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A B S T R A C T   

Most plant diseases show visible symptoms, and the technique which is accepted today is that an experienced 
plant pathologist diagnoses the disease through optical observation of infected plant leaves. The fact that the 
disease diagnosis process is slow to perform manually and another fact that the success of the diagnosis is 
proportional to the pathologist’s capabilities makes this problem an excellent application area for computer- 
aided diagnostic systems. Instead of classical machine learning methods, in which manual feature extraction 
should be flawless to achieve successful results, there is a need for a model that does not need pre-processing and 
can perform a successful classification. In this study, EfficientNet deep learning architecture was proposed in 
plant leaf disease classification and the performance of this model was compared with other state-of-the-art deep 
learning models. The PlantVillage dataset was used to train models. All the models were trained with original and 
augmented datasets having 55,448 and 61,486 images, respectively. EfficientNet architecture and other deep 
learning models were trained using transfer learning approach. In the transfer learning, all layers of the models 
were set to be trainable. The results obtained in the test dataset showed that B5 and B4 models of EfficientNet 
architecture achieved the highest values compared to other deep learning models in original and augmented 
datasets with 99.91% and 99.97% respectively for accuracy and 98.42% and 99.39% respectively for precision.   

1. Introduction 

Timely and accurate diagnosis of plant diseases is of great impor-
tance for sustainable and correct agriculture, as well as for preventing 
unnecessary waste of financial and other resources. Some plant diseases 
do not have visible symptoms and it is inevitable to use advanced 
analysis methods in such diseases. However, the majority of plant dis-
eases show visible symptoms, and the technique that is accepted today is 
that an experienced plant pathologist diagnoses the disease through 
optical observation of infected plant leaves (Sankaran et al., 2010; Sla-
dojevic et al., 2016). For a plant pathologist to accurately diagnose plant 
disease, he must have good observation skills and thus identify char-
acteristic symptoms. However, the excessive variety of plants, variations 
in the course of plant diseases due to climate changes and the faster 
spread of diseases to other regions where they have not been seen 
before, even lead experienced pathologists fail to diagnose certain dis-
eases (Sladojevic et al., 2016). The presence of an expert and intelligent 
systems that can automatically diagnose plant disease accurately pro-
vides valuable contributions to agronomists. On the other hand, offering 
such a system with a simple mobile application that even non-expert 

farmers can use is also a good achievement for farmers who do not 
have an agronomic and phytopathological support infrastructure (Fer-
entinos, 2018). Advances in artificial intelligence technologies have 
paved the way for the development of automated systems that can get 
faster and more accurate results in the diagnosis of diseases. Today, 
systems that automatically diagnose wide variety of diseases based on 
artificial intelligence are often used (Jiang et al., 2017). In the last 
decade, many traditional machine learning models were proposed for 
the detection and classification of plant diseases. Rumpf et al. studied 
the early diagnosis and classification of diseases seen in sugar beet based 
on spectral plant indexes using Support Vector Machine (SVM) (Rumpf 
et al., 2010). In order to detect five different plant leaf diseases, Al-Hiary 
et al. performed the segmentation of the diseased areas by clustering the 
properties obtained with the preprocessing steps using K-Means, and 
then classified those regions with Artificial Neural Networks (ANN) after 
performing color and texture based feature extraction (Al-Hiary et al., 
2011). Revathi and Hemalatha proposed a method to detect 6 different 
types of disease seen on cotton leaf. The method they suggest performs 
feature selection using Particle Swarm Optimization from feature vector 
including edge, color and texture-based features obtained by image 

* Corresponding author. 
E-mail address: umitatila@karabuk.edu.tr (Ü. Atila).  

Contents lists available at ScienceDirect 

Ecological Informatics 

journal homepage: www.elsevier.com/locate/ecolinf 

https://doi.org/10.1016/j.ecoinf.2020.101182 
Received 3 June 2020; Received in revised form 14 September 2020; Accepted 2 October 2020   

mailto:umitatila@karabuk.edu.tr
www.sciencedirect.com/science/journal/15749541
https://www.elsevier.com/locate/ecolinf
https://doi.org/10.1016/j.ecoinf.2020.101182
https://doi.org/10.1016/j.ecoinf.2020.101182
https://doi.org/10.1016/j.ecoinf.2020.101182
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ecoinf.2020.101182&domain=pdf


Ecological Informatics 61 (2021) 101182

2

processing and classifies the disease with Cross Information Gain Deep 
forward Neural Network (Revathi and Hemalatha, 2014). In another 
study that uses SVM method, Mokhtar et al. performed the detection and 
identification of two different viruses that show their symptoms on the 
tomato leaf and cause the disease (Mokhtar et al., 2015). In another 
study, Pantazi et al. realized the recognition of three different vine leaf 
diseases by SVM method using the features obtained with the Local Bi-
nary Pattern method (Pantazi et al., 2016). In another study, Johannes 
et al. proposed the use of image processing-based candidate hot-spot 
detection and Naive Bayes classifier for mobile based early diagnosis 
of three different wheat diseases. They deployed their proposed method 
on smartphones and evaluated them in a real field environment 
(Johannes et al., 2017). Recently, Chen et al. proposed a new model 
named GMDH (Group Method of Data Handling) logistic algorithm to 
automatically detect plant diseases (Chen et al., 2020a). 

