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Abstract 

The problem of heat exchange between two or more fluids at different temperatures is one of the most important and most common 

problems of engineering applications. In order to solve this problem efficiently, the transfer of energy between two liquids at different 

temperatures is carried out by heat exchangers. Heat exchangers increase the energy efficiency as they can transfer the energy contained 

in the system to another part of the process instead of just pumping and wasting. A plate heat exchanger, a variant of heat exchanger, 

use a series of thin plates to transfer heat between two liquids. Thermal modelling of the heat exchanger is important due to determination 

of the outlet temperature of fluids depending on the system parameters. In this paper, an artificial neural network (ANN) model is used 

to simulate the thermal performance of a chevron type plate heat exchanger using water as working fluid. The ANN algorithms have a 

widely usage in thermal analysis studies of heat exchangers such as modelling of heat exchangers, estimation of heat exchanger 

parameters, estimation of phase change characteristics in heat exchangers and control of heat exchangers. The outer temperatures of the 

water are estimated depending on the cold water mass flow rate, inlet hot water temperature and inlet cold water temperature by using 

limited experimental data. Then the experimental results and the estimated results are compared for testing the accuracy and reliability 

of the developed algorithm. The results show that the experimental and estimated results have a good agreement. The developed network 

structure estimates the outlet temperatures with 2.58 % and 1.80 % for hot and cold water, respectively. In addition, the predicted 

performance of the network developed by applying untested input parameters was examined. Estimation accuracy was compared with 

theoretically calculated output temperatures by thermal analysis using the same inputs. According to the obtained results, it is seen that 

the theoretical results and prediction results are compatible with each other in determining the output for new inputs and the reliability 

of the developed network is proved in different inputs according to this result. After that, experimentally not obtained variations of the 

heat transfer rate, overall heat transfer coefficient and energy efficiency are determined depending on the inlet temperatures and mass 

flow rate of cold water. 

 

Keywords: Artificial Neural Network, Chevron type, Plate heat exchanger, estimation, Thermal modelling. 

Sınırlı Deneysel Verilerle Yapay Sinir Ağı Kullanılarak Chevron Tipi 

Isı Değiştirici için Termal Modelleme ve Performans Analizi 

Öz 

Farklı sıcaklıklardaki iki veya daha fazla akışkan arasındaki ısı değişimi problemi, mühendislik uygulamalarının en önemli ve en çok 

karşılaşılan problemlerden birisidir. Bu problemi verimli bir şekilde çözmek için farklı sıcaklıklardaki iki sıvı arasında enerji aktarma 

işlemi ısı eşanjörleri ile gerçekleştirilir. Isı değiştiricileri, sistemde bulunan enerjiyi sürecin başka bir kısmına aktarabildiği için enerji 

verimliliğini arttırırlar. Isı eşanjörlerinin bir çeşidi olan plakalı ısı değiştiricileri, ısıyı iki sıvı arasında aktarmak için bir dizi ince plaka 
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kullanmaktadırlar. Isı değiştiricinin termal modellemesi, sistem parametrelerine bağlı olarak sıvıların çıkış sıcaklığının belirlenmesinden 

dolayı oldukça önemlidir. Bu çalışmada, çalışma sıvısı olarak su kullanılan bir Chevron tipi plakalı ısı değiştiricinin termal 

performansını simüle etmek için yapay bir sinir ağı (YSA) modeli kullanılmıştır. YSA algoritmaları, ısı değiştiricilerin modellenmesi, 

ısı değiştirici parametrelerinin ve faz değişim özelliklerinin tahmini ve ısı değiştiricilerinin kontrolü gibi termal analiz çalışmalarında 

yaygın olarak kullanılmaktadır. Sıcak ve soğuk suyun ısı değiştiriciden çıkış sıcaklıkları sınırlı deneysel veriler kullanılarak soğuk su 

kütle akış hızına, giriş sıcak su sıcaklığına ve giriş soğuk su sıcaklığına bağlı olarak tahmin edilmiştir. Daha sonra geliştirilen 

