wang, X., Yao, J., Jiang, Z., Zhang, Q., Zhang, Z., Duan, L., Jia, X. (2016). A New Method of Fast Dstance Transform 3D Image Based on "Neighborhood Between Voxels in Space" Theory. Chinese Science Bulletin, 62(15), 1662-1669.
- Wang, Y., Rahman, S.S., Arns,C.H. (2018). Super Resolution Reconstruction of μ-CT Image of Rock Sample Using Neighbour Embedding Algorithm. Physica A: Statistical Mechanics and its Applications, 493, 177–188.
- Wu, H., C., Zhang , Ji, Y., Liu, R., Wu, H., Zhang, Y., Geng, Z., Zhang, Y., Yang, J. ,(2018). An Improved Method of Characterizing the Pore Structure in Tight Oil Reservoirs: Integrated NMR and Constant-Rate-Controlled Porosimetry Data. Journal of Petroleum Science and Engineering, 166, 778–796.

- Xi, K., Cao, Y., Haile, B. G., Zhu, R., Jahren, J., Bjørlykke, K., Hellevang, H. (2016). How does the Pore-Throat Size Control the Reservoir Quality and Oiliness of Tight Sandstones? The Case of the Lower Cretaceous Quantou Formation in the Southern Songliao Basin, China. Marine and Petroleum Geology, 76, 1-15.
- Xiao, L., Liu, D., Wang, H.,Li J., Lu J., Zou C., (2017). The Applicability Analysis of Models for Permeability Prediction Using Mercury Injection Capillary Pressure (MICP), Data. J Petrol Sci Eng. Journal of Petroleum Science and Engineering, 156, 589-593.
- Yakıncı, M. E., Onar, K., Depci, T., Orhan, K., ve Turan, C. C., (2016). Sağlık, Fen ve Mühendislik Bilimlerinde Mikro- Bilgisayarlı Tomografinin (MikroMicro-CT) Önemi. Tıp Tekno'16, Tıp Teknolojileri Kongresi, İnterarktif Sunumlar, 334-336.
- Yang, S., Yin, P.,F., Huang, Y.H., Cheng, J.,L. (2019). Strength, Deformability and X-Ray Micro-CT Observations of Transversely Isotropic Composite Rock Under Different Confining. Pressures Engineering Fracture Mechanics, 214, 1-20.
- Yang, S.Q., Huang, Y.H., Jing, H.W., Liu, X.R. (2014). Discrete Element Modeling on Fracture Coalescence Behavior of Red Sandstone Containing Two Unparallel Fissures Under. Engineering Geology, 178, 28-48.
- Yanga, S.Q., Huanga, Y.H., Ranjitha, P.G. (2018). Failure Mechanical and Acoustic Behavior of Brine Saturated Sandstone Containing Two Pre-Existing Flaws Under Different Confining Pressures. Engineering Fracture Mechanics, 193, 108-121.
- Yaşar, E. (2018). Assessment of Petroleum Geology of Iskenderun Basin; 12. Bölgesel Kaya Mekaniği Sempozyumu, 200-206.
- Yeniay, G., (1983). İskenderun Baseni MiyoPliyosen Çökellerinin Biyostratigrafisi,. TPAO Araş. Rap 561, 18.
- Yuan, B. Chareyre, Darve, F. (2015). Pore-Scale Simulations of Drainage in Granular

Materials, Finite Size Effects and the Representative Elementary Volume, Advances in Water Resour, 95, 109–124.

- Zhang, Z.Y., Weller, A. (2014). Fractal Dimension of Pore-Space Geometry of an Eocene Sandstone Formation. Geophysics, 79(6), D377-D387.
- Zhanga, G., Ranjitha, P.G., M.S., Perera, A., Haquea, A., Choia X., Sampath, K.S.M. (2018). Characterization of Coal Porosity and Permeability Evolution by Demineralisation Using Image Processing Techniques. Journal of Natural Gas Science and Engineering, 56, 384-396.
- Zhou,P. X., Xiao, N. (2017). Analyzing Fracture Properties of the 3D Reconstructed Model of Porous Rocks. Engineering Fracture Mechanics, 189, 175-193.

ÖZGEÇMİŞ

Kişisel Bilgiler

Soyadı, adı	:AVCU, Melda	All a
Uyruğu	: T.C.	
Doğum tarihi ve yeri	:21.02.1990, İskenderun	5912
Medeni hali	: Bekar	
Telefon	: (531)2865411	and the second
e-mail	: avcumelda@gmail.com	

Eğitim

Yüksek lisans	İskenderun Teknik Üniversitesi / Petrol ve	Devam ediyor
	Doğalgaz Mühendisliği	
Lisans	Süleyman Demirel Üniversitesi /Jeoloji	2016
	Mühendisliği	
Lise	Şemsettin Mursaloğlu Lisesi	2010

İş Deneyimi

YılYerGörev2018İSDEMİRİŞ GÜVENLİĞİ UZMANI

Yabancı Dil

İngilizce

Yayınlar

Reservuar Properties And Determination Porosity of Sandstones in Arsuz-İskenderun

(Hatay) International Eurasian Conference on Science, Engineering and Technology

November 22-23, 2018 Ankara, Turkey

A

Aktepe · i, ii, iv, viii, 5, 8, 9, 17, 19, 20, 22, 23, 47, 49 Arsuz · i, ii, 2, 4, 49, 55 asitlenmemiş · i, 18, 30, 31, 32, 35, 39, 45, 47, 48, 50 asitlenmiş · viii, 18, 30, 31, 32, 36, 39, 45, 46, 47, 48, 50

B

boşluk · 46, 50

D

doygunluk \cdot 11

G

gözenek · 46, 50

H

HCl · i, ii, 32, 45, 49, 50

İ

İskenderun · i, ii, vii, 2, 3, 4, 5, 49, 52, 54, 59, 61

K

Kızıldere · i, ii, iv, viii, 3, 4, 5, 7, 8, 17, 19, 21, 22, 24, 25, 36, 47, 48, 49, 55, 59

М

matriks · 1, 10, 11, 26 Micro-CT · i, ii, v, vii, viii, 14, 30, 31, 32, 50, 58, 60 Miyosen · 3, 4, 5, 7, 8, 19, 49, 52, 57

Р

petrol · 3, 4, 12, 14, 47, 48 preflush · 10

R

rezervuar · 12, 15

S

X

SEM · xi, 36

XRD · xi, 1 61

TEKNOVERSİTE

teknoversite AYRICALIĞINDASINIZ