The feature extraction process required to perform classification in 
machine learning is a difficult process and directly affects the classifi-
cation performance. Increasing capacities and speeds of Central Pro-
cessing Units (CPUs) and Graphical Processing Units (GPUs) paved the 
way for the development of new high-performance methods that can 
process raw data without the need for handcrafted features, and this led 
to deep learning architectures (LeCun et al., 2015). Deep neural network 
architectures with many processing layers and neurons can efficiently 
perform high-complexity tasks such as voice and image recognition by 
processing large-size data. The use of deep learning methods in the 
diagnosis and classification of diseases from medical images is quite 
common (Shen et al., 2017). On the other hand, in a review article of 
2019 (Saleem et al., 2019), deep learning-based studies for the detection 
and classification of plant leaf diseases were examined and the poten-
tials of deep learning were evaluated. It has been observed that most 
studies in the literature use the PlantVillage dataset and diagnose dis-
ease for a particular plant or several plants rather than classifying all 
plant diseases in this dataset. In one of these studies, Sladojevic et al. 
performed the classification of 13 different plant diseases using Con-
volutional Neural Network (CNN) (Sladojevic et al., 2016). In their 
study, they used 30,880 images to train their proposed model and 2589 
images to test. Their proposed model achieved an average of 96.3% 
accuracy. Chen et al. performed the detection of rice plant disease with a 
deep transfer learning-based model called DENS-INCEP (Chen et al., 
2020c). In another study, Chen et al. performed maize plant and rice 
plant disease classification by modifying the VGGNet module (Chen 
et al., 2020d). It has been observed that there are five studies that 
classify all diseases in the PlantVillage dataset consisting of 39 classes in 
total including 38 different plant diseases and a class for background 
images without leaf. Mohanty et al., classified plant diseases using CNN 
models such as AlexNet and GoogLeNet (Mohanty et al., 2016). In their 
study, they obtained 99.35% classification accuracy. Too et al., used 
CNN models such as VGG16, Inception V4, ResNet50, ResNet101, 
Resnet152 and DenseNets 121. It was reported that the DenseNet ar-
chitecture used in the study had fewer parameters and low calculation 
time compared to other models and gave the highest test accuracy with 
99.75% (Too et al., 2019). Geetharamani and Pandian trained the 9- 
layer CNN architecture in the PlantVillage dataset with different 
epoch, batch size and dropout and compared the performance of ach-
ieved models with popular transfer learning approaches. Their proposed 
model achieved 96.46% classification accuracy on the test dataset 
(Geetharamani and Pandian, 2019). On the other hand, there are two 
more studies on other versions of the PlantVillage dataset that have been 
expanded with extra images. In one of these, Ferentinos made the 
classification of 58 different diseases of 25 different plant species using 
87,848 images with AlexNet, AlexNetOWTBn, GoogLeNet, Overfeat and 
VGG architectures. VGG architecture used in the study gave the highest 
accuracy with 99.53% (Ferentinos, 2018). In the second study, Arsen-
ovic et al. created PlantDisease dataset, which is an expanded version of 
the PlantVillage dataset and contains 79,265 images. They conducted 
experimental studies using both datasets. While the two-stage 

PlantDiseaseNet model they proposed for classification determines the 
plant species from leaves in the first stage, it classifies these leaves in the 
second stage. The model they proposed achieved 93.67% accuracy in the 
Plant Disease dataset (Arsenovic et al., 2019). Some studies have also 
been conducted to investigate the performance of deep learning archi-
tectures in plant disease classification in both PlantVillage and private 
datasets. Nanehkaran et al. proposed a new model for the detection of 
plant diseases, including image segmentation and image classification 
stages (Nanehkaran et al., 2020). They proposed a hue, saturation and 
intensity-based and LAB-based hybrid segmentation algorithm in the 
image segmentation phase and used CNN model in the classification 
phase. Chen et al. proposed a new model for the detection of plant 
diseases called MobileNet-Beta by expanding the pre-trained Mobile-
NetV2 model with the Classification Activation Map (Chen et al., 
2020b). They tested the proposed model on the PlantVillage dataset and 
on their own dataset. According to the test results, MobileNet-Beta 
model achieved 99.85% accuracy in the PlantVillage dataset and 
99.11% accuracy on their own dataset. 

As seen from previous studies mentioned above, there is an increase 
in the use of deep learning architectures on the diagnosis of plant leaf 
diseases in the literature. However, there are still gaps to be investigated 
regarding the use of especially new deep learning architectures in plant 
leaf disease detection. Especially, the need for efficient models with 
fewer parameters, trained faster and without compromise on perfor-
mance is inevitable. 

This study proposes EfficientNet (Tan and Le, 2019) deep learning 
architecture for the classification of plant diseases. The performance of 
the proposed model is compared with state-of-the-art CNN architectures 
such as AlexNet, ResNet50, VGG16 and Inception V3. 

The rest of this study is organized as follows. Section 2 describes the 
dataset and deep neural network architectures used in this study. 
Experimental studies are given in Section 3. The results obtained in the 
study are given and discussed in Section 4. The study is concluded with 
Section 5. 

2. Materials and methods 

2.1. Dataset 

In this study, PlantVillage dataset is used containing 38 classes and 
54,305 images of 14 different plant species in total, 12 of which are 
healthy, 26 of which are diseased (Hughes and Salathe, 2015). Images in 
the dataset are colored images of varying sizes. The dataset also has one 
more class identifying 1143 background images. Thus, the total number 
of images in the dataset is 55,448. Fig. 1 shows 8 different plant-disease 
pairs selected randomly. 

Geetharamani and Pandian (Geetharamani and Pandian, 2019) 
applied six different augmentation methods to the PlantVillage dataset 
in their study, and they shared the original and augmented datasets for 
use in scientific studies at https://data.mendeley.com/datasets/tyw 
btsjrjv/1. In the study, the number of samples belonging to classes 
with less than 1000 samples were increased to 1000 with augmentation 
methods, and no action was taken on the images in other classes. After 
applying augmentation, the number of images in the dataset has been 
increased to 61,486. In this study, we use the original dataset as well as 
the augmented dataset by Geetharamani and Pandian to increase the 
success of deep neural networks. 

