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Abstract: In this paper, we consider Bell-based Stirling polynomials of the second kind and derive
some useful relations and properties including some summation formulas related to the Bell polyno-
mials and Stirling numbers of the second kind. Then, we introduce Bell-based Bernoulli polynomials
of order α and investigate multifarious correlations and formulas including some summation formu-
las and derivative properties. Also, we acquire diverse implicit summation formulas and symmetric
identities for Bell-based Bernoulli polynomials of order α. Moreover, we attain several interesting
formulas of Bell-based Bernoulli polynomials of order α arising from umbral calculus.

Keywords: Bernoulli polynomials; bell polynomials; mixed-type polynomials; stirling numbers of
the second kind; umbral calculus; summation formulas; derivative properties

1. Introduction

Special polynomials and numbers possess much importance in multifarious areas of
sciences such as physics, mathematics, applied sciences, engineering and other related
research fields covering differential equations, number theory, functional analysis, quan-
tum mechanics, mathematical analysis, mathematical physics and so on, cf. [1–25] and see
also each of the references cited therein. For example; Bernoulli polynomials and num-
bers are closely related to the Riemann zeta function, which possesses a connection with
the distribution of prime numbers, cf. [22,24]. Some of the most significant polynomials
in the theory of special polynomials are the Bell, Euler, Bernoulli, Hermite, and Genoc-
chi polynomials. Recently, the aforesaid polynomials and their diverse generalizations
have been densely considered and investigated by many physicists and mathematicians,
cf. [1–22,26] and see also the references cited therein.

In recent years, properties of special polynomials arising from umbral calculus have
been studied and examined by several mathematicians. For instance, Dere et al. [7]
considered Hermite base Bernoulli type polynomials and, by applying the umbral algebra
to these polynomials, gave new identities for the Bernoulli polynomials of higher order,
the Hermite polynomials and the Stirling numbers of the second kind. Kim et al. [11]
acquired several new formulas for the Bernulli polynomials based upon the theory of
the umbral calculus. Kim et al. [12] derived some identities of Bernoulli, Euler and Abel
polynomials arising from umbral calculus. Kim et al. [14] studied partially degenerate
Bell numbers and polynomials by using umbral calculus and derived some new identities.
Kim et al. [16] investigated some properties and new identities for the degenerate ordered
Bell polynomials associated with special polynomials derived from umbral calculus.

In this paper, we consider Bell-based Stirling polynomials of the second kind and
derive some useful relations and properties including some summation formulas related
to the Bell polynomials and Stirling numbers of the second kind. Then, we introduce
Bell-based Bernoulli polynomials of order α and investigate multifarious correlations
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and formulas including some summation formulas and derivative properties. Also, we
acquire diverse implicit summation formulas and symmetric identities for Bell-based
Bernoulli polynomials of order α. Moreover, we analyze some special cases of the results.
Furthermore, we attain several interesting formulas of Bell-based Bernoulli polynomials of
order α arising from umbral calculus to have alternative ways of deriving our results.

2. Preliminaries

Throughout this paper, the familiar symbols C, R, Z, N and N0 refer to the set of all
complex numbers, the set of all real numbers, the set of all integers, the set of all natural
numbers and the set of all non-negative integers, respectively.

The Stirling polynomials S2(n, k : x) and numbers S2(n, k) of the second kind are
given by the following exponential generating functions (cf. [3,8,13,15,26]):

∞

∑
n=0

S2(n, k : x)
tn

n!
=

(
et − 1

)k

k!
etx and

∞

∑
n=0

S2(n, k)
tn

n!
=

(
et − 1

)k

k!
. (1)

In combinatorics, Stirling numbers of the second kind S2(n, k) counts the number of ways
in which n distinguishable objects can be partitioned into k indistinguishable subsets when
each subset has to contain at least one object. The Stirling numbers of the second kind can
also be derived by the following recurrence relation for ζ ∈ N0 (cf. [3,8,13,15,26]):

xn =
n

∑
k=0

S2(n, k)(x)k, (2)

where (x)n = x(x− 1)(x− 2) · · · (x− (n− 1)) for n ∈ N with (x)0 = 1 (see [4,18,19]).
For each integer k ∈ N0, Sk(n) = ∑n

l=0 lk is named the sum of integer powers. The ex-
ponential generating function of Sk(n) is as follows (cf. [20]):

∞

∑
k=0

Sk(n)
tk

k!
=

e(n+1)t − 1
et − 1

. (3)

The bivariate Bell polynomials are defined as follows:

∞

∑
n=0

Beln(x; y)
tn

n!
= ey(et−1)ext. (4)

