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Abstract
In this study, the possibility of using Stepwise multilinear regression and deep learning models to estimate the behaviour of 
the organic Rankine cycle (ORC) has been investigated. It was found that a number of parameters affects the performance 
of the turbine and hence the amount of power obtained by the ORC. Therefore, limited and simulative parameters might 
not be sufficient to obtain the best prediction expression. In the present study, the data obtained from a 10 kW ORC system 
was used as the basis for deep learning models. To this end, the variable selection, which represents the inputs to the neural 
network, is included in the first steps of a stepwise multilinear regression (SMLR). The aim of the deep learning (DL) models 
is to use the capabilities of dense layers, and then to strengthen SMLR contributions. The main aim here was to estimate 
the power generation of the expander, which has an important role in deciding the ORC’s performance. The present study 
is intended to act as a crucial resource for defining an active estimation procedure for the ORC system through the use of 
DL. Therefore, an interoperability framework is proposed to estimate ORC power production using SMLR and DL as a new 
approach in this study. The interoperability approach for the proposed models (SMLR and DL) was found to be successful.
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List of symbols
ORC	� Organic Rankine cycle
SMLR	� Stepwise multilinear regression
DL	� Deep learning
ANN	� Artificial neural network
RMSE	� Root mean square error
MSE	� Mean square error
R2	� The coefficient of determination

Tei	� Evaporator exhaust inlet temperature
Teo	� Evaporator exhaust outlet temperature
mb	� Heat source mass flow rate
Tri	� Cooling water inlet temperature
Tro	� Cooling water outlet temperature
my	� Cooling water mass flow rate
Porc	� ORC turbine outlet power
FCDN	� Fully connected deep networks
AF	� Activation function
ReLU	� Rectified linear unit
NN	� Neural network
MAE	� Mean absolute error

1  Introduction

Today’s main interest within the energy sector is finding 
cheap and environment-friendly alternative power produc-
tion systems because of increasing environmental problems 
and decreasing primary energy sources (i.e. fossil fuels) 
[1–3]. In this context, the main scientific focus is on renew-
able energy sources such as biofuels [4], wind [5], and solar 
[6] energies, which are effectively unlimited but currently 
expensive to convert into usable energy [7]. During these 
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studies, another important area of focus is on improving the 
efficiency of current power systems by integrating additional 
systems [8, 9]. Kalina cycles, heat wheels, recuperators, and 
economizers represent just some of these additional sys-
tems [10–12]. In addition to these, another most important 
approach is organic Rankine cycles (ORC). The organic 
Rankine cycles use organic fluids as a system fluid instead 
of steam. Therefore, ORCs can be used to recover low-tem-
perature heat sources (80 °C and above) [13, 14]. In addition 
to the availability of ORC for a wide range of heat sources, 
ORC systems have the advantages of easy construction, 
simple configuration, cheaper investment and almost zero 
maintenance costs when compared with other low-tempera-
ture additional power systems [15, 16]. Therefore, there are 
many theoretical and experimental studies aimed at improv-
ing overall system performance by integrating ORC with 
various-temperature waste heat sources [16, 17]. In these 
literature studies, the main objective is one of improving 
ORC performance is by the use of different working fluids, 
changing turbine inlet parameters, and using different ORC 
design configurations (simple, regenerative, dual loop, etc.) 
[18, 19]. In spite of the various experimental and theoretical 
studies, it is still not possible to precisely predict how much 
energy might be recovered and ORC performance due to the 
presence of various heat sources and dynamic variation of 
the heat source parameters. At this juncture, the importance 
of machine learning (ML) and prediction methods become 
apparent.

Machine learning enables computers to make data-based 
decisions rather than programming them to perform a spe-
cific task [20]. These programs or algorithms are designed 
for computers that are exposed to new data to learn and 
improve themselves over time. This learning method takes 
advantage of the computing power of modern computers, 
which can easily handle large datasets. Deep learning is a 
machine learning method. It allows one to train artificial 
intelligence models to predict outputs with a given dataset 
[21]. Both supervised and unsupervised learning can be used 
to train artificial intelligence. Although deep learning is rela-
tively new, it has become an important subfield of artificial 
intelligence in academic research and industry due to its 
achievements in many different fields.

Many deep learning methods use architectures called neu-
ral networks. Deep learning algorithms can be considered 
structurally more complex forms of artificial neural networks 
(ANNs). Classical neural networks consist of two or three 
layers. However, in deep learning, this number can exceed 
100, according to the computing capability of the computer 
involved. In other words, deep learning is not a single layer 
with big data, but is a system that works using many lay-
ers and performs the calculations used in machine learning 
at the same time, discovers the parameters that need to be 
defined in machine learning, and performs evaluations with 

better parameters. While classical networks can work with 
human-dependent traits, deep learning works with human-
independent traits. Networks with deep learning capabilities 
can perform prediction, estimation, and classification tasks. 
In this study, the aim is to model the output power of an 
ORC system using the estimation ability of the proposed 
deep learning models.