2.2. State of the art CNN based models 

The performance of the EfficientNet architecture proposed in this 
study is compared with state-of-the-art CNN architectures such as 
AlexNet, ResNet50, VGG16 and Inception V3. 

2.2.1. AlexNet 
The AlexNet model (Krizhevsky et al., 2012) is an 8-layer CNN 
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architecture with approximately 61 million parameters introduced in 
the ImageNet Large Scale Visual Recognition Challenge (ILSVRC-2012) 
competition held in 2012. This architecture follows the design of LeNet- 
5 (LeCun et al., 1989). The AlexNet architecture given in Fig. 2 takes the 
input image size as 227 × 227 and consists of 5 convolutional layers 
followed by 3 fully connected layers and finally the Softmax layer. This 
architecture uses ReLU activation function in the convolutional and fully 
connected layers. The fully connected layer FC-8 of AlexNet architecture 
used in this study is connected to the Softmax layer with 39 neurons. 
Each output value in the Softmax layer is the ratio of the input image to 
the class represented by the corresponding output. To this aim, Softmax 
layer generates a distribution using the inputs coming from the FC-8 
layer and assigns a probability value for each class which of total is 1 
for all classes. 

2.2.2. VGG16 
VGG16 (Simonyan and Zisserman, 2014), which won the ILSVRC- 

2014, is a CNN architecture with approximately 138 million parame-
ters which won ILSVRC-2014. The most striking feature of this archi-
tecture is that instead of having large number of hyper-parameters, it 
always has the same convolution layers that use 3 × 3 filters with stride 

1 and same padding and maximum pooling layers that use 2 × 2 filters 
with stride 2. The VGG16 architecture follows this convolution and 
maximum pooling layers arrangement consistently throughout the 
entire architecture (Fig. 3). Finally, there are 3 FC layers first two with 
ReLU and the last with Softmax activation function. This architecture 
contains 16 layers and the input layer takes images of 224 × 224 pixels. 

2.2.3. ResNet50 
ResNet50 architecture (He et al., 2016), which won the ILSVRC-2015 

competition in 2015, is an architecture proposed to solve the problem of 
multiple non-linear layers not learning identity maps and degradation 
problem. ResNet50 is a network in network architecture based on many 
stacked residual units (Fig. 4). Residual units are used as building blocks 
to build the network. These units consist of convolution and pooling 
layers. This architecture uses 3 × 3 filters as VGG16 and takes input 
images of 224 × 224 pixels. 

2.2.4. Inception V3 
Inception V3 (Szegedy et al., 2016) developed by Google, is the third 

release in the Deep Learning Evolutionary Architectures series. After the 
Inception V1 architecture was developed by Szegedy, batch 

Fig. 1. Sample plant-disease pairs from PlantVillage dataset: a) apple with cedar apple rust b) cherry with powdery mildew c) grape with black measles d) potato 
with late blight e) peach with bacterial spot f) tomato with late blight g) healthy strawberry h) healthy tomato. 

Fig. 2. Schematic representation of AlexNet.  
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normalization was performed in Inception V2. Then the idea of factor-
ization was introduced in Inception V3. The main purpose in factor-
ization is to reduce the number of connections and parameters without 
reducing the efficiency of the network. The model itself consists of 
symmetrical and asymmetrical building blocks containing convolutions, 
average pooling, max pooling, concats, dropouts and fully connected 
layers (Fig. 5). The Inception V3 architecture, which has the Softmax 
function in the last layer, consists of 42 layers in total and the input layer 
takes images of 299 × 299 pixels. 

2.2.5. EfficientNet 
Success has increased as the models used in the ImageNet dataset 

since 2012 have become more complex, but many are not effective in 
terms of computing load. EfficientNet model, which is among the state- 
of-the-art models by reaching 84.4% accuracy with 66 M parameter in 
the ImageNet classification problem, can be considered as a group of 
CNN models. EfficientNet group consists of 8 models between B0 and B7, 
and as the model number grows, the number of calculated parameters 
does not increase much, while accuracy increases noticeably. Unlike 
other CNN models, EfficientNet uses a new activation function called 
Swish instead of the Rectifier Linear Unit (ReLU) activation function 
(Tan and Le, 2019). 

The aim of deep learning architectures is to reveal more efficient 

approaches with smaller models. EfficientNet, unlike other state-of-the- 
art models, achieves more efficient results by uniformly scaling depth, 
width, and resolution while scaling down the model. The first step in the 
compound scaling method is to search for a grid to find the relationship 
between the different scaling dimensions of the baseline network under 
a fixed resource constraint. In this way, a suitable scaling factor for 
depth, width and resolution dimensions is determined. These co-
efficients are then applied to scale the baseline network to the desired 
target network (Tan and Le, 2019). 

The main building block for EfficientNet is the inverted bottleneck 
MBConv, which was first introduced in MobileNetV2 (Mark et al., 2018), 
but due to the increased FLOPS (floating point operations per second) 
budget, it is used slightly more than MobileNetV2. In MBConv, blocks 
consist of a layer that first expands and then compresses the channels, so 
direct connections are used between bottlenecks that connect much 
fewer channels than expansion layers. This architecture has in-depth 
separable convolutions that reduce calculation by almost k2 factor 
compared to traditional layers where k is the kernel size which denotes 
the width and height of the 2D convolution window (Mark et al., 2018). 
The schematic representation of EfficientNet B0 model is shown in 
Fig. 6. 

In compound scaling, the compound coefficient φ is used with the 
principles given in Eq. (1) to uniformly scale depth, width, and 

Fig. 3. Schematic representation of VGG16.  

Fig. 4. Schematic representation of ResNet50.  