When x = 0, Beln(0; y) := Beln(y) is called the classical Bell polynomials (also called expo-
nential polynomials) given by means of the following generating function (cf. [3,4,9,26]):

∞

∑
n=0

Beln(y)
tn

n!
= ey(et−1). (5)

The Bell numbers Beln are attained by taking y = 1 in (5), that is Beln(0; 1) = Beln(1) :=
Beln and are given by the following exponential generating function (cf. [3,4,9,26]):

∞

∑
n=0

Beln
tn

n!
= e(et−1) . (6)

The Bell polynomials considered by Bell [26] appear as a standard mathematical tool and
arise in combinatorial analysis. Since the first consideration of the Bell polynomials, these
polynomials have been intensely investigated and studied by several mathematicians, cf.
[2,3,8,12–16,22,26] and see also the references cited therein.
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The usual Bell polynomials and Stirling numbers of the second kind satisfy the
following relation (cf. [9])

Beln(y) =
n

∑
m=0

S2(n, m)ym. (7)

The Bernoulli polynomials B(α)
n (x) of order α are defined as follows (cf. [1,7,11,12,18,21]):

∞

∑
n=0

B(α)
n (x)

tn

n!
=

(
t

et − 1

)α

ext (|t| < 2π). (8)

Setting x = 0 in (8), we get B(α)
n (0) := B(α)

n known as the Bernoulli numbers of order α. We
also note that when α = 1 in (8), the polynomials B(α)

n (x) and numbers B(α)
n reduce to the

classical Bernoulli polynomials Bn(x) and numbers Bn.

3. Bell-Based Stirling Polynomials of the Second Kind

In this section, we introduce the Bell-based Stirling polynomials of the second kind
and analyze their elementary properties and relations.

Here is the definition of the Bell-based Stirling polynomials of the second kind as
follows.

Definition 1. The Bell-based Stirling polynomials of the second kind are introduced by the follow-
ing generating function:

∞

∑
n=0

BelS2(n, k : x, y)
tn

n!
=

(
et − 1

)k

k!
ext+y(et−1). (9)

Diverse special circumstances of BelS2(n, k : x, y) are discussed below:

Remark 1. Replacing x = 0 in (9), we acquire Bell-Stirling polynomials BelS2(n, k : y) of the
second kind, which are also a new generalization of the usual Stirling numbers of the second kind in
(1), as follows:

∞

∑
n=0

BelS2(n, k : y)
tn

n!
=

(
et − 1

)k

k!
ey(et−1). (10)

Remark 2. Substituting y = 0 in (9), we get the Stirling polynomials of the second kind given by
(1), cf. [11,21,22].

Remark 3. Upon setting x = y = 0 in (9), the Bell-based Stirling polynomials of the second kind
reduce to the classical Stirling numbers of the second kind S2(n, k) by (1), cf. [9,22,24].

We now ready to derive some properties of the BelS2(n, k : x, y).

Theorem 1. The following correlation

BelS2(n, k : x, y) =
n

∑
u=0

(
n
u

)
S2(u, k)Beln−u(x; y) (11)

holds for non-negative integer n.
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Proof. This theorem is proved by (1), (4), and (9), as follows:

∞

∑
n=0

BelS2(n, k : x, y)
tn

n!
=

(
et − 1

)k

k!
ext+y(et−1)

=
∞

∑
n=k

S2(n, k)
tn

n!

∞

∑
n=0

Beln(x; y)
tn

n!

=
∞

∑
n=0

n

∑
u=0

(
n
u

)
S2(u, k)Beln−u(x; y)

tn

n!
,

which provides the desired result (11).

Remark 4. Theorem 1 gives the following formula including the Stirling numbers of the second
kind, the Bell-Stirling polynomials of the second kind, and Bell polynomials:

BelS2(n, k : y) =
n

∑
u=0

(
n
u

)
S2(u, k)Beln−u(y).

Theorem 2. The following relations

BelS2(n, k : x, y) =
n

∑
l=0

(
n
l

)
BelS2(l, k : y)xn−l (12)

and

BelS2(n, k : x, y) =
n

∑
l=0

(
n
l

)
S2(l, k : x)Beln−l(y) (13)

hold for non-negative integers n and k with n ≥ k.

Proof. The proofs are similar to Theorem 1.

Theorem 3. The following summation formulae for Bell-based Stirling polynomials of the second
kind

BelS2(n, k : x1 + x2, y) =
n

∑
u=0

(
n
u

)
BelS2(u, k : x1, y)xn−u

2 (14)

and

BelS2(n, k : x, y1 + y2) =
n

∑
u=0

(
n
u

)
BelS2(u, k : x, y1)Beln−u(y2) (15)

hold for non-negative integers n and k with n ≥ k.

