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Abstract. To allow for climate impact studies on human
and natural systems, high-resolution climate information is
needed. Over some parts of the world plenty of regional cli-
mate simulations have been carried out, while in other re-
gions hardly any high-resolution climate information is avail-
able. The CORDEX Central Asia domain is one of these
regions, and this article describes the evaluation for two
regional climate models (RCMs), REMO and ALARO-0,
that were run for the first time at a horizontal resolution
of 0.22◦ (25 km) over this region. The output of the ERA-
Interim-driven RCMs is compared with different observa-
tional datasets over the 1980–2017 period. REMO scores
better for temperature, whereas the ALARO-0 model pre-
vails for precipitation. Studying specific subregions pro-
vides deeper insight into the strengths and weaknesses of
both RCMs over the CAS-CORDEX domain. For exam-
ple, ALARO-0 has difficulties in simulating the tempera-
ture over the northern part of the domain, particularly when
snow cover is present, while REMO poorly simulates the
annual cycle of precipitation over the Tibetan Plateau. The
evaluation of minimum and maximum temperature demon-
strates that both models underestimate the daily temper-

ature range. This study aims to evaluate whether REMO
and ALARO-0 provide reliable climate information over the
CAS-CORDEX domain for impact modeling and environ-
mental assessment applications. Depending on the evaluated
season and variable, it is demonstrated that the produced cli-
mate data can be used in several subregions, e.g., tempera-
ture and precipitation over western Central Asia in autumn.
At the same time, a bias adjustment is required for regions
where significant biases have been identified.

1 Introduction

There is a strong need for climate information at the regional
to local scale that is useful and usable for impact studies on
human and natural systems (Giorgi et al., 2009). In order
to accommodate for this, the World Climate Research Pro-
gram (WCRP) Coordinated Regional Climate Downscaling
Experiment (CORDEX) was initiated with the aim of design-
ing and conducting several high-resolution experiments over
prescribed spatial domains across the globe. CORDEX cre-
ates a framework to perform both dynamical and statistical
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downscaling, to evaluate these regional climate downscal-
ing techniques, and to characterize uncertainties of regional
climate change projections by producing ensemble projec-
tions (Giorgi and Gutowski, 2015). Within CORDEX there
are large ensembles of model simulations available at differ-
ent resolutions for the Africa (Nikulin et al., 2012, 2018),
Europe (Jacob et al., 2014; Kotlarski et al., 2014), Mediter-
ranean (Ruti et al., 2016), and North America (Diaconescu
et al., 2016; Whan and Zwiers, 2017; Gibson et al., 2019)
CORDEX regions (Gutowski et al., 2016). These large en-
sembles consist of more than 10 different global–regional
climate model (GCM–RCM) combinations. In order to pro-
vide such ensembles over all CORDEX regions, coordinated
sets of experiments were recently performed or are still on-
going for CORDEX regions such as South America (Sol-
man et al., 2013), Central America (Fuentes-Franco et al.,
2015; Cabos et al., 2019), South Asia (Ghimire et al., 2018),
East Asia (Zou et al., 2016), South-East Asia (Tangang et
al., 2018, 2019; Tuyet et al., 2019), Australasia (Di Virgilio
et al., 2019), the Arctic (Koenigk et al., 2015; Akperov et
al., 2018), Antarctic (Souverijns et al., 2019), and the Mid-
dle East–North Africa (Almazroui et al., 2016; Bucchignani
et al., 2018). In addition, a new ensemble of climate change
simulations covering all major inhabited regions with a spa-
tial resolution of about 25 km has been established within the
WCRP CORDEX COmmon Regional Experiment (CORE)
framework to support the growing demands for climate ser-
vices (Remedio et al., 2019). Furthermore, a number of high-
resolution global simulations at climatic timescales, with res-
olutions of at least 50 km in the atmosphere and 28 km in the
ocean, have been performed within the Coupled Model Inter-
comparison Project 6 (CMIP6) (Haarsma et al., 2016).

While high-resolution ensembles (up to 0.11◦ or 12.5 km
spatial resolution) are available for certain regions, e.g.,
EURO-CORDEX (Jacob et al., 2014), for other regions such
as Australasia (Di Virgilio et al., 2019) and the Antarc-
tic (Souverijns et al., 2019) the first experiments were per-
formed only recently. For the CORDEX Central Asia (CAS-
CORDEX) domain only a single climate run was publicly
available through the Earth System Grid Federation (ESGF)
archive until 2019. This was performed by the Met Office
Hadley Centre (MOHC) with the regional climate model
(RCM) HadRM3P (Jones et al., 2004) at a resolution of
0.44◦, which is insufficient for most impact modeling and
environmental assessment applications. In addition, climate
projections with the RegCM model at 0.44◦ resolution for
the 2071–2100 period and different emission scenarios were
reported in Ozturk et al. (2012, 2016); however, they are not
available through the ESGF archive. Thus, higher-resolution
climate data over the CAS-CORDEX region are needed (Ko-
tova et al., 2018). Recently, Russo et al. (2019, 2020) pre-
sented model evaluation results of the COSMO-CLM 5.0
model run at 0.22◦ or 25 km resolution over the CAS-
CORDEX region. In this study we aim to address the scarcity
of reliable climate information over the CAS-CORDEX do-

main by evaluating two different RCMs based on multiple
scores for temperature (mean, minimum, and maximum) and
precipitation over the longer period of 38 years.

In order to fill the knowledge gap over Central Asia two
RCMs, ALARO-0 and REMO, were run over this region
at 0.22◦ resolution in line with the CORDEX-CORE pro-
tocol (CORDEX Scientific Advisory Team, 2019). Here we
present the model evaluation through the use of so-called
“perfect boundary conditions” taken from reanalysis data and
by comparing the downscaled results to observed data for the
period 1980–2017. Such a study is necessary to gain confi-
dence in the RCM downscaling procedure before its appli-
cation in the context of climate projections for which the
RCM is driven by a GCM (Giorgi and Mearns, 1999). The
methodology for evaluation is partially based on Kotlarski et
al. (2014) and Giot et al. (2016), who compared a large en-
semble of RCMs over the EURO-CORDEX region with the
high-resolution E-OBS observational dataset (Hofstra et al.,
2009). However, in this study a slightly different approach is
necessary due to the absence of an ensemble of RCM runs
over Central Asia. Additionally, in some regions the quality
of gridded observational datasets, constructed through inter-
polation or area averaging of station observations, is poor due
to over-smoothing of extreme values (Hofstra et al., 2010)
and/or because of station observations that are nonrepresen-
tative for their large-scale environments. This is particularly
the case for orographically complex regions such as the Hi-
malayas. The current study compares the model simulations
with different gridded observational datasets and reanalysis
data. When the different datasets show large deviations and
a large spread then their uncertainty is high and no robust
conclusions can be drawn (Collins et al., 2013; Russo et al.,
2019).

This study contains two assets: for the first time an in-
depth evaluation of the RCMs ALARO-0 and REMO is per-
formed at 0.22◦ spatial resolution over the CAS-CORDEX
domain, and we reflect on the impact of the observational
datasets on the model evaluation. Such an analysis is a pre-
requisite in order to be able to use the climate data in a sound
way for later impact studies, e.g., for investigating climate
change impacts on crop yields and biomass production in
forest ecosystems, which will be done in the framework of
the AFTER project (Kotova et al., 2018).

In the following section we describe the applied method-
ology for this study (Sect. 2). This section contains details
about the study area, the model description, datasets used
for the evaluation, and the methodology of the analysis. In
Sect. 3, we describe the annual cycle, seasonal and annual
means, biases, and the variability of mean, minimum, and
maximum surface air temperature and precipitation. Further,
we evaluate and provide a discussion of some remarkable
anomalies in Sect. 4, and in the final section (Sect. 5) we
summarize the conclusions.
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Figure 1. The CAS-CORDEX domain delineated by a red con-
tour and the main overlapping CORDEX domains (black contour
lines): Europe (EUR), Arctic (ARC), South-East Asia (SEA), East
Asia (EAS), and MENA projected upon the topography of Eurasia
(geopotential height in meters of the GTOPO30 global digital ele-
vation model – DEM – 3). All points with orography higher than
3000 m are colored white.

2 Methods

2.1 CORDEX Central Asia domain and subregions

The CAS-CORDEX domain as shown in Fig. 1 contains
eastern Europe, a large part of the Middle East (includ-
ing Saudi Arabia, Jordan, Syria, Iraq, and Iran), and Cen-
tral Asia (including Kazakhstan, Uzbekistan, Turkmenistan,
Afghanistan, Pakistan, Tajikistan, Kyrgyzstan, and Mongo-
lia). The majority of Russia and China (excluding the most
eastern provinces) and the northern part of India are included
as well. This domain is an exceptional CORDEX domain
in the sense that it barely covers any open ocean. It con-
tains several important mountain ranges, such as the Ural,
Caucasus, Altay, and Himalaya, as well as deserts, e.g., the
Arabian, Karakum, Thar, Taklamakan, and Gobi. Mountain-
ous environments are of special interest for regional climate
modeling since global climate models poorly resolve moun-
tain ranges with a spatial resolution less than 0.50◦, and
hence RCMs may have an added value here (Torma et al.,
2015). In addition, the CAS-CORDEX domain contains a
wide range of climatic and bioclimatic zones, such as per-
mafrost in the north and the hot regions and monsoon-driven
climates with abundant precipitation linked to the Intertropi-
cal Convergence Zone (ITCZ) passing in the south.