Fig. 5. Schematic representation of Inception V3.  
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resolution. 

depth : d = αψ

width : w = βψ

resolution : r = γψ

α ≥ 1, β ≥ 1, γ ≥ 1

(1)  

where, α, β, γ α, β, γare constants that can be determined by grid search. 
φ is a user-defined coefficient that controls how many resources are 
available for model scaling, while α, β, γ α, β, γdetermine how these extra 
resources are assigned to the network width, depth and resolution, 
respectively. In a regular convolution process, FLOPS are proportional to 
d, w2, r2. Since the cost of computing in convolution networks is largely 
due to convolution operations, scaling convolution network as given in 
Eq. (1) increases the FLOPS of the network by approximately (α, β2, γ2) φ 

(α. β2γ2)φ in total (Tan and Le, 2019). 
Starting from Baseline EfficientNet-B0, the compound scaling 

method scales this model in two steps (Tan and Le, 2019): 
Step 1: Assuming that there are twice as many resources available, 

grid search is performed with φ = 1 and the best values are found for α, 
β, γ. 

Step 2: Obtained α, β, γ values are determined as constant and the 
baseline network is scaled up to obtain EfficientNet-B1 to B7 using Eq. 
(1) with different φ values. 

2.2.6. Transfer learning 
Transfer learning is a machine learning technique in which the 

knowledge gained during training in a problem is used for training in 
another task or field (Weiss et al., 2016). In deep learning, the first few 
layers are trained to define the characteristics of the task. During 
transfer learning, the last few layers of the trained network can be 
removed and retrained with new layers for the target task. In the transfer 
learning approach, using the knowledge of the network previously 
trained with large amounts of visual data in a new task is very advan-
tageous in terms of saving time and achieving high accuracy compared 
to training a model from scratch. 

3. Experiments 

3.1. Experimental setup 

All models used in this study were compiled with GPU support. All 
experimental studies were conducted in Google cloud environment on a 
64-bit Debian GNU/Linux 9.11 operating system running on Intel (R) 
Xeon (R) Gold CPU @ 2.20GHz CPU and 16 GB RAM with NVIDIA Tesla 
K80 having 12GB memory. All codes are realized with Keras 2.3.1 
framework, which is an open source deep neural network library written 
in Python language. 

3.2. Training 

The original and augmented PlantVillage datasets used in this study 

were randomly divided into training, validation and test sets by 90%, 
7% and 3%, respectively. Training and validation datasets were only 
used for training and fitting of the model, while the test set was used to 
evaluate the prediction performance on samples that the model did not 
see before. Table 1 summarizes the number of images used in each 
dataset according to these rates. 

Existing CNN models in this study were used with the transfer 
learning approach. To speed up learning, CNN models were fine-tuned 
to identify and classify all categories in the dataset, with pre-trained 
models on ImageNet dataset. The ImageNet dataset contains approxi-
mately 1.2 million images and 1000 class categories. Pre-trained 
weights of the state-of-the-art CNN models on ImageNet were used to 
shorten the training time of the deep learning models used in this study. 
The last FC layers of all models with 1000 outputs were changed to 39 
outputs in accordance with the problem. All layers of pre-trained models 
were set as trainable. Softmax was chosen as the activation function in 
the last layer and loss function were selected as categorical cross en-
tropy. During the training, the early stopping technique was used with 
patience as 5 and minimum change in loss as 1e-3. Since early stopping 
technique was used, maximum epoch was not defined in the training of 
models. 

Pre-trained models were used with the same optimization method as 
used on training of ImageNet dataset. Accordingly, while VGG16 model 
uses SGD optimization method, all other models use Adam optimization 
method. In addition, while the learning rate was selected as 0.001 for 
Adam method, it was set to 0.01 for SGD method. Validation step for all 
models was set to 1. 

In this study, each pixel value of images in the original and 
augmented datasets was first normalized dividing by 255. The images 
were then resized to the default size accepted by each model. Accord-
ingly, images were set to 227 × 227 pixels for AlexNet, 224 × 224 pixels 
for ResNet50 and VGG16, and 299 × 299 pixels for Inception V3. In our 
experimental studies, input image resolutions were necessarily resized 
for all models of EfficientNet architecture due to our hardware limita-
tions. In the trial and error studies, it was seen that the maximum 
allowed input size that our hardware resources were sufficient for the 
training of the B7 model which has the highest number of parameters 
was 132 × 132. Therefore, the input size for all models of EfficientNet 
architecture was set as 132 × 132 in order to evaluate all models under 
same conditions. Table 2 summarizes the default image resolutions and 
number of parameters defined for deep learning models. 

Mini-batch is the size of the data used to update weights and bias 
during backpropagation. The mini batch value is chosen smaller than 
the total dataset size and generally a value that can divide the total 

Fig. 6. Schematic representation of EfficientNet.  

Table 1 
Division of images into train, test and validation sets.   

Total Train (90%) Validation (7%) Test (3%) 

Original dataset 55,448 49,903 3813 1663 
Augmented dataset 61,486 55,337 4304 1844  
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number of samples in the dataset is preferred. This value contributes to 
learning processes by balancing network convergence rate and accurate 
prediction (Li et al., 2014). In this study, mini-batch size was set to 16, 
which was the maximum value allowed by hardware resources in all 
models. Table 3 summarizes the main parameters used in all 
experiments. 

3.3. Performance metrics 

Since there are 39 categories in the PlantVillage dataset, multi-class 
classification was performed. Considering the values in the confusion 
matrix obtained in such classifications, the metrics given between Eqs. 
(2)-(9) are calculated using indices such as True Positive (TP), True 
Negative (TN), False Positive (FP) and False Negative (FN). Here, TP is 
the number of correctly classified diseased images in each category, 
while TN, on the other hand, represents the sum of the correctly clas-
sified images in all other categories except for the relevant category. FN 
gives the number of misclassified images from the relevant category. FP 
gives the number of misclassified images in all other categories except 
for the relevant category. 