There are many studies in the literature that have used 
ANN for the estimation of power system performance as 
well as ORC. Yilmaz et al. used an ANN method to improve 
the performance of an ORC using R410a and R407c as a 
working fluid. In the study, mathematical expressions have 
been derived to find the efficiency of an ORC for each work-
ing fluid [22]. Rashidi et al. optimized an ORC using R717 
by use of ANNs and Artificial Bees Colony (ABC) algo-
rithms [23]. Kovacı et al. estimated the thermal efficiency 
of an ORC by using an adaptive neuro‐fuzzy (ANFIS) and 
ANN method depending on the condenser temperature 
and the evaporator temperatures [24]. Massimiani et al. 
optimized a regenerative ORC system with ANNs trained 
using WEKA [25]. Yang et al. used an ANN method to 
estimate the performance of and improvements to an ORC-
assisted diesel engine in terms of waste heat [26]. Bilgiç 
et al. developed a mathematical expression to estimate the 
power production of an ORC by use of an ANN [27]. Kılıç 
and Arabacı carried out a performance analysis of an ORC 
using R123, R125, R227, R365mfc, and SES36 as refriger-
ants. In the study, ANN and ANFIS methods were used to 
evaluate a prediction expression [28]. Palagi et al. compared 
the performance predictions for a 20 kW ORC system for 
feed-forward, recurrent (RNN) and long short-term memory 
(LSTM) networks. As a result of the study, RNN and LSTM 
networks showed greater success at predicting the perfor-
mance of the associated system [29].

Although there are many ANN-based ORC studies, it 
is clear that the majority of prediction models based on 
classical neural networks are not sufficient to predict the 
performance of ORC power systems [30–32] because the 
parameters that influence the performance of the ORC, such 
as heat losses and pressure drops, are not considered in the 
majority of thermodynamic models. Another, and possibly 
the most important reason for the adequacy of the prediction 
methods is that the parameters used to evaluate prediction 
methods are theoretical parameters and commonly ignore 
ORC component isentropic efficiency and assumes the ORC 
system to be under steady state conditions. An ORC system 
consists of evaporator, turbine, condenser, and pump. In 
order to evaluate the best prediction methods and predic-
tion expressions, it is essential to consider pressure drops 
and component efficiencies.

By considering these, the novelty of the present man-
uscript can be listed as follows. (1) The ORC parameters 
used to derive the prediction expression are taken from an 
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ORC dataset. Therefore, essential parameters like pressure 
drops and component efficiencies are taken into account. 
(2) Since the data obtained from the ORC are dynamic 
values and recorded for various heat source temperatures, 
turbine inlet pressures and turbine inlet temperatures, the 
accuracy of the derived prediction method is as high as pos-
sible. (3) Throughout the study, stepwise multilinear regres-
sion (SMLR) and deep learning (DL) methods are used and 
compared. Therefore, the present study makes it possible to 
compare these two prediction methods, as well as for decid-
ing the best prediction method. The performances of the 
models created in this study were compared using statistical 
criteria. For this purpose, root mean square error (RMSE), 
mean square error (MSE), and the coefficient of determina-
tion (R2), as measures used in statistical analysis, are pre-
ferred as the evaluation criteria. (4) The present study aimed 
to derive an expression to predict the performance of ORC 
accurately. The results of the present study make it possible 
to easily predict the performance of an ORC system.

2 � Materials and methods

In this study, the data for evaporator exhaust inlet tempera-
ture (Tei), evaporator exhaust outlet temperature (Teo), heat 
source mass flow rate (mb), cooling water inlet temperature 
(Tri), cooling water outlet temperature (Tro), cooling water 
mass flow rate (my), and ORC turbine outlet power (Porc) 
were obtained from an organic Rankine Cycle dataset of 
10 kW power production capacity. The min, max, and sta-
tistical parameters of the dataset used in the study are pre-
sented in Table 1.

2.1 � Description of the organic Rankine cycle (ORC)

The organic Rankine cycle (ORC) is one of the most efficient 
methods with which to recover waste heat from low- and 
medium-grade temperature heat sources. When compared 
with the conventional Rankine cycle, ORCs have similar sys-
tem components, but different working fluids. The working 
fluid of the classical Rankine cycle is steam. However, ORCs 

use a wide variety of organic-based working fluids [33, 34]. 
The organic-based working fluids have many superiorities 
over steam such as low boiling temperatures, low specific 
heats, etc. [35–37]. In the present study, data obtained from 
an ORC set up in the laboratory is used to obtain a predic-
tion expression. A simplified scheme of an ORC system is 
shown in Fig. 1.