In order to obtain simulations that allow for coordi-
nated intercomparisons, the CORDEX initiative prescribes
the minimum inner domain of each CORDEX region that

Figure 2. IPCC6 subregions projected on the CAS-CORDEX re-
gion.

the RCM has to cover. While REMO uses the exact rotated
lat–long CAS-CORDEX grid (Jacob et al., 2007) described
by the CORDEX community, ALARO-0 has adopted a con-
formal Lambert projection (Giot et al., 2016), which implies
that the non-rotated boundary box should be applied in order
to define the domain. The grids were set up in such a way
that the CAS-CORDEX domain is completely covered by
the model domain excluding the relaxation zone. The CAS-
CORDEX 0.22◦ ALARO-0 inner domain encompasses 333
by 223 grid boxes, while REMO circumscribes 309 and 201
grid boxes in the east–west direction and north–south direc-
tion, respectively. The outer domain for both RCMs consists
of the inner domain plus a relaxation zone of eight grid points
at every boundary.

The CAS-CORDEX domain overlaps with eight other
CORDEX domains, including the ones covering Europe,
the Arctic, East Asia, South-East Asia, South Asia, Africa–
MENA, and the Mediterranean. Both RCMs used in this
study, ALARO-0 and REMO, were already run and evalu-
ated over the EURO-CORDEX region (Kotlarski et al., 2014;
Giot et al., 2016). Additionally, REMO has been validated
over five other overlapping CORDEX regions (Remedio et
al., 2019).

In the present paper, the CAS-CORDEX domain was fur-
ther subdivided into five subregions according to the IPCC
reference regions as defined by Iturbide et al. (2020): East
Europe (EEU), West Siberia (WSB), East Siberia (ESB),
West Central Asia (WCA), and the Tibetan Plateau (TIB).
These subregions, visualized in Fig. 2, were applied to eval-
uate the spatial differences in the study area and to investigate
whether there were differences in the simulation of subcon-
tinental processes.

https://doi.org/10.5194/gmd-14-1267-2021 Geosci. Model Dev., 14, 1267–1293, 2021
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2.2 Model description and experimental design

REMO and ALARO-0 are hydrostatic atmospheric circula-
tion models aimed to run over limited areas. The ALARO-0
model is a configuration of the ALADIN model (ALADIN
International Team, 1997; Termonia et al., 2018a), which
is developed, maintained, and used operationally by the 16
countries of the ALADIN consortium. The dynamical core
of the ALADIN model is based on a spectral spatial dis-
cretization and a semi-implicit semi-Lagrangian time step-
ping algorithm. The ALARO-0 configuration is based on the
physics parameterization scheme 3MT (Modular Multiscale
Microphysics and Transport; Gerard et al., 2009), which
handles convection, turbulence, and microphysics. ALARO-
0 has been used and validated for regional climate studies
(Hamdi et al., 2012; De Troch et al., 2013; Giot et al., 2016;
Termonia et al., 2018b).

REMO is based on the Europa Model, the former numeri-
cal weather prediction (NWP) model of the German Weather
Service (Jacob, 2001). The model development was initiated
by the Max Planck Institute for Meteorology and is further
maintained and extended by the Climate Service Center Ger-
many (HZG-GERICS). The physical parameterization orig-
inates from the global circulation model ECHAM4 (Roeck-
ner et al., 1996), but there have been many further develop-
ments (Hagemann, 2002; Semmler et al., 2004; Pfeifer, 2006;
Pietikäinen et al., 2012; Wilhelm et al., 2014). REMO is
used in its most recent hydrostatic version, REMO2015, and
the dynamical core uses a leapfrog time stepping with semi-
implicit correction and an Asselin filter. For both RCMs, the
vertical levels are based on hybrid normalized pressure co-
ordinates that follow the orography at the lowest levels. For
the ALARO-0 experiment 46 levels were used, whereas the
REMO run employs 27 levels. More details on the general
setup of ALARO-0 can be found in Giot et al. (2016), and
for REMO we refer to Jacob (2001) and Jacob et al. (2012).
An overview of the model specifications is given in Table S1
in the Supplement.

In order to evaluate both RCMs, a run driven by a large-
scale forcing taken from the ERA-Interim global reanaly-
sis (Dee et al., 2011) was undertaken for the period 1980–
2017. A one-way nesting strategy was applied to dynam-
ically downscale the ERA-Interim data, having a horizon-
tal resolution of about 0.70◦ (approximately 79 km), to a
higher resolution over the CAS-CORDEX domain (Denis
et al., 2002). The ERA-Interim forcing data have been pre-
scribed at the lateral boundaries using the Davies (1976) re-
laxation scheme, and the downscaling has been performed
to a horizontal resolution of 0.22◦ (approximately 25 km).
Both model experiments are continuous runs initialized on
1 January 1979 and then forced every 6 h at the boundaries up
to 31 December 2017. Furthermore, constant climatological
fields for some parameters were used and updated monthly
following the methodology of Giot et al. (2016). These in-
clude sea surface temperatures (SSTs), surface roughness

length, surface albedo, surface emissivity, and vegetation pa-
rameters. A spin-up period was needed to allow the models
and their surface fields to adjust to the forcing and internal
model physics (Giot et al., 2016). While for ALARO-0 the
year 1979 was designated as the spin-up year, REMO was
spun up for 10 years to allow the model to reach an equilib-
rium state for the soil temperature and soil moisture. These
soil fields were then used as initial soil conditions when
restarting the model from 1979. The data produced by both
models have been uploaded to the ESGF data nodes (website:
http://esgf.llnl.gov/, last access: 7 July 2020).

2.3 Reference datasets

In order to validate the model results, monthly, seasonally,
and annually averaged values for temperature and precipita-
tion were compared with different reference datasets. Grid-
ded datasets are based on interpolated station data and are
used instead of station observations to overcome the scale
difference between the model and observation field (Tustison
et al., 2001). A multitude of datasets were considered to as-
sess the reliability of the gridded observational temperature
and precipitation (Gómez-Navarro et al., 2012). The refer-
ence datasets are briefly presented in Table 1, and in the next
sections we give a more detailed overview of the different
datasets used in this study.

2.3.1 Climatic Research Unit TS dataset

The gridded Climatic Research Unit (CRU) TS dataset (ver-
sion 4.02) contains 10 climate-related variables for the pe-
riod 1901–2018 at a grid resolution of 0.50◦ covering the
global land mass (excluding Antarctica) (Harris et al., 2020).
Monthly values of minimum, maximum, and mean near-
surface air temperature and precipitation were used in the
current study. This dataset is widely used all over the world
in a wide range of disciplines, although some issues have
been reported (Harris et al., 2020), with the main concerns in-
cluding sparse coverage of measurement stations over certain
regions, e.g., northern Russia, and the dissimilarities in mea-
surement methods that are used by different countries (Harris
et al., 2020). In the present paper, this dataset is used as the
reference, while the spread of the data in all of the datasets is
used to assess the reliability over the different areas.

2.3.2 Matsuura and Willmott gridded dataset

The Matsuura and Willmott (MW) (version 5.01) gridded
dataset of the University of Delaware contains monthly val-
ues at a 0.5◦ resolution based on temperature and precipita-
tion station observations. The main differences with the CRU
dataset are the use of different measurement station networks
and spatial interpolation methods (Willmott and Matsuura,
1995; Harris et al., 2020). Additionally, this dataset only con-
tains monthly values of mean near-surface air temperature
and precipitation, which are used in this study. It is known
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Table 1. Overview of the reference datasets used.

Dataset Short
name

Type Resolution Variables used Frequency Temporal
coverage

Domain

Gridded Climatic
Research Unit TS
dataset (version 4.02)

CRU gridded
station
data

0.50◦ 2 m mean air temperature,
2 m maximum air temperature,
2 m minimum air temperature,
precipitation

monthly 1901–2018 global land mass
(excluding
Antarctica)

Matsuura and
Willmot, University
of Delaware
(version 5.01)

MW gridded
station
data

0.50◦ 2 m mean air temperature,
precipitation

monthly 1900–2017 global land mass

Global Precipitation
Climatology Centre
gridded dataset
(version 2018)

GPCC gridded
station
data

0.50◦ or
0.25◦

precipitation monthly 1891–2016 global land mass
(excluding
Antarctica)

ERA-Interim ERA-
Interim

reanalysis
data

0.70◦ 2 m mean air temperature,
precipitation

monthly 1979–2017 global

that the MW dataset generally underestimates the precipita-
tion in the central part of the CAS-CORDEX domain, espe-
cially during spring (Hu et al., 2018). The MW dataset con-
tains up to 0.4 ◦C warmer temperatures globally for the latest
decades compared to CRU (Harris et al., 2020).

2.3.3 Global Precipitation Climatology Centre dataset

The Global Precipitation Climatology Centre (GPCC) (ver-
sion 2018) of the German Weather Service is a monthly land
surface precipitation dataset at 0.25◦ resolution based on rain
gauge measurements. The GPCC full-data monthly product
(version 2018) contains globally regular gridded monthly
precipitation totals. This updated version uses “climatologi-
cal infilling” to avoid interpolation artifacts for regions where
an entire 5◦ grid is not covered by any station data (Schneider
et al., 2018). Hu et al. (2018) concluded for the central part
of our domain that GPCC is more in line with the observed
station data in Central Asia compared to CRU and MW. For
this region, they also found that precipitation is underesti-
mated in mountainous areas and precipitation is slightly un-
derestimated overall by GPCC, especially during spring. In
addition, the GPCC has no similar dataset for other variables,
and thus only precipitation can be validated with this dataset.