The performances of EfficientNet and other state-of-the-art CNN 
models discussed in this study are measured using different metrics such 
as Accuracy (Acc), Sensitivity (Sen), Specificity (Spe) and Precision 
(Pre). Sensitivity is the ratio of correctly predicted positives out of all 
true positives. Specificity is the ratio of correctly predicted negatives out 
of all true negatives. On the other hand, accuracy indicates the rate of 
correctly classified samples out of all samples. Precision is the propor-
tion of correctly predicted positives out of all positive identifications. 
These metrics and their extended calculations for multi-class classifi-
cation using macro-averaging (Sokolova and Lapalme, 2009) are given 
in between Eqs. (2)–(9). 

For a class k, 

Sen(k) =
#TP(k)

#TP(k) +#FN(k)
(2)  

Spe(k) =
#TN(k)

#TN(k) +#FP(k)
(3)  

Acc(k) =
#TP(k) +#TN(k)

#TP(k) +#FN(k) +#TN(k) +#FP(k)
(4)  

Pre(k) =
#TP(k)

#TP(k) +#FP(k)
(5)  

AverageSen =
1

#classes
∑#classes

k=1
Sen(k) (6)  

AverageSpe =
1

#classes
∑#classes

k=1
Spe(k) (7)  

AverageAcc =
1

#classes
∑#classes

k=1
Acc(k) (8)  

AveragePre =
1

#classes
∑#classes

k=1
Pre(k) (9)  

4. Results and discussions 

The main purpose of this study is to examine the success of Effi-
cientNet deep learning architecture in the classification of plant leaf 
disease and to compare with the performances of state-of-the-art CNN 
models in the literature. As mentioned in Section 3.2, all deep learning 
models used in this study were trained by performing transfer learning. 

All experimental studies were carried out on both original and 
augmented datasets. In this context, the average accuracy, sensitivity, 
specificity and precision values obtained by all models on the test 
dataset were given in Table 4 and Table 5, respectively, for the original 
and augmented datasets. Since early stopping was used during the 
training, the period until the epoch where the loss values of the models 
started to increase was evaluated as the total training time. The time per 
epoch in the training of models was calculated by dividing the total 
training time by the total number of epochs and given in Table 4 and 
Table 5. Values marked in bold in Table 4 and Table 5 represent the case 
where best value obtained for the relevant performance criterion. 

As seen in Table 4, in the original dataset, all models obtained 
average accuracy values very close each other. In the original dataset, 
EfficientNet B5 model gave the best average sensitivity value for all 
classes. On the other hand, the average successes of models in predicting 
the classes other than the target class were close to each other. The true 
classification rate of the samples that B5 model classifies as positive 
(precision) was higher than the other models. While the B5 model 
completed 1 epoch in 1930 s, the training was completed in 643.3 min. 
The lowest training time per epoch achieved by AlexNet. 

Table 2 
The default input image sizes and number of total parameters for deep learning 
models.  

Model name Input size Number of total parameters 

AlexNet 227×227 60,954,656 
ResNet50 224×224 25,636,712 
VGG16 224×224 138,357,544 
Inception V3 299×299 23,851,784 
EfficientNet B0 224 × 224 5,330,571 

B1 240 × 240 7,856,239 
B2 260 × 260 9,177,569 
B3 300 × 300 12,320,535 
B4 380 × 380 19,466,823 
B5 456 × 456 30,562,527 
B6 528 × 528 43,265,143 
B7 600 × 600 66,658,687  

Table 3 
The parameter values used for deep learning models.  

Model name Image 
size 

Optimization method & parameters Learning 
rate 

AlexNet 227 ×
227 

Adam (Beta 1 = 0.9, Beta 2 = 0.999, 
Decay = 0.0) 

0.001 

VGG16 224 ×
224 

SGD (Momentum = 0.0, Decay = 0.0) 0.01 

ResNet50 224 ×
224 

Adam (Beta 1 = 0.9, Beta 2 = 0.999, 
Decay = 0.0) 

0.001 

Inception 
V3 

299 ×
299 

Adam (Beta 1 = 0.9, Beta 2 = 0.999, 
Decay = 0.0) 

0.001 

EfficientNet 132 ×
132 

Adam (Beta 1 = 0.9, Beta 2 = 0.999, 
Decay = 0.0) 

0.001  

Table 4 
Average results of deep learning models on original dataset.  

Model Avg 
Acc 
(%) 

Avg 
Sen 
(%) 

Avg 
Spe 
(%) 

Avg 
Pre 
(%) 

Time per 
epoch 
(sec) 

Total 
training 
time (min) 

B0 99.81 96.26 99.90 96.85 552 64.4 
B1 99.79 96.00 99.89 96.61 800 80.0 
B2 99.83 96.72 99.91 97.40 839 69.9 
B3 99.83 96.77 99.91 97.20 1065 177.5 
B4 99.84 96.82 99.92 97.24 1405 210.8 
B5 99.91 98.31 99.96 98.42 1930 643.3 
B6 99.69 94.00 99.84 94.99 2405 80.2 
B7 99.86 97.23 99.93 97.60 3240 918.0 
AlexNet 99.45 89.33 99.72 90.26 310 82.7 
ResNet50 99.77 95.44 99.88 96.53 1740 203.0 
VGG16 99.81 96.26 99.90 96.83 1465 146.5 
Inception 

V3 
99.81 96.26 99.90 96.84 2180 399.7  
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As seen in Table 5, the evaluations expressed for the B5 model in 
Table 4 for the original dataset can be said for the B4 model in 
augmented dataset. While the B4 model completed 1 epoch in 1548 s 
during the training, the training was completed in 283.8 min. The lowest 
training time per epoch achieved by AlexNet. 

As can be seen from both tables, B4 and B5 models offered a very 
close performance, but we can say that the B4 model was slightly more 
successful than the B5 on the augmented dataset. 