algoritmanın doğruluğunu ve güvenilirliğini test etmek için deney sonuçları ve tahmini sonuçlar karşılaştırılmıştır. Elde edilen sonuçlar 

deneysel ve tahmini sonuçların iyi bir uyuşmaya sahip olduğunu göstermektedir. Geliştirilen ağ yapısı, sıcak ve soğuk su için çıkış 

sıcaklıklarını sırasıyla % 2.58 ve % 1.80 yüzdelik ortalama hata ile tahmin etmektedir. Ek olarak, deneyi gerçekleştirilmemiş giriş 

parametreleri uygulanarak geliştirilen ağın tahmin performansı incelenmiştir. Tahmin doğruluğu ise aynı girişler kullanılarak termal 

analiz ile teorik olarak hesaplanan çıkış sıcaklıkları ile karşılaştırılmıştır. Elde edilen sonuçlara göre yeni girişler için çıkışın 

belirlenmesinde teorik sonuçlar ile tahmin sonuçlarının birbirleriyle uyumlu olduğu görülmektedir ve bu sonuca bağlı olarak geliştirilen 

ağın güvenilirliği farklı girişler içinde kanıtlanmış olmaktadır. Daha sonra, deneysel olarak elde edilmemiş ısı aktarım hızı, toplam ısı 

aktarım katsayısı ve enerji verimliliğindeki değişiklikler, sıcak ve soğuk suyun giriş sıcaklıklarına ve soğuk suyun kütle akış hızına 

bağlı olarak belirlenmiştir. 

 

Anahtar Kelimeler: Yapay sinir ağları, Chevron tipi, Plakalı ısı değiştiriciler, Tahmin, Termal modelleme. 

 

1. Introduction 

Heat exchangers are often used for heat transfer between hot and cold fluids. In practice, heat exchangers used in a wide variety of 

engineering applications, such as automobile thermal power units, air conditioning systems, chemical and textile manufacturing 

operations, can be of various constructions, capacities, sizes and types according to their intended use. The design and operation of heat 

exchangers are determined according to several factors such as the inlet and outlet temperatures of the fluids, the operating pressure, 

the pressure losses that can be tolerated in the heat exchanger, the heat capacity and the types and amounts of the fluids.  

There are many studies about modelling and development of different types of heat exchangers for different applications such as 

plate type [Abu-Khader, 2012], ceramic based [Sommers et al, 2010], compact heat exchangers [Li et al, 2011] etc.  In this study, the 

plate types Chevron heat exchanger is selected because of its high thermal efficiency and flexibility. Chevron type heat exchangers are 

extensively preferred for heating, cooling and heat-regeneration applications. There are some theoretical and experimental methods for 

analysing the thermal behaviour of heat exchangers in the literature such as the logarithmic mean temperature difference (LMTD), 

effectiveness-number of transfer units (ϵ-NTU) and computational fluid dynamics (CFD).  

The theoretical analysis of heat exchangers includes more assumptions and complex calculations. However, an analysis by 

experimental methods is more expensive due to the initial investment needed to develop an experimental setup [Shah & Sekuliâc 

Duésan, 2012]. The conventional methods like LMTD and ϵ-NTU have some limitations such as constant overall heat transfer 

coefficient and specific heat capacity, no heat loss between the exchanger and surrounding medium, needs to steady state conditions 

and negligible kinetic and potential effects. However, in applications, many properties depend on time and the value of heat transfer 

coefficient is continuously varying [Rajapaksha, 2007]. CFD is the another method for investigating the design and optimization of heat 

exchangers. Also, the CFD analysis involves some assumptions and these assumptions affect the prediction performance directly. In 

some cases, the error between its results and experimental results is observed above %10 which is not really acceptable [Huminic & 

Huminic, 2012]. Hence, the assumptions are not strictly valid for the analysis of such assumptions do not allow for a realistic thermal 

analysis of heat exchangers. ANN overcomes these limitations of the mentioned methods and experimental approach. In the literature, 

there are many studies in which ANN models were developed for simulation, optimization and performance prediction of thermal 

systems involving heat exchangers [Yang, 2008; Sen & Yang, 2000].  

ANNs are information processing system, which learn from input/output data to determine the relationships between input/output. 