2.3.4 ERA-Interim

Reanalysis products like ERA-Interim are more continuous
in space and time than station data, but they also contain bi-
ases. The ERA-Interim reanalysis of the European Centre
for Medium-Range Weather Forecasts (ECMWF) is avail-
able from 1979 onwards. The spatial resolution of the dataset
is approximately 0.70◦ (T255 spectral) with 60 levels in the
vertical direction from the surface up to 0.1 hPa (Dee et al.,
2011). The ERA-interim data have been further interpolated

to be used as forcing for both RCMs at a spatial resolution of
0.25◦. Moreover, the ERA-Interim data are used to study the
spread between observational gridded datasets and reanaly-
sis data. To evaluate precipitation, total monthly precipita-
tion was obtained from the Monthly Means of Daily Forecast
Accumulations dataset. The Monthly Means of Daily Means
data at the 2 m temperature level are used for the mean tem-
perature, while the minimum and maximum temperatures are
retrieved by extracting the minimum and the maximum, re-
spectively, from the 3-hourly ERA-Interim forecasts. Several
studies have shown that ERA-Interim tends to have a warm
bias in the northern part of the CAS-CORDEX region, es-
pecially during winter (Ozturk et al., 2012, 2016). Ozturk et
al. (2012) relate this to the insufficient ability of ERA-Interim
to produce snow cover in winter. Additionally, ERA-Interim
globally overestimates precipitation, particularly over moun-
tainous regions (Sun et al., 2018).

2.4 Analysis methods

The grids of the observational and reanalysis datasets gener-
ally differ from the model grid. Therefore, an interpolation to
one common grid is needed in order to compare them (Kot-
larski et al., 2014). The output of the RCMs was upscaled
and bilinearly interpolated to the 0.50◦ resolution grid of the
observational gridded datasets.

For ALARO-0 and REMO, hourly values for temperature
at 2 m and convective and stratiform rain and snow are avail-
able. The precipitation variables were added up in order to
obtain the hourly total precipitation, which in turn was used
to calculate monthly totals and seasonal and annual means.
Seasons are defined as meteorological seasons; winter in-
cludes December, January, and February (DJF). Spring in-
cludes March, April, and May (MAM). Summer includes

https://doi.org/10.5194/gmd-14-1267-2021 Geosci. Model Dev., 14, 1267–1293, 2021
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June, July, and August (JJA), and autumn includes Septem-
ber, October, and November (SON).

The diurnal temperature range was obtained by subtracting
the minimum temperature from the maximum temperature,
and a height correction was performed for mean, minimum,
and maximum temperature assuming a uniform temperature
lapse rate of 0.0064 K m−1.

The model evaluation was done by calculating different
evaluation metrics over the CAS-CORDEX domain and the
defined subregions for the 1980–2017 period. We computed
the monthly, seasonal, and annual climatological means of
the evaluated variables to obtain graphs of the annual cycle
and maps that visualize the spatial patterns of the bias be-
tween the RCMs and reference datasets. The relative bias for
precipitation is computed by subtracting the CRU value from
the RCM and dividing it by the CRU value.

The climatological means, biases, and mean absolute er-
rors (MAEs) were spatially averaged to obtain one mean
value over the complete domain and each of the subregions.
Moreover, Taylor diagrams were produced in order to study
the model performance for the different seasons and for an-
nual means. These diagrams supplement the bias analysis by
visualizing in a concise way information about the spatial
correlation, the centered root mean square error (RMSE), and
the ratio of spatial variability (RSV) between the model and
the observational dataset (Taylor, 2001). These metrics are
computed over all grid points of the CAS-CORDEX domain.
The RSV is defined as the ratio of the model standard devia-
tion and the standard deviation of the reference dataset (CRU
in this case) averaged over the domain. For the formulas used
we refer to Appendix A of Kotlarski et al. (2014).

Limitations of the observational datasets should be kept in
mind when interpreting the evaluation results (Kotlarski et
al., 2014). These limitations are investigated by comparing
the different observational datasets, and their implications for
the evaluation will be described in Sect. 4. The spread be-
tween the different reference datasets (observational datasets
and the ERA-Interim reanalysis dataset) is calculated for
each grid point by computing the difference between the
maximum and the minimum value of the different datasets
for every 3-month period (season) averaged over the 1980–
2017 period.

3 Results

In this section, the results of the model evaluation are pre-
sented with a focus on evaluation metrics of seasonal means
of mean, minimum, and maximum near-surface air tempera-
ture (henceforth denoted as temperature) and seasonal mean
precipitation (henceforth precipitation). This is done for the
complete CAS-CORDEX domain and for the five subre-
gions.

3.1 Mean temperature

Figure 3 shows the mean seasonal and annual temperature
observations of CRU, the model biases with respect to CRU,
and the spread between the reference datasets (ERA-Interim,
MW, and CRU) for the 1980–2017 period. Table 2 shows
the spatially averaged mean seasonal and annual CRU tem-
perature for the 1980–2017 period over the CAS-CORDEX
domain and subregions, the biases and MAE of the RCMs
(REMO and ALARO-0), and the other reference datasets
(ERA-Interim and MW) against CRU.

Both RCMs produce similar mean annual temperature pat-
terns in the western part of the domain since they have sim-
ilar biases with respect to CRU (Fig. 3). Contrasting error
patterns can be seen in the temperature bias of ALARO-0 be-
tween north and south and for REMO between east and west,
with a peak in positively biased temperatures over north-
western Mongolia. Annual biases generally vary between −3
and 3 ◦C for both RCMs, with the exception of orographi-
cally complex regions and some areas in northern and east-
ern Siberia for ALARO-0. The biases and MAE of the annual
mean temperature are very comparable between ALARO-
0 and REMO (Table 2), with small biases and MAEs that
are only slightly larger than the spread of the observational
datasets.

On the seasonal timescale, biases over larger areas are
mainly pronounced in winter (DJF) and spring (MAM). In
particular, both models locally show strong biases in the
northeastern part of the domain for winter, with values rang-
ing up to 15 ◦C. Additionally, ALARO-0 shows strong neg-
ative biases up to −15 ◦C during spring in this area. These
large biases are reflected by the values in Table 2 for the
northern subregions EEU, WSB, and ESB for ALARO-0 and
the ESB subregion for REMO. Additionally, REMO has a
cold bias in the western part of Russia during winter, while
ALARO-0 shows a warm bias. During spring, cold biases
are found for both models in the northern part of the do-
main, but the biases of ALARO-0 are more pronounced than
those of REMO (Fig. 3 and Table 2). For the summer (JJA)
season, warm biases occur over the southern part of the do-
main for both RCMs, with exception of some regions such
as the Himalayas, southeastern China, and the northern bor-
der of Iran, which exhibit cold biases. On the contrary, cold
biases in summer are overall more dominant in the north.
These biases in summer are more pronounced for ALARO-
0. The small mean bias during summer (JJA) for ALARO-0
over the complete domain (Table 2) is the result of averaging
the warm biases in the south and the cold biases in the north
(Fig. 3). Both models have the smallest biases and MAE over
the ESB region in this season (Table 2). Both models show
modest bias patterns in autumn (SON), with notably mod-
est warm biases over the eastern part of the domain (Fig. 3).
In agreement with Fig. 3 the spatially averaged biases and
MAE in Table 2 are small for both RCMs during autumn,
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Figure 3. Left column: mean air temperature (◦C) at 2 m height over the CAS-CORDEX domain based on the observational CRU dataset for
the 1980–2017 period on an annual level and for winter (DJF), spring (MAM), summer (JJA), and autumn (SON). Middle columns: difference
in mean temperature between models and CRU. Right column: the range in mean temperature (◦C) between the different reference datasets
(CRU, MW, and ERA-Interim).

especially for eastern Europe (EEU), the western and central
Russian region, and Kazakhstan (WSB).

Biases in the high-altitude regions are largely persistent
throughout the seasons. More specifically, both RCMs have
large negative biases over the Pamir Mountains (Tajikistan)
and the Himalayas, while they also feature negative biases
over the Tibetan Plateau, although this is to a lesser extent
for ALARO-0 for which this is only clearly visible in the
winter season.

Figure 4 shows the normalized Taylor diagram illustrating
the spatial performance of mean temperature for seasonal and
annual means for both RCMs (ALARO-0 and REMO), the
ERA-Interim reanalysis, and MW observational data with re-
spect to CRU for the five subregions and the complete CAS-
CORDEX domain.

Both models have generally good performance for annual
and seasonal temperature over the CAS-CORDEX domain
since the spatial correlation between the model output and
the CRU data is high (> 90 %), while the centered RMSE
is small (< 0.5) and the normalized RSV is mostly close
to 1. Moreover, the spatial correlation is high (> 90 %) for
ALARO-0 over all subregions at the annual level. Annual
mean temperatures of REMO have slightly lower spatial cor-

relations with CRU when compared to those of ALARO-0,
but they are still high (> 90 %), except for the ESB subre-
gion.