The ORC used in the present study uses R245fa as the 
working fluid, where the maximum capacity of the ORC 
is 10 kW. The heat is supplied to the ORC by an electric 
boiler. In the system, the electric boiler first heats the water. 
The heated water is directed to the evaporator to heat up the 
working fluids. The working fluid, as a vapour, goes through 
the turbine and produces mechanical shaft power. After the 
turbine, the working fluid cools down to the saturated liquid 
phase and is then pushed through the pump to pressurize 
it. The isentropic efficiency of the pump and the turbine, as 
defined in the technical working sheet of the system, is 82% 
and the heat source fluid (water at 10 bar) can be heated up 
to 180 °C by the electrical heater. However, these param-
eters of the ORC fluctuate depending on the working condi-
tions. Throughout the analyses, thermodynamic parameters 
like pressure, temperature, etc. and system parameters like 
shaft power, heat input, and mass flow rate are continuously 
recorded and saved by data recorder. T-type thermocouples 
(−100 to 300 °C measuring range, ± 0.15 °C accuracy and 
0.01 °C resolution for full range), electromagnetic flow 
meters (0.03–12 m/s flow range, ± 0.2% accuracy) and watt-
meters (12–10,400 W measuring range, 225 mW resolution 
and 0.5% accuracy) could be used to measure ORC system 
parameters. The data could be recorded by Universal Data-
loggers (eight channels, 24-bit resolution with a sampling 
frequency of 0.1 s). In the present study, the ORC system 
was run for 1 day and the recorded data used to train the 
prediction models.

2.2 � Stepwise multilinear regression (SMLR)

The SMLR model, unlike the simple linear regression 
model, considers more than one independent variable and 

Table 1   Min, max, and statistical parameters of input and output variables

Parameters Symbol Unit Mean SD Min Max Skewness Kurtosis

Cooling water condenser inlet temperature Tei °C 0 1.15 6.10 16.30 − 1.88 9.26
Cooling water condenser outlet temperature Teo °C 17.13 1.48 7.30 19.70 − 119 5.15
Cooling water mass flow rate mb l/h 15.00 0.65 7.30 46.75 28.81 1266.79
Hot water evaporator inlet temperature Tri  °C 125.85 1.90 112.25 128.98 − 4.42 23.82
Hot water evaporator outlet temperature Tro °C 103.02 6.74 88.55 117.46 0.38 − 0.40
Hot water mass flow rate my l/h 1.38 0.78 0.57 3.24 1.41 0.71
ORC turbine outlet power Porc kW 5.38 0.93 3.74 7.99 0.66 0.40
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calculates the associated regression model from n dependent 
variables at the same time.

where X is the explanatory variable and Y is the dependent 
variable in Eq. 1. Every value of X is associated with another 
value of the Y. �0 is the line y-axis intersection, �1 the regres-
sion coefficient (gradient of the line), �j is the jth parameter 
and � is the chance value. The values �0 and ( �j−1 ) are theo-
retical values calculated using the entire dataset. The suc-
cess of the dependent variable Y calculated via X allows the 
regression model to be evaluated via various performance 
measures.

SMLR adds or subtracts the independent variable to or 
from the model to determine a meaningful subset of vari-
ables. Stepwise regression generally uses three procedures: 
standard stepwise (adds and removes terms), forward selec-
tion (adds term), and backward elimination (removes terms). 
Standard stepwise procedure (SSP): by default, this proce-
dure starts with an empty model and then adds or removes 
a term for each step [38]. This can lead to the optimization 
of the estimated performance of the system, coupling DL 
with SMLR.

2.3 � Deep learning

Fully connected deep networks (FCDN) are the most essential 
part of deep learning used for applications [39, 40]. An FC 
layer is the actual component that performs the discriminative 
learning in a deep neural network. An FFNN with L layers 

(1)Y = �0 + �1X1 + �2X2 +⋯ + �jXn + �

describes a mapping f
(
r0;�

)
∶ ℝ

N0 ↦ ℝ
NL of inputs r0 ∈ ℝ

N0 
to outputs rL ∈ ℝ

NL through L iterative processing steps [41].

where rl = fl
(
rl−1;�l

)
∶ ℝ

Nl−1 ↦ ℝ
Nl is mapping carried out 

by the lth layer. A successful map depends on both the out-
put, rl−1 from the previous layer and on a set of parameters �l.