In recent years ANN has been used in different fields of engineering because of their capability of extracting complex and nonlinear 

relationships. For thermal analysis of heat exchanger Multilayer feed forward network (MLFFN), radial biased function network 

(RBFN), generalized regression neural network (GRNN) and adaptive neuro fuzzy interface systems (ANFIS) architectures are 

commonly used. If ANN based modelling of plate type heat exchangers are investigated firstly, Selbas et al. [Selbaş et al, 2008] predicted 

the exergy and energy values of the plate type heat exchangers. The inner temperatures of the hot and cold waters and mass flow rate. 

The results show that the agreement between the ANN predictions and experimental data is good. Peng and Ling [Peng & Ling, 2009] 

developed a ANN algorithm based on the MLFFN architecture for predicting the j and f factor of plate-fin heat exchangers. The ANN 

predicts these factor values with mean square errors less than 1.5% and 1%, respectively. On the other hand, there are lots of studies in 

the literature about modelling the different types of heat exchangers such as condensers, compact heat exchangers, run-around heat 

exchangers, shell and tube heat exchangers and fin and tube heat exchangers. Ertunc and Hosoz [Ertunc & Hosoz, 2008] compared the 

prediction performances of MLFFN and ANFIS techniques on evaporative condenser. The results show that MLFFN with 7-5-4 

configuration and ANFIS predictions have %5 error when they compared to experimental results and ANFIS has more successful 

prediction performance than MLFFN. Ermis [Ermis, 2008] predict the values of Nu, h and Δp of a compact heat exchanger by using 

MLFFN technique. They use 7-11-3 configuration and the results show that they predicted Nu, h and Δp values very closer to 

experimental results. The mean square error of all predicted data are obtained less than 6%. 5-5-3-3 configuration of MLFFN technique 

is used in  [Vega et al, 2000]  to predict to Q ̇ and sensible heat and total heat. The inputs of the network are Re, inlet air DBT, inlet air 

WBT, inlet Tw and fin spacing. They compared the results with the conventional correlations results and they observed that the ANN 

prediction error is less than 10% but the correlation predictions have more than 10% deviation.  
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In this paper, an ANN structure is developed for modelling the chevron type heat exchanger with limited data. These limited 

experimental data are obtained from experimental study in [Yildiz & Ersoz, 2015] in which they investigated the thermomechanical 

characteristic of the chevron type heat exchanger theoretical and experimentally.   The outlet temperatures of hot and cold water are 

predicted depending on the inlet temperatures and mass flow rate of cold water. Then the results compared with the experimental data 

for proving the accuracy and reliability of the network. Furthermore, experimentally not obtained variations of the heat transfer rate, 

overall heat transfer coefficient and energy efficiency are determined depending on the inlet temperatures and mass flow rate of cold 

water. 

2. Material and Methods 

2.1. Experimental Setup 

The Chevron type heat exchanger is a type of plate heat exchanger and the patterns on the plates are manufactured at a certain angle. 

Since these angles are called as chevron angle, these types of heat exchangers are also called chevron type heat exchangers in the 

literature. In this study, the used experimental setup is showed in Figure 1.  

The material of used brazed plate Chevron type heat changer is chromium–nickel steel and its thermal conductivity, thermal 

expansion coefficient and specific heat are equal to 17.5 𝑊/𝑚𝐾, 15.1𝑥10−6𝐶−1 and 0.5 𝑘𝑗/𝑘𝑔𝐾, respectively. The geometry and 

technical properties of this chevron type heat exchanger is showed in Fig.2 and Table 1, respectively.  The technical properties in Table 

1 are constant during all considered cases.  