On the other hand, the Taylor diagrams for the subregions
illustrate how scores calculated over the complete CAS-
CORDEX domain can hide underlying regional patterns.
The spatial pattern correlation is lowest during winter for
both RCMs, except for the ESB subregion where ALARO-
0 shows a lower spatial correlation during summer. When
considering the spatial correlation and the RMSE of the dif-
ferent subregions, both RCMs are closest to the CRU data
over the WCA subregion. Based on the centered RMSE, the
RCMs perform generally best during autumn, except for the
REMO simulations in the subregions WSB and TIB. Dur-
ing the other seasons both RCMs simulate the temperature
clearly worse in the northern part of the CAS-CORDEX do-
main (EEU, WSB, ESB). Both RCMs overestimate the nor-
malized RSV, but ALARO-0 underestimates it in winter over
the EEU subregion and in autumn over the WCA subregion.
In general, both RCMs simulate the normalized standard de-
viation of the temperature well (RSV deviates less than 0.25
from 1) during autumn and winter. Additionally, REMO sim-
ulates the normalized standard deviation well during summer

Geosci. Model Dev., 14, 1267–1293, 2021 https://doi.org/10.5194/gmd-14-1267-2021
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Figure 4. Normalized Taylor diagram showing the spatial performance of mean temperature for seasonal and annual means for both RCMs
(ALARO-0 and REMO), the ERA-Interim reanalysis, and MW observational data with respect to CRU for the five subregions and the
complete CAS-CORDEX domain.

for the northern subregions. During spring the cold bias in
the north is limited to −5 ◦C for REMO but not for ALARO-
0, which is reflected in a higher RSV for the northern re-
gions. High RSVs are also observed for ALARO-0 in sum-
mer over the complete domain (Fig. 4), and this is due to
the underestimation of the cold temperatures in cold regions,
while warm temperatures are overestimated in regions that
are characterized by warmer temperatures (Fig. 3). This is
reflected in a normalized standard deviation that is higher
than the one of REMO (Fig. 4). Comparing the metrics of the
RCMs (Figs. 3, 4 and Table 2) shows that REMO is better in
simulating the seasonal variability in temperature compared
to ALARO-0, except for the autumn in all subregions and
winter in the WSB and TIB subregions. On the other hand,
ALARO-0 often better captures spatial temperature patterns
since the spatial pattern correlation is slightly higher than for
REMO, except during winter and summer over the ESB and
WCA subregions and spring and summer over the TIB sub-
region.

Figure 5 shows the annual cycles of the mean, minimum,
and maximum temperature for both RCMs (ALARO-0 and

REMO) compared to the ERA-Interim reanalysis, MW, and
CRU observational data over five subregions. From this fig-
ure, it can be seen that in the northern subregions EEU and
WSB there is on average a strong warm bias in Decem-
ber and January for ALARO-0, reaching a maximum of 4.1
and 5.8 ◦C, respectively, during December. REMO simulates
winter temperatures (months 12, 1, and 2) within the uncer-
tainty range of the observational datasets for WSB and un-
derestimates the temperatures on average by 1.4 ◦C in Jan-
uary for EU. REMO simulates warm biases around 2 ◦C in
December and January over ESB. On average there is no
strong warm bias observed for ALARO-0 during the winter
months in ESB (Table 2) due to the compensation effect of
cold biases in both time (Fig. 5) and space (Fig. 3). Further-
more, there is a remarkable cold bias observed for ALARO-
0 during spring (months 3, 4, and 5) and June in the north-
ern subregions EEU, WSB, and ESB, reaching up to −7.3 ◦C
over ESB during April. REMO performs well during spring
months over the northern subregions. From Fig. 5, it can be
seen that the RCMs simulate the spatially averaged temper-
atures well during the autumn months (months 9, 10, and
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Figure 5. Annual cycles of the mean, minimum, and maximum temperature for both RCMs (ALARO-0 and REMO) compared to the
ERA-Interim reanalysis, MW, and CRU observational data over five subregions.

11), since they are within the observational spread or deviate
slightly from the observational spread (< 1 ◦C). The excep-
tions are the spatially averaged temperatures for ALARO-0
over WSB and WCA in November when the spatially aver-
aged temperature deviates 2 ◦C from CRU.

Compared to the northern subregions, ALARO-0 simu-
lates the annual cycle better for the southern subregions
WCA and TIB but slightly overestimates the amplitude of the
annual temperature cycle. REMO simulates the mean tem-
perature well over the WCA subregion, with only a slight
overestimation of the temperatures in July and August. In the
mountainous area of TIB REMO underestimates the temper-
atures, except for January and December. The better results
in spring, summer, and autumn for ALARO-0 over the sub-
region TIB are due to spatial averaging of cold biases in the
northern Himalayas and warm biases over the Taklamakan
Desert; the opposite is true for REMO during winter (Fig. 3).
This effect is reflected by the large MAE over this subregion
during the mentioned seasons (Table 2).

3.2 Diurnal temperature range

Here, we first discuss the model performance of both RCMs
for the minimum and maximum temperature and then the di-
urnal range taken as the difference between the two.

Similar to the mean temperature in Fig. 3, the modeled
daily minimum temperature averaged over the different sea-
sons and years during 1980–2017 is compared with the ob-
servational CRU data in Fig. 6. Annual biases of the min-
imum temperature over Russia in general vary between −3
and 3 ◦C for REMO and between −1 and 5 ◦C for ALARO-0,
with a few exceptions in the orographically complex regions,
e.g., in the Stanovoy Range and Central Siberian Plateau
where higher biases are found.

Compared to ALARO-0, REMO shows larger warm bi-
ases over Mongolia during all seasons, except for summer.
The warm biases for REMO in the eastern part of the domain
are most pronounced during winter, reaching up to 15 ◦C.
ALARO-0 also shows equally large biases, but they cover the
northern part of the domain. Moreover, strong cold biases are
present in the north during spring for both models, but they
are more pronounced for the ALARO-0 model, with biases
up to −10 ◦C in the northeastern part of the domain. During
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Figure 6. Left column: minimum air temperature (◦C) at 2 m height over the CAS-CORDEX domain based on the observational CRU
dataset for the 1980–2017 period on an annual level and for winter (DJF), spring (MAM), summer (JJA), and autumn (SON). Middle
columns: difference in minimum temperature between the models and CRU. Right column: the range in minimum temperature (◦C) between
the different reference datasets (CRU and ERA-Interim).

the summer season the biases for REMO are limited between
−5 and 7 ◦C except for the Himalayan mountain range, while
the ALARO-0 model output has, except for the Himalayas,
a cold bias up to −7 ◦C in the northwestern part of Russia
and a warm bias up to 10 ◦C in the southern and eastern part
of the domain (Fig. 6). In autumn, both models have a warm
bias over almost the entire domain, except for the cold bi-
ases in mountainous areas, the Arabian Peninsula, northern
Iran, western Russia, and for REMO also in the central north-
ern part of the domain. The increased minimum temperatures
obtained with the RCMs indicate that they do not capture the
coldest diurnal temperatures.

Table 3 shows the spatially averaged biases and MAE for
minimum temperature during the 1980–2017 period of both
RCMs and ERA-Interim compared to the minimum tem-
peratures of CRU for the different seasons over the CAS-
CORDEX domain and subregions. These scores confirm that
the RCMs ALARO-0 and REMO are not able to reproduce
the minimum temperature over the northern and eastern part
of the domain during winter. During winter and spring, both
models simulate minimum temperature best over the sub-
region WCA, while during summer and autumn they both
perform best over the EEU region. REMO is able to simu-

late the minimum temperature accurately over the EEU and
WSB subregions during summer since the errors are small
(MAE < 1 ◦C). In general ALARO-0 has difficulties in sim-
ulating the minimum temperature correctly in any season and
is only able to simulate the minimum temperature well over
the EEU region during autumn.

The normalized Taylor diagrams in Fig. 7 confirm that, in
general, the RCMs struggle to simulate the spatial pattern of
minimum temperature well over the northeastern part of the
domain (ESB), while on an annual level ALARO-0 is able
to simulate the spatial pattern well. The RCMs simulate the
spatial pattern of minimum temperature well over the WCA
region. Additionally, ALARO-0 produces minimum temper-
atures with a high spatial correlation with CRU over the EEU
subregion compared to REMO. At an annual and seasonal
scale, except for summer in WSB, ESB, and TIB, ALARO-0
has a slightly better spatial pattern correlation with the min-
imum temperatures of the CRU dataset than REMO. On the
other hand, REMO has a better centered RMSE and spatial
variability during summer, except for the WCA region.

Biases in Fig. 8 and Table 4 show that for both RCMs a
pronounced cold bias is present for maximum temperatures
over the northern part of the domain at the annual scale and

https://doi.org/10.5194/gmd-14-1267-2021 Geosci. Model Dev., 14, 1267–1293, 2021



1278 S. Top et al.: Evaluation of regional climate models ALARO-0 and REMO2015 at 0.22◦ resolution

Table
3.Spatialaverage

over
the

C
A

S-C
O

R
D

E
X

dom
ain

and
subdom

ains
of

clim
atologicalm

ean
C

R
U

m
inim

um
tem

perature
(
◦C

)
for

the
1980–2017

period,as
w

ellas
biases

(
◦C

)
and

M
A

E
(
◦C

)againstC
R

U
forR

E
M

O
,A

L
A

R
O

-0,and
E

R
A

-Interim
.