The set representing all the parameters of the network is 
identified by � =

{
�1,… , �L

}
 . The lth layer is referred to as 

dense or fully connected if fl
(
rl−1;�l

)
 has the form

where Wl ∈ ℝ
Nl×Nl−1 , bl ∈ ℝ

Nl , and �(…) is an AF that can 
be defined briefly. The parameter set is �l =

{
Wl, bl

}
 for this 

layer.
The AF, �(…) in (Eq. 3) gives a non-linearity to the net-

work which is necessary to learn the distribution of complex 
datasets because stacking more layers increases the non-line-
arity. AF is generally applied independently to each element 
of the input vector, i.e.[�(u)]i = �

(
ui
)
 . The AF and rectified 

linear unit (ReLU) used in this study are reported in Table 2 
and shown in Fig. 2.

(2)rl = fl
(
rl−1;�l

)
, l = 1,… ,L

(3)fl
(
rl−1;�l

)
= �(Wlrl−1 + bl)

Fig. 1   The simplified scheme of 
the ORC system

Table 2   AF used in DL models Name [�(u)]i Range

ReLU max(0,ui) (0;∞)
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As can be seen in Fig. 3, the DNN has L layers. Here, 
each hidden layer uses the output of the previous layer and 
transmits it to the input of the next layer.

with hidden layer outputs rl =
(
rl
1
,… , rl

N(l)

)
∈ ℝ

Nl and 

parameters Wl =

(
bl
1
,… , bl

Nl

)
∈ ℝ

Nl×Nl−1 for l = 0,… , L − 1 
and WL ∈ ℝ

Nl

NNs are trained using labelled data except for unsupervised 
learning, i.e. a set of data pairs composed of input/output 

(4)rl = �
�
W (l−1)⊺rl−1 + bl−1

0

�
= �

⎛⎜⎜⎝
bl−1
0

+

Nl−1�
n=1

bl−1
n

rl−1
n

⎞⎟⎟⎠

(5)y = W (L)⊺rL + wL
0

vectors 
(
r0,i, r

◦

L,i

)
 , i = 1,… , S , where r◦

L,i
 has targeted outputs 

when r0,i is used as the input. While the network is training, 
the goal is to minimize any loss

concerning the parameters in θ, where l(u; v): 
ℝ

NL ×ℝ
NL ↦ ℝ

NL is the loss function (LF). rL,i and r0,i are 
the output and input of the network, respectively. Most com-
monly, LFs are MSE (for regression problems) and categori-
cal cross-entropy (for classification problems). MSE can be 
given by u − v2

2
 . A neural network with a large number of 

parameters requires an optimization technique during the 
training phase. The most popular algorithms to find good 
sets of parameters θ are generally variants of classical gra-
dient descent (GD), which starts with some random initial 
values of θ = θ0 and then updates θ iteratively. Such as sto-
chastic gradient descent (SGD) rule is given as θt+1:

where η and L̃ are the learning rate and an approximation 
of the LF which is computed for a random mini-batch of 
training examples St ⊂ {1, 2,… ., S} of size St at each itera-
tion, i.e.

(6)L(�) =
1

S

S∑
i=1

l
(
rL,i, r

◦

L,i

)

(7)𝜃t+1 = 𝜃t − 𝜂∇L̃
(
𝜃t
)

(8)L̃(𝜃) =
1

St

S∑
i∈St

l
(
rL,i, r

◦

L,i

)

Fig. 2   ReLU AF

Fig. 3   Deep neural network 
with two hidden layers



	 Journal of the Brazilian Society of Mechanical Sciences and Engineering          (2020) 42:620 

1 3

  620   Page 6 of 16

While still reducing weight update variance, by choos-
ing St to be sufficiently small compared to S the compu-
tational complexity of the gradient can be significantly 
reduced. Therefore, the gradient in (14) can be very effi-
ciently computed through the backpropagation (BP) algo-
rithm. GD, which is an optimization method, is gener-
ally used in DL models to update the weights of the NN 
through BP. Optimizers are effective for GD in three ways: 
(1) modifying the gradient component, ∂L/∂W, (2) modify-
ing the learning rate component, η, or (3) both. For (1), 
optimizers commonly make use of the moving averages 
of the gradient (momentum), instead of just taking one 
value like in ‘vanilla’ GD. For (2), these optimizers mul-
tiply the learning rate by some positive factor such that 
they become smaller. Optimizers that act on both (3) are 
like Adam. SGD is a very powerful technique, currently 
employed to optimize all deep learning models [42]. The 
number of patterns used to calculate the error includes 
how stable the gradient used to update the model actually 
is. It requires O(n), number of computations and memory 
use, where n is the number of parameters. SGD can be 
used to avoid this computational problem. At every itera-
tion, we sample a mini-batch, � of n′ examples from the 
training set. Usually, a variant of GD is used, using noisy 
subset estimation of the gradient. The simplest update rule 
for SGD is:

where w is the optimized parameter (weight). L and η are 
the error (LF estimation) and the learning rate, respectively. 
However, the root mean square propagation algorithm 
(RMSprop) is used in this study because RMSprop also 
takes away the need to adjust the learning rate by doing it 
automatically, as different from SGD. The update rule for 
RMSprop is [43]:

where

St is initialized to 0. ε, β and α are set to 10−6, 0.9 and 
0.001, respectively, by per Hintons’ suggestion.