Figs. 7 and 8 show the accuracies obtained in the test sets of original 
and augmented datasets for all models in ascending order. Test accuracy 
given in these figures was calculated as the ratio of number of correctly 
classified samples to number of all samples. The B5 model achieved the 
highest accuracy with 99.91% in the original dataset, while the B4 
model achieved the highest accuracy with 99.97% in the augmented 
dataset. In addition, for both original and augmented datasets, AlexNet 
gave the lowest accuracy values with 99.45% and 99.67%, respectively. 
As can be seen from the test accuracy curves, the success of all models on 
the augmented dataset is higher than the original dataset. 

The TP, TN, FP, FN, accuracy, sensitivity, specificity and precision 
values obtained by B5 and B4 models for each class in the original and 
augmented datasets, respectively, are presented in Tables 6 and 7, 
respectively. Considering the precision values of EfficientNet architec-
ture for each class on the test dataset, the B5 model achieved the best 
performance in the original dataset ranged from 84.75% to 100%, while 
the B4 model achieved the best performance in the augmented dataset 
ranged from 96.08% to 100%. On the other hand, when the accuracy 
values obtained on the test dataset for each class were examined, the B5 
model achieved accuracy rate between 99.54% and 100% in the original 

dataset, while the B4 model achieved accuracy between 99.85% and 
100% in the augmented dataset. In addition, confusion matrices of B5 
and B4 models were given in Appendix A and Appendix B. 

For the B5 and B4 models, which give the best performances in the 
original and augmented datasets, the changes in the validation accuracy 
by epoch were shown in Fig. 9a and b respectively. The early stopping 
technique used in the training determined the 20th and 11th epochs as 
the restoring points for which the validation loss started to increase for 
the B5 and B4 models respectively (Fig. 9c and d). 

The accuracy and loss curves obtained for the B5 and B4 models on 
training and validation sets were given in Fig. 10a and b, respectively. As 
seen in Fig. 10a, the training accuracy in the original dataset exceeded 
98% in 6 epochs and the loss was significantly reduced at the end of 20 
epochs, resulting in the highest accuracy. As seen in Fig. 10b, in the 
augmented dataset, the loss was significantly reduced at the end of 11 
epochs and the highest accuracy was achieved over 98%. 

The results obtained in the test dataset showed that B5 and B4 
models of EfficientNet architecture have achieved the highest values 
compared to other deep learning models in original and augmented 
datasets with 99.91% and 99.97% respectively for accuracy and 98.42% 
and 99.39% respectively for precision. Although the accuracy values 
offered by the models varied between 99.45% and 99.97% in a narrow 
range, when it was evaluated in terms of the precision metric, it was seen 
that these values varied with more significant differences between 
90.26% and 99.39%. Precision is the proportion of correctly predicted 
positives out of all samples predicted as positive by the model and it 
increases as the number of false positives decreases. While all models 
used in the study increased accuracy and precision with varying dif-
ferences on the augmented dataset, the B4 model that offered the best 
performance on the augmented dataset achieved improvement in the 
accuracy and precision with 0.13% and 2.16% respectively. This showed 
us that as the number of data increased, the number of false positive 
predictions of models decreased and precision increased. 

In order to more perceptibly demonstrate the performance of deep 
learning architectures discussed in this study, total incorrect classifica-
tion numbers of the models for all classes and incorrect classification 
numbers for two notable classes were given in Table 8. As can be seen, 
B5 is the model with the lowest number of errors with 33 in the original 
dataset. For the augmented dataset, the model with the lowest number 
of incorrect classifications is B4 with 12. Two of the most remarkable 
number of misclassifications performed by the models were for healthy 
potato in the original dataset and for tomato early blight in the 
augmented dataset, respectively. As can be seen, while the B5 model 
made mistakes in only 9 samples in the classification of healthy potatoes, 
all other models made a relatively high number of misclassifications. In 
addition, B3, B4 and B7 models only have 1 misclassification in the 

Table 5 
Average results of deep learning models on augmented dataset.  

Model Avg 
Acc 
(%) 

Avg 
Sen 
(%) 

Avg 
Spe 
(%) 

Avg 
Pre 
(%) 

Time per 
epoch 
(sec) 

Total 
training 
time (min) 

B0 99.88 97.69 99.94 97.78 617 82.3 
B1 99.92 98.46 99.96 98.50 880 176.0 
B2 99.91 98.26 99.95 98.37 930 77.5 
B3 99.94 98.82 99.97 98.85 1180 157.3 
B4 99.97 99.38 99.98 99.39 1548 283.8 
B5 99.93 98.72 99.97 98.76 2150 179.2 
B6 99.93 98.67 99.96 98.73 2685 313.3 
B7 99.90 98.00 99.95 98.10 3625 181.3 
AlexNet 99.67 93.64 99.83 93.87 352 88.0 
ResNet50 99.88 97.59 99.94 97.91 1916 223.5 
VGG16 99.94 98.77 99.97 98.82 1622 108.1 
Inception 

V3 
99.93 98.62 99.96 98.70 2330 233.0  

Fig. 7. Test accuracies of deep learning models for original dataset.  
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augmented dataset, while other CNN architectures have a high number 
of misclassifications except VGG16. 

There are many studies in the literature that classify plant disease 
using this dataset. In PlantVillage dataset, most of the studies (Amara 
et al., 2017; Brahimi et al., 2017; Cruz et al., 2017; Durmus et al., 2017; 
Rangarajan et al., 2018; Sibiya and Sumbwanyambe, 2019; Wallelign 
et al., 2018; Yamamoto et al., 2017; Zhang et al., 2018b) classify the 
diseases of a single plant species. In addition, it was observed that some 

other studies not only used PlantVillage dataset but also some other 
plant images obtained from the real environment (Chen et al., 2020b; 
Ferentinos, 2018; KC et al., 2019; Khan et al., 2018; Ma et al., 2018; 
Zhang et al., 2018a). 