E
E

U
W

SB
E

SB

D
JF

M
A

M
JJA

SO
N

A
nnual

D
JF

M
A

M
JJA

SO
N

A
nnual

D
JF

M
A

M
JJA

SO
N

A
nnual

C
R

U
−

13.56
−

0.03
13.3

0.99
0.24

−
20

−
3.26

12.24
−

2.48
−

3.3
−

30.12
−

9.47
8.78

−
9.27

−
9.93

R
E

M
O

–
C

R
U

−
2.21

−
1.29

0.05
0.35

−
0.77

−
0.67

−
1.16

−
0.32

0.47
−

0.42
3.64

0.87
1.77

2.48
2.18

M
A

E
R

E
M

O
C

R
U

2.73
2.17

0.56
0.90

1.42
2.38

2.24
0.82

1.37
1.49

4.13
2.40

1.86
2.66

2.49

A
L

A
R

O
–

C
R

U
5.10

−
3.21

−
0.79

0.45
0.37

7.15
−

4.02
−

1.51
1.26

0.69
4.74

−
3.92

2.18
2.79

1.43
M

A
E

A
L

A
R

O
C

R
U

5.11
3.26

2.45
0.67

0.88
7.24

4.07
2.78

1.36
0.97

5.35
4.10

3.00
2.86

1.73

E
R

A
-Interim

–
C

R
U

0.24
−

2.21
−

1.38
−

0.23
−

0.90
0.81

−
2.53

−
1.19

0.86
−

0.52
2.32

−
0.83

1.85
2.18

1.38
M

A
E

E
R

A
-Interim

C
R

U
1.35

2.24
1.50

0.56
1.00

1.60
2.60

1.42
0.96

0.88
2.73

1.38
2.02

2.25
1.62

W
C

A
T

IB
C

A
S-C

O
R

D
E

X

D
JF

M
A

M
JJA

SO
N

A
nnual

D
JF

M
A

M
JJA

SO
N

A
nnual

D
JF

M
A

M
JJA

SO
N

A
nnual

C
R

U
−

3.02
7.93

18.54
7.84

7.87
−

16.76
−

3.35
7.76

−
4.03

−
4.04

−
14.43

−
0.22

13.18
0.40

−
0.20

R
E

M
O

–
C

R
U

0.68
0.00

1.07
1.57

0.83
1.00

−
1.70

−
0.61

0.55
−

0.19
0.77

−
0.25

0.60
1.09

0.55
M

A
E

R
E

M
O

C
R

U
2.4

2.10
2.56

2.60
2.29

4.31
3.44

2.29
2.90

2.98
3.02

2.22
1.52

1.96
1.97

A
L

A
R

O
–

C
R

U
−

1.00
0.34

3.05
1.27

0.92
−

0.26
0.09

2.44
1.32

0.91
2.85

−
1.71

1.10
1.42

0.90
M

A
E

A
L

A
R

O
C

R
U

2.43
2.60

3.82
2.30

2.31
2.80

3.06
3.86

2.55
2.71

4.07
3.21

2.93
1.88

1.59

E
R

A
-Interim

–
C

R
U

−
0.84

−
0.98

0.22
0.80

−
0.19

−
0.13

−
1.44

−
0.46

0.47
−

0.39
0.39

−
1.46

0.00
0.79

−
0.08

M
A

E
E

R
A

-Interim
C

R
U

1.95
1.70

1.68
1.89

1.46
2.11

2.30
2.18

2.14
1.90

1.90
1.96

1.63
1.46

1.33

Geosci. Model Dev., 14, 1267–1293, 2021 https://doi.org/10.5194/gmd-14-1267-2021



S. Top et al.: Evaluation of regional climate models ALARO-0 and REMO2015 at 0.22◦ resolution 1279

Figure 7. Normalized Taylor diagram showing the model spatial performance of the minimum temperature for seasonal and annual means
for both RCMs (ALARO-0 and REMO) and ERA-Interim reanalysis with respect to CRU for the five subregions and the complete CAS-
CORDEX domain.

for all seasons, except for ALARO-0 in winter. During win-
ter, ALARO-0 produces warm biases up to 5 ◦C in the north
and cold biases in the southwest and northeast up to −15 ◦C,
while REMO has cold biases up to −5 ◦C in the northwest
and up to −15 ◦C on the Tibetan Plateau. ALARO-0 has the
best performance over the EEU region during winter, while
REMO has the best performance over the WCA subregion
(Table 4 and Fig. 8). Both RCMs have a cold bias over a large
area in the north during spring, which is very pronounced
for the ALARO-0 model in the northeast (< −15 ◦C), while
the biases remain limited to −7 ◦C for REMO (Fig. 8). The
numbers in Table 4 confirm that during spring, the maximum
temperature over the northern part of the domain deviates
strongly (MAE > 2.50 ◦C) from CRU for both RCMs. Dur-
ing summer, these cold biases are reduced, with biases up to
−5 ◦C for REMO and −10 ◦C for ALARO-0. Both models
have warm and cold biases in the southern part of the do-
main during spring and summer. In autumn, the cold bias in
the north is limited to −3 ◦C, but some stronger biases up to
−7 ◦C appear in the northeast for the ALARO-0 model. The
warm biases during autumn are limited to 5 ◦C, and, exclud-

ing the Himalayas, the smallest range in biases is obtained
for both RCMs during this season. Based on the MAE in Ta-
ble 4, both RCMs show the best performance for maximum
temperature during autumn, except for REMO over the TIB
subregion and ALARO-0 over the EEU region.

Figure 9 shows that for all seasons, both RCMs have a high
spatial correlation (> 90%) and a normalized RSV close to 1
for maximum temperature over the WCA subregion. This is
also the case for the TIB subregion, excluding the winter sea-
son. ALARO-0 has a high spatial correlation over the EEU
subregion during all seasons and over the WSB subregion ex-
cept for winter. Both RCMs struggle the most with reproduc-
ing the spatial patterns over the ESB subregion. ALARO-0
has higher spatial pattern correlations with CRU compared
to REMO, except for autumn over the TIB subregion and
winter over the ESB and WCA subregions.

REMO more often has a normalized RSV value closer to
1 than ALARO-0 for the different subregions and seasons.
Additionally, it is seen that both RCMs overestimate the nor-
malized RSV of the maximum temperature for each subre-
gion and season, except for winter in EEU and summer and
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Figure 8. Left column: maximum air temperature (◦C) at 2 m height over the CAS-CORDEX domain based on the observational CRU dataset
for the 1980–2017 period on an annual level and for winter (DJF), spring (MAM), summer (JJA), and autumn (SON). Middle columns:
difference in maximum temperature between the models and CRU. Right column: the range in maximum temperature (◦C) between the
different reference datasets (CRU and ERA-Interim).

autumn in WSB (Fig. 9). Based on Figs. 8 and 9, both RCMs
simulate the maximum temperature best during autumn.

Finally, comparing the minimum to the maximum temper-
ature, it can be seen that minimum temperature (Table 3 and
Fig. 5) shows warmer biases than the mean temperature (Ta-
ble 2 and Fig. 3) over the different seasons, except for winter
in EEU and WSB and spring in WSB and TIB. On the other
hand, the maximum temperature (Table 4 and Fig. 7) shows
colder biases compared with the mean temperature, except
for winter and spring in WCA and summer in TIB. The in-
creased minimum temperatures obtained with the RCMs in-
dicate that they do not capture the coldest diurnal tempera-
tures, nor do they capture the warmest diurnal temperatures
because of the decreased maximum temperatures. From this
it can be concluded that the daily temperature range is gen-
erally underestimated by both RCMs.

Moreover, the annual cycles in Fig. 5 show that both
minimum and maximum temperatures are overestimated by
ALARO-0 during winter in the northern part of the domain,
while they are underestimated during spring. In summer the
model is able to evolve to a more accurate balanced state and
to simulate spatially averaged minimum temperatures as they
are observed, resulting in better model results during autumn.

REMO overestimates the minimum temperatures during the
complete annual cycle for ESB, while the maximum temper-
atures in ESB are only overestimated during winter and un-
derestimated during spring and summer. Both RCMs under-
estimate the maximum temperatures of CRU for the entire
annual cycle over the Tibetan Plateau subregion. ALARO-
0 overestimates minimum temperatures during the summer
months, while REMO slightly overestimates winter and un-
derestimates summer minimum temperatures.

3.3 Precipitation

Figure 10 and Table 5 respectively present the spatial pat-
tern of precipitation and the spatially averaged precipitation
over the 1980–2017 period for CRU over the full domain and
subregions; the relative biases and MAE of the RCMs with
respect to CRU during the different seasons and on an annual
level are presented as well.

At the annual level, REMO mainly shows a wet bias in
the northern and eastern part of the domain and a dry bias
in the southwestern part of the domain, while ALARO-0 has
a wet bias in the northwest and southeast (Fig. 10). Further-
more, a strong wet bias is persistent over the annual cycle for
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Figure 9. Normalized Taylor diagram showing the model spatial performance in terms of the maximum temperature for seasonal and annual
means for both RCMs (ALARO-0 and REMO) and ERA-Interim reanalysis with respect to CRU for the five subregions and the complete
CAS-CORDEX domain.

both RCMs over the East Asian monsoon region, with a less
notable wet bias during summer.

For both RCMs the overall bias for precipitation is wet,
except for spring and summer in the WCA subregion and
for ALARO-0 during summer in WSB, winter in WCA, and
spring and summer in the ESB subregion. Next to the wet
biases in the monsoon region, both models show dry biases
over the Taklamakan Desert, except for winter.

During winter both RCMs have a strong wet bias in the
eastern part of the domain (Fig. 10 and Table 5). This is partly
due to the low observed precipitation quantities in several
regions, e.g., less than 5 mm per month in the Gobi Desert
region. Some of the largest relative biases can be found in
relatively dry regions, and therefore the absolute biases are
presented in Fig. S4 and Table S2.