Although actual DL implementations are usually used 
for speech or image recognition, different dataset applica-
tions do also exist. This work is an application of DL to a 
10 kW ORC dataset. The results suggest that DL models are 
also applicable for Porc estimation, and thus that this kind of 
application of DL increases the novelty of this study.

(9)Wt+1 = Wt − �
�L

�Wt

(10)Wt+1 = Wt −
�√
St

�L

�Wt

(11)St = �St−1 − (1 − �)

[
�L

�Wt

]2

2.4 � Evaluation criteria

In this study, the models were evaluated using a number of 
popular performance tests: mean squared error (MSE), root 
mean squared error (RMSE), coefficient of determination 
(R2), mean absolute error (MAE) and Mallows’ Cp (or Cp-
statistic). Those indicate the degree of correlation between 
measured and estimated values. Thus, the reliability of the 
models could be tested because higher reliability means 
more accurate Porc estimation [44–46].

where yi is the observed value and y(p,i) is the predicted value 
of yi, ei is yi − y(p,i).

where SSres is the residual sum of squares (SS) for the 
model with (p-1) parameters when MSres is the residual 
mean square of all parameters [47]. The best models were 
determined using statistical software to maximize R2 and 
minimize RMSE and Mallows’ Cp, in a stepwise process.

3 � Results

3.1 � SMLR results

Step 1 was to regress Porc for each parameter. This simply 
means to run a regression for each predictor parameter alone 
versus Porc. Then, the predictor parameter with the lowest p 
value is added to the model (as long as is there is a predictor 
variable with a p value < 0.15. Tei has the lowest p value so it 
is added to the model in step 1. The SMLR marked mb, and 
the Tro parameter as inactive and eliminated them accord-
ing to their p value (they were greater than the ‘Alpha-to-
Enter’ value of 0.15). Then, the above steps were repeated 
using models that contained the Teo, my and Tri parameters, 

(12)MAE =
1

N

N∑
i=1

||ei||

(13)MSE =
1

N

N∑
i=1

e2
i

(14)RMSE =

√√√√ 1

N

(
N∑
i=1

e2
i

)

(15)R2 = 1 −
∑

yi − y(p,i)
�∑

yi − ym

(16)Mallows’Cp =

(
SSres

MSresres

)
− N + 2p
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respectively. Parameters with the lowest p value of less than 
0.15 were added to the model in the following steps. Table 3 
shows the model that SMLR builds entirely from a 10 kW 
ORC dataset. In step 4 (the final step), the R2 is reasonably 
high, and all the variables have very low p values. The steps 
used to determine the best model in SMLR and a compari-
son of models can be seen in Tables 3 and 4. Best values are 
also highlighted in bold.

Scatter plots for SMLR models can be seen in Fig. 4.
According to Tables 3 and 4, the highest R2 and lowest 

RMSE and Mallows’ Cp (the best results) with values of 
0.9392, 0.2282 kW and 4.4, respectively, were obtained for 
Model 4, which is composed of Tei, Teo, Tri, and my.

Equation for Model 4:

Table 3   Depending on all Porc 
values, the steps of calculating 
the optimum model in SMLR 
process

Step 1 Step 2 Step 3 Step 4

Coef. P value Coef. P value Coef. P value Coef. P value

Constant − 0.884 2.5304 2.4017 1.9970
Tei 0.4334 0 − 3.3304 0 − 3.2490 0 − 3.2615 0
Teo 2.9743 0 2.9114 0 2.9186 0
my 0.0234 0.004 0.0238 0.003
Tri 0.0037 0.082
RMSE 0.7782 0.2284 0.2282 0.2282
R2 0.2926 0.9391 0.9392 0.9392
Mallows’ Cp 5752 11.69 5.43 4.4

Table 4   Comparison among the 
SMLR models for Porc

Model Type Input parameters Mallows’ Cp RMSE R2 Rank

Model 1 SMLR Tei 5752 0.7782 0.2926 4
Model 2 SMLR Tei, Teo 11.69 0.2284 0.9391 3
Model 3 SMLR Tei, Teo, my 5.43 0.2282 0.9392 2
Model 4 SMLR Tei, Teo, Tri, my 4.4 0.2282 0.9392 1

Fig. 4   Scatter plots for SMLR models
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3.2 � Deep learning results

In this study, DL models with five variations have been 
trained and tested using all the available parameters, Tei, Teo, 
mb, Tri, Tro, my, to estimate Porc. Models 5–8, as based on the 
active parameters determined in the SMLR phase as a hybrid 
approach, have been applied. DL models were developed 