The results of studies (Chen et al., 2020b; Geetharamani and Pan-
dian, 2019; Mohanty et al., 2016; Too et al., 2019) dealing with diseases 
of all plant species in PlantVillage dataset were compared with the re-
sults of our study and shown in Table 9. As seen in this table, EfficientNet 

Fig. 8. Test accuracies of deep learning models for augmented dataset.  

Table 6 
Classification performance of B5 on original dataset for each class.  

Class TP TN FP FN Acc (%) Sen (%) Spe (%) Pre (%) 

Apple scab 50 1900 0 0 100.00 100.00 100.00 100.00 
Apple Black rot 50 1900 0 0 100.00 100.00 100.00 100.00 
Apple Cedar apple rust 49 1900 0 1 99.95 98.00 100.00 100.00 
Apple healthy 50 1899 1 0 99.95 100.00 99.95 98.04 
Background without leaves 50 1900 0 0 100.00 100.00 100.00 100.00 
Blueberry healthy 50 1899 1 0 99.95 100.00 99.95 98.04 
Cherry Powdery mildew 50 1900 0 0 100.00 100.00 100.00 100.00 
Cherry healthy 50 1900 0 0 100.00 100.00 100.00 100.00 
Corn Cercospora leaf spot Gray leaf spot 46 1899 1 4 99.74 92.00 99.95 97.87 
Corn Common rust 50 1900 0 0 100.00 100.00 100.00 100.00 
Corn Northern Leaf Blight 49 1896 4 1 99.74 98.00 99.79 92.45 
Corn healthy 50 1900 0 0 100.00 100.00 100.00 100.00 
Grape Black rot 49 1900 0 1 99.95 98.00 100.00 100.00 
Grape Esca (Black Measles) 50 1899 1 0 99.95 100.00 99.95 98.04 
Grape Leaf blight (Isariopsis Leaf Spot) 50 1900 0 0 100.00 100.00 100.00 100.00 
Grape healthy 50 1900 0 0 100.00 100.00 100.00 100.00 
Orange Haunglongbing (Citrus greening) 50 1900 0 0 100.00 100.00 100.00 100.00 
Peach Bacterial spot 50 1895 5 0 99.74 100.00 99.74 90.91 
Peach healthy 47 1900 0 3 99.85 94.00 100.00 100.00 
Pepper, bell Bacterial spot 50 1899 1 0 99.95 100.00 99.95 98.04 
Pepper, bell healthy 49 1900 0 1 99.95 98.00 100.00 100.00 
Potato Early blight 50 1900 0 0 100.00 100.00 100.00 100.00 
Potato Late blight 50 1891 9 0 99.54 100.00 99.53 84.75 
Potato healthy 41 1900 0 9 99.54 82.00 100.00 100.00 
Raspberry healthy 50 1900 0 0 100.00 100.00 100.00 100.00 
Soybean healthy 50 1898 2 0 99.90 100.00 99.89 96.15 
Squash Powdery mildew 50 1900 0 0 100.00 100.00 100.00 100.00 
Strawberry Leaf scorch 50 1900 0 0 100.00 100.00 100.00 100.00 
Strawberry healthy 50 1900 0 0 100.00 100.00 100.00 100.00 
Tomato Bacterial spot 50 1897 3 0 99.85 100.00 99.84 94.34 
Tomato Early blight 49 1899 1 1 99.90 98.00 99.95 98.00 
Tomato Late blight 47 1899 1 3 99.79 94.00 99.95 97.92 
Tomato Leaf Mold 50 1900 0 0 100.00 100.00 100.00 100.00 
Tomato Septoria leaf spot 50 1900 0 0 100.00 100.00 100.00 100.00 
Tomato Spider mites Two-spotted spider mite 46 1900 0 4 99.79 92.00 100.00 100.00 
Tomato Target Spot 48 1899 1 2 99.85 96.00 99.95 97.96 
Tomato Yellow Leaf Curl Virus 48 1899 1 2 99.85 96.00 99.95 97.96 
Tomato mosaic virus 49 1900 0 1 99.95 98.00 100.00 100.00 
Tomato healthy 50 1899 1 0 99.95 100.00 99.95 98.04  
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B5 model achieved slightly better accuracy than studies of Mohanty 
et al., Chen et al. and Too et al. with original dataset. On the augmented 
dataset, EfficientNet B4 model was better than the model proposed by 
Geetharamani and Pandian in terms of accuracy and precision metrics. 
Experimental studies showed that EfficientNet B4 and B5 models, which 
offer the best classification performance, could be successfully used in 
plant leaf disease classification. 

5. Conclusions 

Deep learning methods have recently become popular for image 
processing and pattern recognition. In this study, EfficientNet deep 
learning architecture was proposed to classify the plant leaf images of 39 
classes in the PlantVillage dataset. The success of the proposed archi-
tecture was compared with the state-of-the-art deep learning architec-
tures used in plant leaf disease detection in the literature. Experimental 
studies were conducted in both original and augmented versions of the 
PlantVillage dataset. Considering both the average accuracy and the 
average precision metric on both the original and augmented datasets, 
the B4 and B5 models were found to be superior to other CNN archi-
tectures. The B5 model achieved 99.91% accuracy and 98.42% precision 
in the original dataset, while the B4 model achieved 99.97% accuracy 
and 99.39% precision in the augmented dataset. 