 

Figure 1. Schematic diagram of the experimental setup [Yildiz & Ersoz, 2015] 

As seen in the Figure 1 the experimental setup consists of cold water and hot water flow loops. 2kW immersion heaters are used in 

the hot water tank which has 50 L water capacity. Flow maters are used to measure the flow rates of the hot and cold waters which are 

controlled by the valves. The temperatures of the water are measured by PT-100 thermocouples and a water pump helps circulation of 

the hot water through the heat exchanger. Cold water is supplied by city water supply. On the other hand, cold water was supplied from 

the waterworks in the setup. In the experiment, the mass flow rate of cold water is varied from 0.0277 kg/s  to  0.0833 kg/s when mass 

flow rate of hot water is equal to 0.083 kg/s. It was kept constant during all considered cases. On the other hand, the temperatures of 

hot and cold waters were varied from 35 ℃ to 60 ℃ and from 21 ℃ to 25.35 ℃, respectively. Therefore, ANN predictions was limited 

in these temperature values. 
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Figure 2. Geometry of the Chevron type heat exchanger [Yildiz & Ersoz, 2015] 

Table 1. Technical properties of the used chevron type heat exchanger [Yildiz & Ersoz, 2015] 

Plate thickness, mm (t) 0.3 

Chevron angle, degrees (β) 45 

Total number of plates 15 

Vertical port distance, m (Lv) 0.154 

Compressed plate pack length, m (Lc) 0.05 

Effective channel width, m (Lw) 0.08 

Total effective area, m2 (A) 0.1968 

All port diameters, m (Dp) 0.016 

Number of passes 1 

Thermal conductivity of the plate material (W 

m-1 K-1) 
17.5 

Enlargement factor (𝜙) 1.273 

2.2. Architecture of ANN 

ANNs are an information processing system that is inspired by biological neural networks and contains some performance 

characteristics similar to biological neural networks. In other words, they are computer systems which are developed with the purpose 

of realizing the ability to derive new information, learn and derive new information through learning from the characteristics of the 

human brain automatically without any help. Artificial neural networks are physical cell systems that receive, store and use experimental 

knowledge. This is a widely used method for modelling complex and non-linear systems using these experimental data. Applications of 

ANNs are generally used for prediction, classification, data association, data interpretation and data filtering. There are basically three 

steps in the artificial neural network learning process; i) to calculate the output, ii) compare outputs with target outputs and calculate 

the error, iii) repeat the process by changing weights. As a result of the training process, it is expected that the error calculated in artificial 

neural network reduces to an acceptable error rate. In most network types, a neuron in the hidden layer only receives signals from all 

neurons of the previous layer. After neuron processing, it sends the output to all the neurons of the next layer. The output signal of each 

neuron is determined by applying activation function to its input data. The information flow takes place with the connection links from 

one neuron to the other neuron, and each link has a weights to create the desired input-output relationship. These weights are updated 

based on the error margin between the net output and the expected output. [Haykin, 1998; Beale et al, 2017]. 

The correct selection of the topology of the network affects directly the generalization ability of the artificial neural network. 

Therefore, the most appropriate architecture is selected by making optimizations. Initially, the randomly assigned weight values are 

revised along with the learning process to produce the expected outputs based on the given inputs. The learning process of the network 

aims to minimize the error and to produce the most accurate results for previously untested inputs. Therefore, some of the experimental 

data is used for training the network, while the other part tests for the success of the network. The flow diagram of the learning and test 

processes for the designed network is given in Figure 3. 

Depending on the experimental setup, ANN algorithm has three inputs such as mass flow rate of the cold water and inner 

temperatures of hot and cold waters. The outputs of the networks are determined as outer temperatures of hot and cold waters. The 

neural-network model was developed using similar 25 experimental data sets for training, validation of the network. The network uses 

a back propagation algorithm which is the classical feed-forward artificial neural network and it uses to calculate the error contribution 
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of each neuron after a batch of data is processed. One hidden layer is used in the network with 12 neurons in the network. This neuron 

numbers in the hidden layer is obtained at the end of the several trials to maximize the correlation coefficient R. 

Figure 4 shows the architecture of developed the neural network structure for predicting the water temperatures at the outlet of the 

heat exchanger. Wij and Woj denote the synapse weights of the network. The desired input/output relation is getting better by adjusting 

these connections weigths during the training process. Some of the experimental results not used in training have been used to measure 

the prediction performance of the trained network. 