Porc = 1.9970 − 3.2615 ⋅ Tei + 2.9186 ⋅ Teo + 0, 0037 ⋅ Tri + 0, 0238 ⋅ my

using Keras, an open-source neural network library written 
in Python (keras.io). Models were built using the sequential 
model to obtain the best results. In the sequential model, 
four densely connected NN layers were utilized. The models 
were trained and tested according to L, which is the mean 
squared error, and the RMSprop optimization algorithm. 
Simulations were run for 100 epochs. DNN configurations in 
the third layer, as determined by the trial and error method, 
are reported in Tables 5 and 6. In Table 6, the best models in 
input combinations are highlighted with bold. The numbers 
of nodes in all layers of the DL models were determined by 
the lowest computing power requirement and loss values.

After determining the parameters via the SMLR steps, 
input combinations given in Table 6 were chosen as the data-
set in the training process, where 30% of the data were used 
to test the DL models.

Figure 5 shows the train results of the DL models accord-
ing to loss values.

Table 5   Structure of DNN used in the present study

Layer no. Layer type AF Number 
of neu-
rons

1 Dense (Input layer) ReLU 50
2 Dense ReLU 50
3 Dense ReLU 1–50
4 Dense (output layer) Linear 1

Table 6   Comparison of DL 
models for Porc

Model Type Input combination AF Structure Loss values 
for testing 
phase

Model 5 DL Tei ReLU : :
50–50–5–1 0.026422
50–50–10–1 0.019872
50–50–15–1 0.020467
: :

Model 6 DL Tei, Teo ReLU : :
50–50–10–1 0.011217
50–50–15–1 0.003771
50–50–20–1 0.005455
: :

Model 7 DL Tei, Teo, my ReLU : :
50–50–10–1 0.005432
50–50–15–1 0.004522
50–50–20–1 0.005590
: :

Model 8 DL Tei, Teo, Tri, my ReLU : :
50–50–5–1 0.003159
50–50–10–1 0.002214
50–50–15–1 0.002566
: :

Model 9 DL Tei, Teo, mb, Tri, Tro, my ReLU : :
50–50–10–1 0.004261
50–50–15–1 0.003596
50–50–20–1 0.004130
: :
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After the training process is completed, the DL models 
are tested with 30% of the data. Overall, the estimations 
of the DL models match the real data well (except Model 

5). To see the estimation precision of the proposed models, 
test errors and scatter plots are reported in Table 7 and 
shown in Figs. 6, 7, 8, 9, and 10. In Table 7, the best DL 
Models are highlighted with bold. The scatter plots are 
ordered according to the number of neurons in the third 
dense layer in the DL models. It can be seen that most of 
the test and train errors are maintained within the range of 
0.047053 kW to 0.587180 kW as RMSE values. Compared 
with the 10 kW ORC dataset, the maximum R2 is 0.9528, 
as achieved in Model 8; however, the maximum error is 
less than 0.60 kW, as can be seen in the same table. There-
fore, the proposed DL models with strong learning ability 
and well-generalized performance show good agreement. 
Model 5 estimates did not match well with the testing data 
with the lowest R2 value.

According to Table 7, the highest R2 and lowest RMSE 
(the best results), with values of 0.9528, 0.047053 kW 
(in training) and 0.199682 kW (in testing), respectively, 
were obtained for Model 8, which is composed of Tei, Teo, 

Fig. 5   Comparison of loss values implemented DL models for train-
ing phase

Table 7   Results of DL models Model Type Best structure Training Testing R2 Rank
RMSE RMSE

Model 5 DL 50–50–10–1 0.140968 0.587180 0.5917 5
Model 6 DL 50–50–15–1 0.061408 0.231881 0.9363 4
Model 7 DL 50–50–15–1 0.067246 0.212472 0.9465 2
Model 8 DL 50–50–10–1 0.047053 0.199682 0.9528 1
Model 9 DL 50–50–15–1 0.059967 0.213325 0.9461 3

Fig. 6   Scatter plots for model 5
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Tri, and my. On the other hand, the lowest R2, the highest 
RMSE values (the worst results) were obtained as 0.5917, 
0.140968 kW (in training) and 0.587180 kW (in testing) 
for Model 5, which is composed of Tei. Model 7, which 
is composed of Tei, Teo, and my, was the second-most 

successful combination, with a value of 0.9465 for R2. 
Model 9, Model 6, and Model 5 were the third-, fourth-, 
and fifth-most successful combinations in order of appear-
ance. The model performances were ranked from worst 

Fig. 7   Scatter plots for model 6

Fig. 8   Scatter plots for model 7
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to best as follows: Model 8, Model 7, Model 9, Model 6, 
and Model 5.