In spring, a clear wet bias is present for REMO over the
complete northern part of the domain and for ALARO-0 over
the northwestern part, while a strong dry bias is present in the
southwestern part of the domain for both RCMs (Fig. 10).
The wet bias for REMO over ESB during spring is low in ab-
solute values when compared to the subregion TIB (Figs. 12

and S1). In summer, both RCMs have a dry bias over the
southwestern part of the domain. The Taklamakan and Ara-
bian deserts are located in these areas with a dry bias. In
Fig. S4, the absolute dry biases over these regions are less
pronounced (> −25 mm per month). The dry biases over the
southwestern part of the domain result in spatially averaged
negative biases for precipitation over the WCA subregion in
spring and summer for both RCMs (Table 5). Additionally, a
smaller relative wet bias is present over the East Asian mon-
soon region during summer compared to the other seasons
(Fig. 10). This is related to the higher precipitation rates in
the southeastern part of the domain during summer due to the
East Asian monsoon. Moreover, both RCMs have a dry bias
in the northern part of the domain during summer (Fig. S4).
For REMO this dry bias is situated in the northwestern part
of the domain, and for ALARO-0, a stronger dry bias is sit-
uated in the northeastern part of the domain, resulting in a
significant dry bias over the ESB subregion (Table 5). Fur-
thermore, the dry bias over the Taklamakan Desert is more
pronounced in summer. In autumn, both RCMs mainly pro-
duce a wet bias over the CAS-CORDEX domain, excluding
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Figure 10. Left column: mean monthly precipitation amounts (mm per month) over the CAS-CORDEX domain based on the observational
CRU dataset for the 1980–2017 period on an annual level and for winter (DJF), spring (MAM), summer (JJA), and autumn (SON). Middle
columns: relative difference between the average annual and seasonal CRU precipitation and the precipitation simulated by the models (%).
Right column: the range in precipitation (%) between the different reference datasets (CRU, MW, GPCC, and ERA-Interim).

some areas with low precipitation rates that have dry biases,
e.g., the Taklamakan Desert. In absolute numbers these dry
biases are limited (> −25 mm per month).

From Fig. 11 it can be deduced that REMO is only able
to reliably reproduce the precipitation over the TIB subre-
gion during summer and not during the other seasons. Addi-
tionally, ALARO-0 better captures the spatial patterns since
the correlations are larger than those for REMO, except for
the summer precipitation over WCA. Despite the substantial
ALARO-0 biases shown in Table 5 over most parts of the do-
main, the spatial patterns are thus well represented (Figs. 10
and 12). Both RCMs overestimate the variability in precip-
itation for all seasons and subregions, except for REMO in
summer over WCA (Fig. 11). This excessive spatial varia-
tion is due to an overestimation of the precipitation in the
wettest regions combined with an underestimation in the dri-
est regions (Fig. 10).

The annual cycles over the subregions show that ALARO-
0 and REMO indeed mostly overestimate the precipitation
values of CRU in the different subregions (Fig. 12). How-
ever, ALARO-0 does underestimate the precipitation slightly
in May and June over WSB and in June and July over ESB.
For the WCA subregion, both RCMs underestimate the pre-

cipitation in spring and summer. REMO slightly overesti-
mates the precipitation over the ESB subregion in March and
June. As mentioned before, it is seen that REMO is unable
to simulate the annual cycle of precipitation correctly over
the subregion of the Tibetan Plateau. The precipitation rates
are too high, except during the summer when the Asian mon-
soon takes place. As seen in Fig. 12 and Table 5 the spatially
averaged precipitation rate of REMO is slightly closer to the
observations than ALARO-0 over the EEU subregion during
winter and autumn. In addition, the annual cycle and MAE
show that REMO better captures the precipitation over the
ESB region than ALARO-0 during summer.

4 Discussion

4.1 Temperature

4.1.1 Performance of ALARO-0 and REMO with
respect to observational spread and other RCMs

When considering the temperature biases of the RCMs with
respect to CRU, larger values are partly located in regions
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Table 5. Climatological mean CRU precipitation (mm per month) for the 1980–2017 period over the CAS-CORDEX domain and subdomain,
with relative biases (%) and MAE (%) against CRU for the RCMs (REMO and ALARO-0) and the other reference datasets (ERA-Interim,
MW, and GPCC).

EEU WSB ESB

DJF MAM JJA SON Annual DJF MAM JJA SON Annual DJF MAM JJA SON Annual

CRU 34.91 34.16 55.26 45.62 42.51 22.74 27.99 51.53 35.94 34.6 11.13 22.10 72.28 29.62 33.90

REMO – CRU 12 20 7 9 11 16 25 13 14 16 30 63 8 21 22
MAE REMO CRU 18 22 21 13 14 33 34 28 26 25 133 74 17 37 28

ALARO – CRU 21 12 10 18 15 20 3 −4 17 7 35 −1 −19 21 −3
MAE ALARO CRU 25 17 22 19 16 28 17 22 22 15 65 24 28 30 19

ERA-Interim – CRU 13 19 10 9 12 18 27 16 15 18 29 57 11 31 24
MAE ERA-Interim CRU 18 20 11 10 13 25 29 19 19 21 79 66 16 36 26

MW – CRU −11 −7 −7 −6 −7 −8 −5 −8 −6 −7 −4 −15 −13 −9 −12
MAE MW CRU 14 10 10 14 14 17 14 15 17 17 33 23 16 33 33

GPCC – CRU −24 −15 −7 −11 −13 −12 −11 −4 −8 −8 −7 −21 −9 −13 −12
MAE GPCC CRU 24 17 11 24 24 23 18 10 23 23 30 26 12 30 30

WCA TIB CAS-CORDEX

DJF MAM JJA SON Annual DJF MAM JJA SON Annual DJF MAM JJA SON Annual

CRU 33.18 37.52 16.74 18.45 26.46 8.12 17.73 48.56 15.02 22.45 22.60 32.34 64.75 35.50 38.88

REMO – CRU 17 −10 −19 18 2 259 194 31 187 110 29 39 4 20 18
MAE REMO CRU 45 46 66 43 39 1169 638 243 240 137 205 107 52 53 39

ALARO – CRU −2 −5 −18 9 −4 26 36 14 38 23 22 19 1 22 13
MAE ALARO CRU 32 33 78 44 33 260 279 185 107 84 73 54 49 42 30

ERA-Interim – CRU 21 29 77 38 36 59 117 63 73 75 22 38 19 21 24
MAE ERA-Interim CRU 32 33 123 51 34 267 384 340 131 104 80 72 63 40 32

MW – CRU −4 −8 −2 7 −3 14 3 9 20 10 −6 −4 −3 −2 −3
MAE MW CRU 32 28 81 32 32 104 100 64 104 104 39 27 31 39 39

GPCC – CRU 0 −7 −7 −2 −4 −9 −17 −4 −2 −7 −7 −8 −1 −5 −4
MAE GPCC CRU 31 24 55 31 31 88 90 61 88 88 39 27 28 39 39

where the range of the different reference datasets is large
(> 3 ◦C) (Fig. 3). Some regions where ALARO-0 and REMO
show a bias over 3 ◦C also exhibit a spread of at least
3 ◦C between the reference datasets (CRU, MW, and ERA-
Interim), resulting in an insignificant bias when compared to
the spread (Figs. 3 and S1). This is, for example, the case over
mountainous regions such as the Himalayas and Stanovoy
Range, which makes the evaluation of the models less reli-
able over these mountainous regions. The observational tem-
perature spread is larger for the ESB subregion compared to
EEU and WSB, indicating there is larger uncertainty for tem-
perature evaluation over ESB. Significant observational un-
certainties are typical over complex orography, but this does
not explain why there is larger uncertainty over the complete
ESB subregion. New et al. (1999) mentioned that CRU con-
tains colder temperatures in winter over Russia, which could
explain this larger spread.

However, not all RCM biases are located within the spread
of the reference datasets. For instance, the strong biases in the
northeastern part of the domain for ALARO-0 during winter
and spring exceed the spread in temperatures between the
different reference datasets, indicating that ALARO-0 is not
able to simulate the temperatures accurately over this region

(Fig. S1). Furthermore, the smaller biases for both RCMs
over EEU (< 3 ◦C) are not situated within the small (< 1◦)
range of the reference datasets (Fig. S1). The biases over
WSB are not within the range of the reference datasets ei-
ther, except for ALARO-0 during autumn. Figure S1 shows
that for the majority of grid points the mean temperatures of
ALARO-0 and REMO lie within the range of spread between
the reference datasets during autumn. From this we conclude
that both RCMs simulate temperatures fairly well in autumn.
During winter and spring none of the RCMs are able to re-
produce temperatures that can be completely explained by
the observational uncertainty over a large part of the CAS-
CORDEX domain, while this is also the case for ALARO-0
during summer (Fig. 3 and Table 2).

When comparing the mean spatial biases and MAE for the
1980–2017 period (Table 2), it is seen that in most cases the
differences between the observational datasets are smaller
than the differences between the RCMs and CRU. However,
the MAE and spatially averaged bias are smaller for both
RCMs than for MW during autumn over the WSB subregion
since both RCMs perform well over Kazakhstan, with grid
points with biases between −1 and 1 ◦C. Moreover, REMO
has lower MAE values than MW over the ESB subregion dur-
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Figure 11. Normalized Taylor diagram showing the model performance in terms of precipitation for seasonal and annual means for both
RCMs (ALARO-0 and REMO), gridded observational datasets (MW, GPCC), and the ERA-Interim reanalysis data with respect to CRU for
the five subregions and the CAS-CORDEX domain.

ing summer and autumn and over the WCA subregion during
winter. ALARO-0 has lower MAE values than MW during
autumn over the TIB subregion.