Entering the all 

experimental data 

set

Dividing  the 

data set 

randomly to 

two group

Input and 

target data set 

for training 

the network

Data set use 

for testing

%70 for 
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Figure 3. The flow diagram of ANN network developing process  
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Figure 4. The architecture of the ANN 

2.3. Thermal Analysis 

During the energy and exergy analyses, following assumptions have been taken into consideration. The heat exchanger operates 

under steady-state flow conditions. Heat transfer to the surroundings is negligible and no heat generating in the exchanger. The dead 

state conditions are taken as 𝑇0 = 25 ℃. There is no temperature difference along the cross-section of the chevron type plate heat 

exchanger. The heat resistance of the plates is constant along the chevron type plate heat exchanger. 

In the energy analysis, the heat transfer rate is calculated by using  

�̇� = 𝑈𝐴Δ𝑇𝐿𝑀𝑇𝐷  (1) 

where U, A and 𝑻𝑳𝑴𝑻𝑫 are overall heat transfer coefficient, total effective area and logarithmic mean temperature difference, 

respectively.  The overall heat transfer coefficient is obtained by Eq. (2). 
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𝑈
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1

ℎ𝑐𝑓

+
𝑡

𝑘𝑝

+
1

ℎℎ𝑓

 
(2) 

t, 𝒌𝒑, 𝒉𝒄𝒇 and   𝒉𝒉𝒇 are plate thickness, thermal conductivity of plate material, heat transfer coefficients for cold and hot waters, 

respectively and they are calculated by using following equations. 

ℎ𝑐𝑓 =
𝑁𝑢𝑐𝑘𝑐𝑓

𝐷𝑐

,                    ℎℎ𝑓 =
𝑁𝑢ℎ𝑘ℎ𝑓

𝐷ℎ

 
(3) 

The logarithmic mean temperature difference term in Eq. (1) defined as 

Δ𝑇𝐿𝑀𝑇𝐷 =
(𝑇ℎ𝑖𝑛

− 𝑇𝑐𝑜
) − (𝑇ℎ𝑜

− 𝑇𝑐𝑖𝑛
)

ln (
𝑇ℎ𝑖𝑛

−𝑇𝑐𝑜

𝑇ℎ𝑜−𝑇𝑐𝑖𝑛

)
 (4) 

The used chevron type heat exchanger’s chevron angle is equal to 45𝑜. Therefore, some flow characteristic and chevron angle 

dependent constants are determined using Table 2. 

Table 2. Constant for single phase heat transfer in chevron type heat exchangers [Kakac et al, 2012] 

Angle 𝐶ℎ n Re 

45𝑜 

0.718 0.349 Re<10 

0.4 0.598 10<Re<100 

0.3 0.663 Re>100 

After that, firstly Nusselt number, which is a dimensionless number that expresses the relationship between the convection heat 

transfer coefficient and the ratio to the transmission heat transfer coefficient, is determined by using 

𝑁𝑢 = 𝐶ℎ (
𝐷ℎ𝐺

𝜇
)

𝑛

(
𝐶𝑝𝜇

𝑘𝑓

)

1

3

(
𝜇𝑏

𝜇𝑤

)
0.17

  

   

(5) 

Then, Reynolds number is found by using channel mass velocity, equivalent diameter and dynamic viscosity as follows 

𝐺𝑐ℎ =
�̇�𝑐ℎ

𝑁𝑐𝑝𝑏𝐿𝑤

,         𝑅𝑒 =
𝐺𝑐ℎ𝐷ℎ

𝜇
 

(6) 

Calculations are performed with the experimental data by using the basic heat transfer equations. 

𝑇𝑐𝑚
=

(𝑇𝑐𝑖𝑛
− 𝑇𝑐𝑜

)

2
,        𝑇ℎ𝑚

=
(𝑇ℎ𝑖𝑛

− 𝑇ℎ𝑜
)

2
,          𝑇𝑤 =

(𝑇𝑐𝑚
− 𝑇ℎ𝑚

)

2
 (7) 

The formulas of thermo-physical properties of water depending on the bulk temperatures at cold and hot side and the wall are 

given in Eqs. (12-15) in [Yildiz & Ersoz, 2015]. 

The energy performance in the heat exchanger is calculated by using following equation. 