The scatter plots above represent the Porc versus estima-
tion of Porc via DL-SMLR Model 5 (with one input vari-
able). It is clear from the scatter plot that as Porc values 

increase, deviations from the fitting line (regression line) 
increase. According to the scatter plots, where it seems 
that the data do not follow a linear pattern there is no 
linear correlation. On the other hand, if it seems to be the 
case that the points follow a linear pattern then it can be 

Fig. 9   Scatter plots for model 8

Fig. 10   Scatter plots for model 9
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said that there is a high linear correlation, as can be seen 
in Fig. 6.

If the dots look a little scattered along the trend line, then 
it can be said that there is a moderate linear correlation, as 
seen in Fig. 7.

Comparing with Model 9 in which all variables were 
input, the DL Model 8 based on the SMLR had the advan-
tages of decreasing the number of input parameters and the 
computing process. The model has a higher convergence 
rate and estimate accuracy, as seen in Figs. 8 and 9 than 
other models.

According to the results in Table 7 and Fig. 10, Model 9, 
which has maximum input parameters, is the second choice. 
It was also clearly seen that Tei and Teo were the most impor-
tant input parameters because all the combinations contain-
ing Tei and Teo produce lower MSE and RMSE values than 
any others. Model 8 produced more precise results than 
Model 9, Model 7, Model 6, and Model 5, implying that it 
is more important parameter than Tri, my. It should be the 
first choice of input attribute when Tei and Teo are unavail-
able as input.

It can be concluded that when the input number is 
increased, estimation error is generally decreased. Case 

summaries (input, activation, and output equations) for 
Model 8 are given in Table 8.

3.3 � Comparison of performance of the models

This study demonstrates the applicability of the DL-SMLR 
method for estimating specific operating parameters of the 
ORC system, which is difficult to model mathematically. 
This paper demonstrates the advantage of using the DL-
SMLR model’s configuration over the other architectures 
tested for the estimation of the performance of ORC sys-
tems. Table 9 reports the MAE, MSE, and R2 for Model 
4 and Model 8. The MAE, MSE, and R2 were calculated 
for test data comparing the value estimated by the trained 
NN and that taken from the ORC system. As can be seen 
in Table 9, the maximum estimated MAE value can reach 
0.818979  kW, and estimated MSE values are between 
0.047053 kW and 0.477598 kW. When Model 8 is consid-
ered, the MAE, MSE, and R2 values for the testing phase are 
0.140295 kW, 0.047053 kW, and 0.9528, respectively. The 
performances with the Model 8, DL based SMLR are better 
than those with the SMLR and Model 9 (without SMLR 
steps). The real and estimated Porc values are also plotted 
in Fig. 11.

Table 8   Case summaries for 
model 8

Model 8 inputs
�
Tei Teo Tri my

�
1×4

×

⎡⎢⎢⎢⎣

−0.3165 −0.0645 ⋯ −0.2469

+0.1347 +0.2301 ⋯ +0.1044

−0.1207 −0.1204 ⋯ +0.2678

+0.4035 +0.0881 ⋯ −0.3548

⎤⎥⎥⎥⎦
4×50

+
�
−0.0570 −0.0347 −0.0936 −0.0589 ⋯ −0.0762

�
1×50

1st hidden Layer AF ReLU: Yi = max
(
0, xi

)

2nd hidden layer AF ReLU: Yi = max
(
0, xi

)

output weights (i) w1 w2 w3 … w8 w9 w10

1 0.2064 0.2508 − 0.0246 … − 0.1403 − 0.2579 − 0.1282
2 − 0.1588 0.1425 0.2407 … 0.1484 0.0670 0.3130
3 0.3231 − 0.0332 0.1493 … − 0.0319 − 0.0294 0.2537
… … … … … … … …
48 − 0.1911 0.0583 − 0.1210 … − 0.2323 0.1438 0.0466
49 − 0.1003 − 0.2717 0.3127 … − 0.0535 − 0.3102 0.0111
50 0.2469 0.1037 0.2680 … 0.0776 0.2936 0.2128
b 0.0016 0.0030 − 0.0252 … − 0.0467 − 0.0048 − 0.0001
Output Eq. Porc = 0.3376∙Y1 + 0.4277∙Y2 − 0.5625∙Y3 − 0.5682∙Y4 − 0.5729∙Y5 − 1.0585 ∙Y6 + 