Furthermore, in EfficientNet architecture, even though the input 
image size was necessarily resized to 132 × 132 due to hardware limi-
tations, it yielded more successful results than other CNN models that 
received input images with higher resolutions. On the other hand, when 
the training times of the models per epoch were analyzed, AlexNet had 
the lowest times in original and augmented datasets, with 310 and 352 s 
respectively, but it’s average accuracy and precision were behind other 
models. In addition, B5 and B4 models, which achieved the highest 
accuracy and precision in the original and augmented datasets respec-
tively, completed 1 epoch in acceptable times as 1930 and 1548 s 
respectively. 

In the future work, it is planned to expand the plant leaf disease 
dataset by increasing the plant diversity and the number of classes. This 
will help developing models that can make more accurate predictions in 
difficult environments. By deploying these improved models in mobile 
environments, both plant pathologists and farmers will be able to 
quickly diagnose the plant diseases and take the necessary precautions. 
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Appendix A. Confusion matrix of EfficientNet B5 for original dataset 

Table 7 
Classification performance of B4 on augmented dataset for each class.  

Class TP TN FP FN Acc (%) Sen (%) Spe (%) Pre (%) 

Apple scab 50 1900 0 0 100.00 100.00 100.00 100.00 
Apple Black rot 50 1900 0 0 100.00 100.00 100.00 100.00 
Apple Cedar apple rust 50 1900 0 0 100.00 100.00 100.00 100.00 
Apple healthy 50 1900 0 0 100.00 100.00 100.00 100.00 
Background without leaves 50 1898 2 0 99.90 100.00 99.89 96.15 
Blueberry healthy 50 1900 0 0 100.00 100.00 100.00 100.00 
Cherry Powdery mildew 50 1900 0 0 100.00 100.00 100.00 100.00 
Cherry healthy 49 1900 0 1 99.95 98.00 100.00 100.00 
Corn Cercospora leaf spot Gray leaf spot 49 1898 2 1 99.85 98.00 99.89 96.08 
Corn Common rust 50 1900 0 0 100.00 100.00 100.00 100.00 
Corn Northern Leaf Blight 48 1899 1 2 99.85 96.00 99.95 97.96 
Corn healthy 50 1900 0 0 100.00 100.00 100.00 100.00 
Grape Black rot 50 1899 1 0 99.95 100.00 99.95 98.04 
Grape Esca (Black Measles) 49 1900 0 1 99.95 98.00 100.00 100.00 
Grape Leaf blight (Isariopsis Leaf Spot) 50 1900 0 0 100.00 100.00 100.00 100.00 
Grape healthy 50 1900 0 0 100.00 100.00 100.00 100.00 
Orange Haunglongbing (Citrus greening) 50 1900 0 0 100.00 100.00 100.00 100.00 
Peach Bacterial spot 50 1900 0 0 100.00 100.00 100.00 100.00 
Peach healthy 50 1900 0 0 100.00 100.00 100.00 100.00 
Pepper, bell Bacterial spot 50 1900 0 0 100.00 100.00 100.00 100.00 
Pepper, bell healthy 50 1900 0 0 100.00 100.00 100.00 100.00 
Potato Early blight 50 1900 0 0 100.00 100.00 100.00 100.00 
Potato Late blight 50 1899 1 0 99.95 100.00 99.95 98.04 
Potato healthy 50 1899 1 0 99.95 100.00 99.95 98.04 
Raspberry healthy 50 1900 0 0 100.00 100.00 100.00 100.00 
Soybean healthy 50 1900 0 0 100.00 100.00 100.00 100.00 
Squash Powdery mildew 50 1900 0 0 100.00 100.00 100.00 100.00 
Strawberry Leaf scorch 50 1900 0 0 100.00 100.00 100.00 100.00 
Strawberry healthy 50 1900 0 0 100.00 100.00 100.00 100.00 
Tomato Bacterial spot 48 1900 0 2 99.90 96.00 100.00 100.00 
Tomato Early blight 49 1899 1 1 99.90 98.00 99.95 98.00 
Tomato Late blight 49 1899 1 1 99.90 98.00 99.95 98.00 
Tomato Leaf Mold 48 1900 0 2 99.90 96.00 100.00 100.00 
Tomato Septoria leaf spot 50 1900 0 0 100.00 100.00 100.00 100.00 
Tomato Spider mites Two-spotted spider mite 50 1899 1 0 99.95 100.00 99.95 98.04 
Tomato Target Spot 49 1900 0 1 99.95 98.00 100.00 100.00 
Tomato Yellow Leaf Curl Virus 50 1899 1 0 99.95 100.00 99.95 98.04 
Tomato mosaic virus 50 1900 0 0 100.00 100.00 100.00 100.00 
Tomato healthy 50 1900 0 0 100.00 100.00 100.00 100.00  
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Fig. 9. a–b) Validation accuracies for different epochs on original and augmented datasets, c–d) Loss curves for different epochs on training and validation sets of 
original and augmented datasets. 

Fig. 10. Accuracy/loss curves of the best models for training and validation sets of original (a) and augmented (b) datasets.  
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Appendix B. Confusion matrix of EfficientNet B4 for augmented 
dataset 

Table 8 
False prediction numbers of deep learning models. 

Table 9 
Comparison of deep learning methods for plant leaf disease classification.  

Study Method Sen 
(%) 

Spe 
(%) 

Acc 
(%) 

Pre 
(%) 

Mohanty et al. 
(2016) 

GoogleNet (original 
dataset) 

99.35 – 99.35 99.35 

Too et al. (2019) DenseNets-121 
(original dataset) 

– – 99.75 – 

Geetharamani and 
Pandian (2019) 

9-layer CNN model 
(augmented 
dataset) 

99.89 – 96.46 96.47 

Chen et al. (2020b) MobileNet-Beta 
(original dataset) 

99.01 99.94 99.85 – 

Our study EfficientNet B5 
(original dataset) 

98.31 99.96 99.91 98.42 

EfficientNet B4 
(augmented 
dataset) 

99.38 99.98 99.97 99.39  
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