ε1 =
�̇�

�̇�𝑚𝑎𝑥

,   �̇�𝑚𝑎𝑥 = 𝐶𝑚𝑖𝑛(𝑇ℎ𝑖
− 𝑇ℎ𝑜

) 
(8) 

where  𝐶𝑚𝑖𝑛 is the smaller of 𝐶𝑐 = �̇�𝑐𝐶𝑝𝑐𝑓
 and 𝐶ℎ = �̇�ℎ𝐶𝑝ℎ𝑓

.  The heat removed from the hot water, �̇�ℎ, and the heat absorbed by 

the cold water, �̇�𝑐 are calculated by: 

�̇�ℎ = �̇�ℎ𝐶𝑝ℎ𝑓
(𝑇ℎ𝑖

− 𝑇ℎ𝑜
) (9) 

�̇�𝑐 = �̇�𝑐𝐶𝑝𝑐𝑓
(𝑇𝑐𝑖

− 𝑇𝑐𝑜
) (10) 

3. Results and Discussion  

The main goal of this study to modelling of the chevron type heat exchanger for estimation of its outlet temperatures depending on 

its inlet temperatures and mass flow rate of cold water without the need for any experiments. Therefore, a neural network architecture 

was developed and Table 3 shows the values of ANN inputs, the related predicted outlet temperatures and experimental results and the 

percent error rates of cold and hot waters.   
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The five different input combinations on the table were selected from the data with experimental results that were not used in 

network training. The results show that the percentage errors for the temperatures of hot and cold waters predictions are less than 5% 

for all considered cases. The average errors for estimation of cold and hot water temperature at the output of the heat exchanger are 

determined as 2.58 and 1.80, respectively. As a results, the predicted values and experimental values have a good agreement and 

therefore, the accuracy of developed ANN structure is proved. Furthermore, it is indicated that the developed network has higher 

estimation performance for predicting the cold water output temperature. After that, the estimation performance of developed ANN is 

tested by comparing its results with the theoretical results for different cases which are not considered experimentally. In the theoretical 

analysis, due to the fact that outlet temperatures of hot and cold water are not known, the analysis requires an iterative process. Initial 

values are chosen for the outlet temperatures and Eqs. (1)–(8) and Eqs. (12-15) in [Yildiz & Ersoz, 2015] are solved. Then, these values 

are introduced into Eqs. (9) and (10) so as to calculate the new values for the outlet temperatures. The process is repeated until the 

difference between successive values of each quantity is less than 0.01%. 

Table 3. Comparison of the estimated temperatures and experimental results 

INPUTS ANN Experiment 
Errors (%) 

Mean Percentage 
Absolute Error 

𝑚𝑐̇  𝑇ℎ𝑖
 𝑇𝑐𝑖

 𝑇ℎ𝑜
 𝑇𝑐𝑜

 𝑇ℎ𝑜
 𝑇𝑐𝑜

 𝑒ℎ 𝑒𝑐 

0.0277 45 21.02 41.6751 38.95 40.59 39.49 2.67 1.33 

0.0416 40 22.08 35.8426 33.6927 35.36 32.88 1.36 2.47 

0.0555 55 25.03 45.198 42.1646 45.86 41.19 1.44 2.36 

0.0694 50 24.07 37.5837 37.8079 38.78 38.77 3.07 2.48 

0.0833 35 23.49 29.96 29 28.72 28.9 4.34 0.36 

     Average Error (%) 2.58 1.80 

Figure 5 and Figure 6 show the variations of the hot and cold water outlet temperatures as a function of cold water inlet temperatures 

when the mass flow rate of cold water equal to 0.0277 kgs-1. The hot water inlet temperature is changed from 35 ℃ to 60 ℃ with 5 ℃ 

increment. The results show that the outlet temperatures of hot and cold water are increased linearly for all considered hot water inlet 

temperatures when the cold water inlet temperature is increased. It can be seen in Fig. 5 that the estimation error between the results of 

ANN and theoretical calculations is less for higher hot water intel temperature than lower ones. However, Fig. 6 shows an opposite 

behaviour for cold water outlet temperature. The prediction error increases when the inlet temperature of the hot water is increased.  