The Taylor diagrams of temperature (Fig. 4) show that
the normalized standard deviation of ERA-Interim and MW
differs less from CRU than the RCMs, except for REMO
over the EEU and ESB subregions during summer and for
ALARO-0 over ESB during autumn as well as WSB and TIB
during winter. This smaller difference between the reference
datasets implies that the deviation in the spatial variation of
temperature between the RCMs and CRU cannot be com-
pletely explained by the observational uncertainty, meaning
that the data from the RCMs deviate from the observations
and can be improved. The spatial correlations between CRU
and ERA-Interim or MW are lower than or close to those
between CRU and the RCMs for the subregions WCA and
TIB, which indicates that the RCMs are able to reproduce
the spatial temperature patterns within the range of observa-
tional uncertainty, even though they slightly deviate from the
spatial temperature patterns in the CRU data. It is seen that
the observed spatial patterns are less reliable during summer

over the ESB subregion since the MW and ERA-Interim both
show a lower spatial correlation (< 90 % for ERA-Interim)
with CRU during summer compared to the other seasons.
However, the lower spatial correlation of the RCMs during
summer over the ESB subregion can only partly be explained
by the observational uncertainty in the spatial correlation of
temperatures.

Similar to our findings, Ozturk et al. (2016) reported a
lower spatial correlation during summer over the complete
CAS-CORDEX domain with RegCM4.3.5 at 0.50◦ horizon-
tal resolution. Additionally, similarly high spatial correla-
tions are obtained during the different seasons for ALARO-0
and REMO at 0.22◦ horizontal resolution when compared to
the results of Ozturk et al. (2016). For summer temperatures,
Russo et al. (2019) found that COSMO-CLM 5.0 produces a
spatial pattern with a cold temperature bias in the north and
warm biases in the southern part of the domain except for
some locations on the Tibetan Plateau, which are similar to
ALARO-0.

In general both ALARO-0 and REMO produce biases
within a similar order of magnitude as those obtained with
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Figure 12. Annual cycles of precipitation (mm per month) for both RCMs (ALARO-0 and REMO) compared to the ERA-Interim reanalysis,
MW, GPCC, and CRU observational data over five subregions.

other RCMs over the CAS-CORDEX region (Russo et al.,
2019) and Central Asian subregions (Wang et al., 2020; Zhu
et al., 2020). Zhu et al. (2020) conducted model runs with dif-
ferent land cover schemes in the WRF model over a smaller
domain than CAS-CORDEX containing Kazakhstan, Uzbek-
istan, Kyrgyzstan, Turkmenistan, and Tajikistan. None of
their experiments produced biases over Kazakhstan as small
as those of REMO in winter and at the annual level, while
they obtained biases with different signs and similar magni-
tude in summer. However, it should be mentioned that they
used the observational dataset from the Climate Prediction
Center (CPC), which makes comparison difficult. ALARO-
0 has biases with the same magnitude at the annual level as
the WRF runs, but the absolute value of the biases is larger
during winter and summer.

Similar to our findings, larger differences between temper-
atures of the reference datasets in the region of the Tibetan
Plateau (Fig. 3) were also observed by Ozturk et al. (2012,
2016) and Russo et al. (2019), and this is partly due to the fact
that observational gridded data, such as MW and CRU, are
based on measurements from meteorological stations in the
valleys (New et al., 1999). The gridded observations are thus

less reliable over the Himalayas and Tibetan Plateau, creat-
ing larger observational uncertainty and resulting in large bi-
ases of the RCMs that lie within the range of observational
uncertainty in most of the grid points (Fig. S1). Further, the
amplification of the biases over mountainous regions for the
RCMs can be attributed to the applied assumption of a lapse
rate of 0.0064K˙ m−1 for the elevation correction (Kotlarski
et al., 2014).

4.1.2 Spring and winter biases in northern subregions

In this section the temperature biases over snow-covered ar-
eas during winter and spring will be explained. As mentioned
in the previous sections, both RCMs have large temperature
biases in the northern part of the domain that are not within
the range of the reference datasets during winter and spring
(Fig. S1). During winter, ALARO-0 simulates warm biases
over the northern part of the domain and REMO simulates
cold biases over the northwestern part of the domain, while
in spring they both show a cold bias over the north (Figs. 3
and 5).

Compared to the northern part in the CAS-CORDEX re-
gion, a similar warm bias during winter was found over Scan-
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dinavia in the EURO-CORDEX runs, with ALARO-0 (Giot
et al., 2016). Both regions have a similar climate which sug-
gests that similar physical processes might be at the basis of
these biases (Jacob et al., 2012; Remedio et al., 2019). The
warm bias during winter and cold bias during spring in the
northeastern part of the domain for ALARO-0 are not due to
a temporal shift in the annual cycle in the northern part of
the domain, although there is a delay in warming tempera-
tures during spring. A limited warm bias arises in the north
during autumn, when the first snow cover appears over this
region (Fig. 5). This bias increases when the snow-covered
region expands (not shown). ALARO-0 seems to underes-
timate cooling above snow cover during stable conditions.
Mašek (2017) linked exceedingly warm temperatures above
snow to the single-layer snow scheme that was used (Dou-
ville et al., 1995). REMO uses a multi-layer snow scheme
and does not encounter this problem.

A similar strong warm bias in the north, as found for
ALARO-0 in winter, was also found by Ozturk et al. (2012)
and Russo et al. (2019) for the RegCM and COSMO-
CLM 5.0 models, respectively. Ozturk et al. (2012) related
this warm bias to shortcomings in the simulation of snow,
whereas Russo et al. (2019) found that changes in the snow
scheme did not affect the simulation results significantly and
did not reduce the warm bias in the northeast during winter.
This shows that a more complex multi-layer snow scheme
might not be enough to solve the warm bias for ALARO-
0 during winter. Therefore, further investigation should be
done to see whether the warm bias in winter over the north-
ern part of the domain is due to the inability of the current
snow scheme to reproduce the heat conductivity of snow.

In spring, the warm temperature bias of the ALARO-0
simulation over the northern subregion evolves into a signifi-
cant cold bias. This remarkable evolution is probably related
to another issue connected to the snow scheme as we find a
delay in the springtime melting of the snowpack (not shown).
Additionally, ALARO-0 simulates exceedingly high pressure
values over the northern area (not shown). Further research is
needed to clarify whether this overestimation of the Siberian
High in the ALARO-0 simulations is related to the difficul-
ties with the snow cover.

The cold bias for REMO during winter over the EEU sub-
region is likely due to the surface treatment of the model
when there is snow (Pietikäinen et al., 2018). Pietikäinen
et al. (2018) reported that the thermodynamics of the snow
layer play an important role in the cold bias that appears
over eastern Europe during the months when snow cover is
present.

4.2 Diurnal temperature range

Similar to the mean temperature the observational spread for
minimum and maximum temperature is larger in the oro-
graphically complex regions (Figs. 6 and 8). ALARO-0 and
REMO are not able to reproduce the minimum and maxi-

mum temperature since they produce biases that are outside
this significant observational range (e.g., the range for max-
imum temperature is 5 to 7 ◦C in the northeastern part of
the domain in spring) (Figs. S2 and S3). However, during
summer REMO simulates minimum and maximum temper-
atures within the observational range over western Russia.
The MAE of REMO for minimum and maximum tempera-
tures is acceptable during summer over the EEU and WSB
subregions since the MAE between ERA-Interim and CRU
is larger than the MAE between REMO and CRU (Tables 3
and 4). Moreover, the MAE of REMO for maximum temper-
ature is lower than the MAE of ERA-Interim over the WCA
subregion, indicating that REMO is able to produce maxi-
mum temperatures over this subregion within the range of
the reference datasets.

Both RCMs generally produce a smaller daily tempera-
ture range, resulting in biases that are generally warmer for
the minimum temperature and colder for the maximum tem-
perature when compared to those of the mean temperature
(Figs. 3, 6, and 8 and Tables 2, 3, and 4). The smaller daily
temperature range causes a stronger warm bias in winter for
the minimum temperature and a stronger cold bias for max-
imum temperature in spring, which is notably visible in the
northern part of the domain for the ALARO-0 model (Figs. 3,
6, and 8 and Tables 2, 3, and 4). Additionally, it is seen that
the cold bias in the north during spring for the ALARO-0
model is weaker for the minimum temperature than for the
mean temperature, while REMO shows warmer biases over
Mongolia during winter and spring for minimum temperature
and colder biases in maximum temperature in the north dur-
ing spring when compared to the mean temperature. More-
over, the smaller daily temperature range causes larger MAE
scores for minimum temperature during winter and for max-
imum temperature during spring, except for ALARO-0 over
the WCA and TIB subregion (Tables 3 and 4). This indicates
that minimum temperatures are less accurately simulated by
both RCMs compared to temperature during winter, while
maximum temperatures are simulated less accurately during
spring.

The underestimation of the diurnal range is similar to the
findings over other regions (Laprise et al., 2003; Kyselý
and Plavcová, 2012) and was also observed over the CAS-
CORDEX domain by Russo et al. (2019). Their RCM pro-
duced smaller diurnal ranges compared to different obser-
vational datasets. In particular, ALARO-0 shows a smaller
range in the diurnal cycle of temperatures due to very high
minimum temperatures (Fig. 5), and this could be due to the
inability of the model to simulate temperatures correctly over
snow cover during stable conditions (Mašek, 2017).

Although the magnitude of the biases is different for mean,
minimum, and maximum temperature, similar spatial pat-
terns are found in the biases of both RCMs over the dif-
ferent seasons and for the annual mean (Figs. 3, 6, and 8).
This means that these variables are spatially highly corre-
lated with each other in both models and observations. Addi-
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tionally, both minimum and maximum temperatures have a
similar temporal pattern as the mean temperature (Fig. 5).