0.2939Y7 + 0.3121∙Y8 + 0.1959∙Y9 + 0.2697∙Y10 + 0.0087

Table 9   Comparison of best 
DL-SMLR and SMLR models

Model Type Best structure Test data Rank

MAE MSE R2

Model 8 DL-SMLR 50–50–10–1 0.140295 0.047053 0.9528 1
Model 4 SMLR Tei, Teo, Tri, my 0.818979 0.477598 0.9392 2
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Several studies propose ANN-based models to estimate 
and optimize the performance of ORC systems. Kovacı et al. 
estimated the thermal efficiency of ORC systems using the 
condenser temperature and the evaporator temperature via 
ANFIS and ANN. They chose R365-mfc and SES32 as flu-
ids. When the performances of the ANN and ANFIS models 
were compared with actual values, R2 values were deter-
mined to be between 0.97 and 0.99 for SES36 and R365-
mfc. It was concluded that the ANN and ANFIS models 
showed good statistical prediction performance [24]. Kılıç 
and Arabacı analysed the performance of an ORC system 
using ANN and ANFIS. They chose R123, R125, R227, 
R365mfc, SES36 as refrigerants. Therefore, the efficiency 
ratio was forecast depending on the steam generator tem-
perature, condenser temperature, subcooling temperature, 
and superheating temperature. The results of ANN and 
ANFIS are very satisfactory according to the R2 values, 
which ranged from between 0.99670 and 0.99928 [28]. Both 
studies suggested the use of ANN and ANFIS. However, 
these models can be challenged when big data needs to be 
processed and interpreted. In this regard, LeCun et al. sug-
gested the DL approach [48]. Also, in this study, it is seen 
in Table 9 that using a statistical method such as SMLR for 
parameter selection developed the designed models. Yang 
et al. used the ANN method to estimate performance and 
improvements of an ORC-assisted diesel engine with regard 
to waste heat. In the study, they compared the prediction 
accuracy of the ANN model with and without the use of GA. 
During the analysis, seven key parameters were used to find 
their effects on the power output of the ORC system. They 
found working fluid volume flow rate, pump outlet pressure, 
and expander inlet temperature to be more important, and 
expander outlet pressure and condenser outlet temperature 
to be less so (total five of seven parameters), on the power 
output of the ORC system [26]. However, this study had 
similar success with four of six parameters. On the other 
hand, deep learning models are rarely used in performance 

estimation and optimization of an ORC. When this study 
was compared with other studies, it was very encouraging. 
Moreover, the error rates reached are similar. A comparison 
with other studies can be seen in Table 10.

Although ANN and ANFIS were used in the studies men-
tioned above, the size of the datasets were limited in terms of 
both the number of data and the number of parameters used. 
However, the size of the data and the number of parameters 
used in the present study required more computing power, 
but made the DL approach more effective. Especially LeCun 
et al. inferred that DL method should be used for big data-
sets [48]. As a conclusion, the DL method was applied in 
the present study to train the system. As seen in Table 10, 
Palagi et al. used the DL method to train their network, and 
they calculated an RMSE error of less than 5%, which is 
considerably higher than the RMSE error found in the pre-
sent study. Therefore, the success of the trained network 
developed in the present paper can be clearly seen.

4 � Conclusion

This study investigated the predictability of a 10 kW ORC 
system using the DL approach, which has a strong ability to 
deal with nonlinear problems and is highly generalizable. 
DL and SMLR, with various input combinations, have been 
compared. It can be seen that the DL models that developed 
with SMLR steps, optimized with the RMSprop optimiza-
tion algorithm, and trained with different input variations, 
demonstrate varying levels of estimation accuracy. Both the 
DL-SMLR and DL models are capable of estimating the 
daily Porc with different input combinations. It is also impor-
tant to note that SMLR has achieved remarkable success.

The results obtained in this study show that:

Fig. 11   Comparison of model 4 and model 8
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•	 The three different types of model, SMLR, SMLR-DL, 
and DL, provide good estimates of the power output of 
the ORC system.

•	 According to SMLR, R2 and Mallows’ Cp criteria, it 
reaches the highest level of consistency in 4 steps with 
the parameter set composing from Tei, Teo, Tri, and my.

•	 Compared to Model 9, the R2 of 95.28% achieved by 
Model 8 means that Porc is better explained by move-
ments in the independent variables Tei, Teo, Tri, and my.

•	 The accuracy of SMLR-DL Model 8 had been improved 
greatly compared with DL Model 9 without the use of 
SMLR steps. The MSE of Porc was reduced by 83%, 
and the R2 was increased by 1.45%. So, the DL Model 
8 improved with SMLR in this study could be used as 
an effective method for Porc estimation with low uncer-
tainties.

•	 Depending on the availability of the ORC dataset, DL-
SMLR Models 6–8 and DL Model 9 can be adopted to 
estimate the power output of ORC systems where direct 
measurement of turbine output is not available.

•	 Statistical inferences based on MSE, RMSE, MAE and 
R2 suggest that the DL-SMLR models with three and 
four input variables are superior to the DL-SMLR and 
SMLR models with one input.

This study has revealed that through the determination 
of a proper training set and input parameters by SMLR, the 

DL-SMLR approach is able to estimate the power genera-
tion of ORC systems with acceptable accuracy.
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