 

Figure 5. The comparison between the ANN predictions and the theoretical calculations for hot water outlet temperature at specific values of 

𝑇ℎ−𝑖𝑛 and 𝑚𝑐̇ = 0.0277 𝑘𝑔𝑠−1 
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Figure 6. The comparison between the ANN predictions and the theoretical calculations for cold water outlet temperature at specific 

values of 𝑇𝑐−𝑖𝑛 and 𝑚𝑐̇ = 0.0277 𝑘𝑔𝑠−1 

These mean percentage errors and the performance of ANN is summarized in Table 4 for all considered cases. On the other hand, 

Figure 5 and Figure 6 show that the prediction performance of ANN decreases when the cold water inlet temperature is increased for 

all considered cases. These results were determined separately for all considered cold water mass flow rates. Table 5 shows the 

performance of ANN when the mass flow rate of the cold water is equal to 0.0555 kgs-1.  When we compare the results in Table 4 and 

Table 5, the results show that the estimation performance of ANN is better for the case in which 𝑚𝑐̇ = 0.0555 𝑘𝑔𝑠−1.  

Table 4. The error between the estimated and calculated results for hot and cold water outlet temperatures at 𝑚𝑐̇ = 0.0277 𝑘𝑔𝑠−1 

𝑚𝑐̇ = 0.0277𝑘𝑔𝑠−1 Error for 𝑇ℎ−𝑜𝑢𝑡  
Estimation (%) 

Error for 𝑇𝑐−𝑜𝑢𝑡 . 
Estimation (%) 

𝑇ℎ−𝑖𝑛 

35 ℃ 5.3470 1.2043 

40 ℃ 7.9220 1.1767 

45 ℃ 7.9433 1.0163 

50 ℃ 7.3072 0.99 

55 ℃ 4.9677 1.9001 

60 ℃ 0.1849 7.4725 

Table 5. The error between the estimated and calculated results for hot and cold water outlet temperatures at 𝑚𝑐̇ = 0.0555 𝑘𝑔𝑠−1 

𝑚𝑐̇ = 0.0555 𝑘𝑔𝑠−1 Error for 
𝑇ℎ−𝑜𝑢𝑡  

Estimation 
(%) 

Error for 
𝑇𝑐−𝑜𝑢𝑡 . 

Estimation 
(%) 

𝑇ℎ−𝑖𝑛 

35 ℃ 1.6467 0.6087 

40 ℃ 2.7678 0.1011 

45 ℃ 4.3464 0.5415 

50 ℃ 2.4633 2.8316 

55 ℃ 1.5164 3.6023 

60 ℃ 2.0548 2.3484 

On the other hand, based on the predicted data, the variations of the heat transfer rate, �̇�, calculated by Eq. (1), are given in Figure 

7 and Figure 8 as a function of hot and cold water inlet temperatures, respectively. Figure 7 show the change of the heat transfer rate for 

the combinations of the hot water inlet temperature, 𝑇ℎ−𝑖𝑛, such as 35℃, 40℃, 45℃, 50℃, 55℃ and 60℃ and specific values of cold 

water mass flow rate, 𝑚𝑐̇ , as 0.0277 kgs-1 and 0.0555 kgs-1. The results in Figure 7 show that increase in the cold water inlet temperature 

leads to decrease in heat transfer rate for all considered cases. Moreover, it is observed that the heat transfer rate increases for a specific 

cold water temperature value when the hot water inlet temperature or the mass flow rate of the cold water are increased.  
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Figure 7. The variation of heat transfer rate value with respect to cold water inlet temperature for 𝑚𝑐̇ = 0.0277 𝑘𝑔𝑠−1 and 𝑚𝑐̇ =

0.0555 𝑘𝑔𝑠−1 at specific hot water inlet temperatures 

In Figure 8, the variations of the heat transfer rate are shown for the cases in which the combinations of the cold water inlet 

temperature, 𝑇𝑐−𝑖𝑛, such as 21℃, 22℃, 23℃, 24℃  and 25℃ and same cold water mass flow rate values in previous figure. It can be 

seen that the heat transfer rate increases when the value of  𝑇ℎ−𝑖𝑛  is increased. On the other hand, increase in cold water inlet temperature 

leads to decrease in �̇� for a specific value of 𝑇ℎ−𝑖𝑛. Moreover, the slope of the linearly varying curve increases when the cold water 

flow rate is increased and it leads to increase the heat transfer rate, similarly.  