The metrics in Figs. 7 and 9 show that spatial pattern cor-
relations of ERA-Interim deviate more from CRU for mini-
mum and maximum temperature compared to mean temper-
ature (Fig. 4). This larger uncertainty makes it harder to draw
sound conclusions from the lower spatial pattern correlations
of ALARO-0 and REMO.

The evaluation of temperature and its diurnal cycle shows
that a bias adjustment is essential before the climate data
are applied in impact modeling. However, REMO simulates
mean and maximum temperatures well over the WCA subre-
gion when the observational range is taken into account.

4.3 Precipitation

Compared to the RegCM4.3.5 model (Ozturk et al., 2016)
ALARO-0 has lower RMSEs over all seasons and REMO has
higher RMSEs, excluding summer (Fig. 11). The spatial cor-
relations between CRU and REMO are similar to the values
obtained with RegCM4.3.5, except for winter when REMO
has a higher spatial correlation (Fig. 11). ALARO-0 obtains
higher values for the spatial correlations, and they are close
to those of the other observational datasets.

For the majority of the grid points, the precipitation of
ALARO-0 and REMO is situated within the spread of the
different gridded datasets for all seasons (Fig. S5). How-
ever, there are some subregions where the precipitation of
ALARO-0 and/or REMO exceeds the observational spread
during one or more seasons. For example, both RCMs show
slightly lower precipitation amounts in summer over the
WCA subregion compared to the different reference datasets
(Figs. 12 and S5). Additionally, the overestimation in pre-
cipitation by both RCMs in the East Asian monsoon region
exceeds the observational spread, especially in winter and
spring for REMO and in spring and autumn for ALARO-
0, indicating that the models do not completely capture the
East Asian monsoon system. Moreover, the ALARO-0 model
overestimates the precipitation significantly over the EEU
subregion during all seasons when compared to the spread
of the reference datasets (Figs. S5 and 12).

Ozturk et al. (2012) and Russo et al. (2019) obtained simi-
lar seasonal patterns in precipitation, with their model sim-
ulations at a horizontal resolution of 0.50 and 0.22◦, re-
spectively. For example, an extreme excess of precipitation
was simulated over the East Asian monsoon region, with a
smaller relative wet bias in summer. Additionally, they ob-
tained a dry bias in summer over the western part of the do-
main, which is similar for REMO, while ALARO-0 shows
only a dry bias in the southwestern part of the domain. More-
over, ALARO-0 produces a dry bias over the northeastern
part of the domain during summer, while this is not the
case for the other RCMs (REMO, COSMO-CLM 5.0, and
RegCM4.0) (Ozturk et al., 2012; Russo et al., 2019). The
underestimation in precipitation by ALARO-0 during spring

and summer in the northeastern part of the domain might
be related to the Siberian High that remains too strong (not
shown).

Table 5 and Fig. 12 show that, on average, CRU contains
higher precipitation amounts than the two other observational
datasets, MW and GPCC. As mentioned before, it is known
that the MW and GPCC datasets generally underestimate the
seasonal precipitation over Central Asia, especially during
spring for the central part of the CAS-CORDEX domain (Hu
et al., 2018).

The overestimation of the annual precipitation by the
RCMs over the Himalaya, Altay, Tian Shan, and Kunlun
mountains is partly due to the fact that the gridded obser-
vational datasets CRU, MW, and GPCC underestimate the
precipitation over these mountainous regions. It is known
that the accuracy of gridded precipitation datasets decreases
with elevation, especially over an altitude of 1500 m (Zhu et
al., 2015). By contrast, ERA-Interim generally overestimates
the precipitation, particularly over mountainous regions (Sun
et al., 2018). Moreover, a similar pattern of an underestima-
tion by gridded observational datasets and overestimation by
reanalysis data is present over the Tibetan Plateau (Sun et
al., 2018), causing larger biases (Figs. 10 and 12). The dis-
crepancy between the observational gridded datasets and the
ERA-Interim reanalysis data (Figs. 10 and 12) explains why
the strong wet biases of the RCMs compared to CRU over
mountainous areas and the Tibetan Plateau are not signifi-
cant (Fig. S5). The pronounced difference between the ob-
servational and reanalysis datasets makes it difficult to draw
sound conclusions over these regions.

Even when taking into account the large spread between
the reference datasets, REMO is not able to reproduce the
annual cycle of precipitation over the Asian monsoon region.
Remedio et al. (2019) also found a wet bias for REMO at
the annual level over the subtropical region where the Asian
monsoon takes place.

In the north, the precipitation amounts of REMO bear
more resemblance to those of ERA-Interim and COSMO-
CLM 5.0 described by Russo et al. (2019) (Fig. S8). This
similarity is probably due to the fact that they all use a con-
vection scheme that is based on Tiedtke (1989) (Table S1;
https://www.ecmwf.int/, ECMWF, 2020), while ALARO-0
uses the 3MT cloud microphysics scheme.

It can be concluded that for the different subregions
and seasons, REMO and ALARO-0 simulated precipitation
mostly within the range of the observational spread, al-
though it should be mentioned that the observational uncer-
tainty is large. MW, GPCC, and ERA-Interim deviate more
from CRU than was the case for temperature, resulting in
larger observational uncertainty for precipitation. Russo et
al. (2019) additionally showed that the influence of observa-
tional datasets on the RSV is larger for precipitation than for
temperature. Moreover, both models are worse in simulating
the spatial correlation of precipitation (Fig. 11) compared to
the mean, minimum, and maximum temperature (Figs. 4, 7,
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and 9). This lower correlation is due to the fact that precip-
itation is less systematically affected by land cover and to-
pography compared to temperature (Kotlarski et al., 2014).
Furthermore, the uncertainty range and error in the observa-
tional products should be reduced in the future to improve
the evaluation of precipitation (Russo et al., 2019).

5 Conclusion

The evaluation over the CAS-CORDEX domain of ALARO-
0 and REMO, run at 0.22◦ resolution, showed that in general
both RCMs reproduced realistic spatial patterns for temper-
ature since there is a high spatial correlation with observa-
tional data. Additionally, the values of spatial variation for
mean temperature from both RCMs correspond closely to the
values obtained with other reference datasets. When evaluat-
ing the modeled precipitation, poorer scores were obtained
for these metrics, but the spread between the different obser-
vational datasets is also larger for precipitation compared to
temperature.

Both RCMs performed best during autumn for tempera-
ture and precipitation, showing biases within the range of
the observational uncertainty for the majority of the CAS-
CORDEX domain. Nevertheless, there are significant biases
in several regions during several seasons, e.g., a warm bias in
the north during winter and a wet bias over the Asian mon-
soon region. For ALARO-0 the northern part of the CAS-
CORDEX domain is subject to significant positive tempera-
ture biases in winter, followed by large negative temperature
biases in spring. This behavior is probably linked to limi-
tations of the used snow scheme. REMO produced exces-
sive precipitation amounts over the Tibetan Plateau subre-
gion during all seasons and incorrectly simulated the annual
cycle of the East Asian monsoon system. In general, REMO
was better than ALARO-0 in reproducing the seasonal mean
temperatures, except during autumn, whereas ALARO-0 es-
timated the precipitation well.

Additionally, the evaluation of minimum and maximum
temperatures showed that the RCMs underestimate the daily
temperature range. This illustrates the added value of taking
more evaluation variables into account than only the com-
monly evaluated variables mean temperature and precipita-
tion.

We conclude that REMO and ALARO-0 can be used for
climate modeling over Central Asia, e.g., for precipitation
and temperature over western Central Asia. However, the de-
ficiencies of both models over Central Asia described in this
evaluation study should be kept in mind. Climate data pro-
duced by both RCMs can only be used for impact studies
if a suitable bias adjustment is applied for subregions where
the RCMs perform less well, e.g., temperature over eastern
Siberia and precipitation over the Tibetan Plateau.

Code availability. The R code used for the analysis is available
through https://doi.org/10.5281/zenodo.3659717 (Top et al., 2020).

For the code of the ALARO-0 model we refer to the “Code avail-
ability” section in Termonia et al. (2018a). More information about
REMO is available on request by contacting the Climate Service
Center Germany (contact@remo-rcm.de).

Data availability. The climate data produced by ALARO-0 and
REMO2015 have been uploaded to the ESGF data nodes (web-
site: http://esgf.llnl.gov/, last access: 7 July 2020). In order to ob-
tain the data, one of the nodes must be chosen. Thereafter, click on
“CORDEX” or search for “CORDEX”, and then select the domain
“CAS-22” and the RCM in the left column. The exact identifiers
can be found in Table S3 of the Supplement.

The CRU TS Version 4.02 data created by the Cli-
matic Research Unit, University of East Anglia are available
through https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.02/ (last ac-
cess: 3 March 2021; Harris et al., 2020). The MW data
are freely available at http://climate.geog.udel.edu/~climate/html_
pages/download.html (last access: 3 March 2021; Matsuura and
Willmott, 2018), and NetCDF files can be found here: https://www.
esrl.noaa.gov/psd/data/gridded/data.UDel_AirT_Precip.html (Mat-
suura and Willmott, 2018) (air.mon.mean.v501.nc and pre-
cip.mon.total.v501.nc) provided by the NOAA/OAR/ESRL PSL,
Boulder, Colorado, USA. The GPCC data can be accessed through
https://doi.org/10.5676/DWD_GPCC/FD_M_V2018_025 (Schnei-
der et al., 2018).
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