 

Figure 8. The variation of heat transfer rate value with respect to hot water inlet temperature for 𝑚𝑐̇ = 0.0277 𝑘𝑔𝑠−1 and 𝑚𝑐̇ =

0.0555 𝑘𝑔𝑠−1 at specific cold water inlet temperatures 

Figure 9 show the variation of overall heat transfer coefficient, U, as a function of 𝑇𝑐−𝑖𝑛 for combinations of the specific values of  

𝑇ℎ−𝑖𝑛 and 𝑚𝑐̇ . Similarly, the values of 𝑚𝑐̇  are equal to 0.0277 kgs-1 and 0.0555 kgs-1 and the values of 𝑇ℎ−𝑖𝑛 are equal to 35℃, 40℃, 

45℃, 50℃, 55℃ and 60℃. The results show that U changes linearly and it increases depending on increasing in 𝑇𝑐−𝑖𝑛 for all considered 

cases. Increasing in 𝑇ℎ−𝑖𝑛 leads to increase in U for the both cold water mass flow rates. Moreover, increase in 𝑚𝑐̇  has similar effect on 

the overall heat transfer coefficient for a specific values of 𝑇𝑐−𝑖𝑛 and 𝑇ℎ−𝑖𝑛. 
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Figure 9. The variation of overall heat transfer coefficient value with respect to cold water inlet temperature for 𝑚𝑐̇ = 0.0277 𝑘𝑔𝑠−1 

and 𝑚𝑐̇ = 0.0555 𝑘𝑔𝑠−1 at specific hot water inlet temperatures 

Figure 10 shows the variation of the energy efficiency as a function of cold water inlet temperatures for specific values of 𝑻𝒉−𝒊𝒏 

and 𝒎𝒄̇ . The results indicated that the energy efficiency increases linearly depending on increase in 𝑻𝒄−𝒊𝒏. Similarly, increase in 𝑻𝒄−𝒊𝒏 

cause to increase the overall efficiency for the specific values of 𝑻𝒄−𝒊𝒏 and 𝒎𝒄̇ . However, the energy efficiency decreases when the 

mass flow rate of cold water is increased. 

 

Figure 10. The variation of energy efficiency with respect to cold water inlet temperature for 𝑚𝑐̇ = 0.0277 𝑘𝑔𝑠−1, 𝑚𝑐̇ =
0.0416 𝑘𝑔𝑠−1 and 𝑚𝑐̇ = 0.0555 𝑘𝑔𝑠−1 at specific hot water inlet temperatures 

4. Conclusions 

In this study, a ANN is developed for prediction of the outlet temperatures of the chevron type heat exchanger depending on the 

inlet temperatures and mass flow rate of cold water when the mass flow rate of hot water is assumed to be constant for all cases. 

Developing ANN is important in applications because the experiments take very long time and ANN allows us to get fast results between 

the values trained without doing these long experiments. The predicted results of ANN show very good agreement with experimental 

data used as testing. The developed network structure estimates the outlet temperatures with 2.58 % and 1.80 % for hot and cold water, 

respectively. Therefore, this developed ANN model presents satisfactory performance to estimate the outlet temperatures. In addition, 

theoretically obtained outputs were compared with the predicted outputs by applying untested input parameters. According to the results, 

it is seen that the theoretical results and the estimation results are compatible with each other in determining the outputs for the new 

inputs. This also proves the reliability of the developed network in different inputs. This inexpensive technique, which can determinate 

the outlet temperatures quickly, will reduce the total cost operations and save time. Therefore, the variations of heat transfer rate, overall 

heat transfer rate and energy efficiency are determined for specific cases with experimental data not included in [Yildiz & Ersoz, 2015].  
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