Proof. Using the following equalities

e(x1+x2)t+y(et−1) = ex1t+y(et−1)ex2t and ext+(y1+y2)(et−1) = ext+y1(et−1)ey2(et−1),

the proofs are similar to Theorem 1. So, we omit them.

Theorem 4. The following relation

BelS2(n, k1 + k2 : x, y) =
k1!k2!

(k1 + k2)!

n

∑
u=0

(
n
u

)
BelS2(u, k1 : x, y)S2(n− u, k2) (16)

is valid for non-negative integer n.
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Proof. In view of (1) and (9), we have

∞

∑
n=0

BelS2(n, k1 + k2 : x, y)
tn

n!
=

(
et − 1

)k1+k2

(k1 + k2)!
ext+y(et−1)

=
k1!k2!

(k1 + k2)!

(
et − 1

)k1

k1
ext+y(et−1)

(
et − 1

)k2

k2!

=
k1!k2!

(k1 + k2)!

∞

∑
n=0

n

∑
u=0

(
n
u

)
BelS2(u, k1 : x, y)S2(n− u, k2)

tn

n!
,

which gives the asserted result (16).

Theorem 5. The following relation

S2(n, k) =
n

∑
u=0

(
n
u

)
BelS2(u, k : x, y)Beln−u(−x;−y) (17)

holds for non-negative integer n.

Proof. Utilizing the following equality(
et − 1

)k

k!
=

(
et − 1

)k

k!
ext+y(et−1)e−xt−y(et−1),

it is similar to Theorem 1. So, we omit the proof.

Remark 5. Theorem 5 gives the following formula including the Stirling numbers of the second
kind, the Bell-Stirling polynomials of the second kind, and Bell polynomials:

S2(n, k) =
n

∑
u=0

(
n
u

)
BelS2(u, k : −y)Beln−u(y).

4. Bell-Based Bernoulli Polynomials and Numbers of Order α

In this section, we introduce Bell-based Bernoulli polynomials of order α and inves-
tigate multifarious correlations and formulas including summation formulas, derivation
rules, and correlations with the Bell-based Stirling numbers of the second kind.

We now introduce Bell-based Bernoulli polynomials of order α as follows.

Definition 2. The Bell-based Bernoulli polynomials of order α are defined by the following expo-
nential generating function:

∞

∑
n=0

Bel B
(α)
n (x; y)

tn

n!
=

(
t

et − 1

)α

ext+y(et−1). (18)

Some special cases of the Bell-based Bernoulli polynomials of order α are analyzed
below.

Remark 6. In the special case x = 0 in (18), we acquire Bell-Bernoulli polynomials Bel B
(α)
n (y) of

order α, which are also new extensions of the Bernoulli numbers of order α in (8), as follows:

∞

∑
n=0

Bel B
(α)
n (y)

tn

n!
=

(
t

et − 1

)α

ey(et−1). (19)

Remark 7. Upon letting y = 0 in (18), the Bell-based Bernoulli polynomials Bel B
(α)
n (x; y) of order

α reduce to the familiar Bernoulli polynomials B(α)
n (x) of order α in (8).
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Remark 8. When y = 0 and α = 1, the polynomials Bel B
(α)
n (x; y) reduce to the usual Bernoulli

polynomials Bn(x).

We also note that
Bel B

(1)
n (x; y) := Bel Bn(x; y),

which we call the Bell-based Bernoulli polynomials.
We now perform to derive some properties of the Bell-based Bernoulli polynomials of

order α and we first provide the following theorem.

Theorem 6. Each of the following summation formulae

Bel B
(α)
n (x; y) =

n

∑
k=0

(
n
k

)
B(α)

k Beln−k(x; y) (20)

Bel B
(α)
n (x; y) =

n

∑
k=0

(
n
k

)
B(α)

k (x)Beln−k(y) (21)

Bel B
(α)
n (x; y) =

n

∑
k=0

(
n
k

)
Bel B

(α)
k (y)xn−k (22)

hold for n ∈ N0.

Proof. They are similar to Theorem 1. So, we omit them.

We provide an implicit summation formula for the Bell-based Bernoulli polynomials
by the following theorem.

Theorem 7. The following relationship

Bel B
(α1+α2)
n (x1 + x2; y1 + y2) =

n

∑
k=0

(
n
k

)
Bel B

(α1)
k (x1; y1)Bel B

(α2)
n−k(x2; y2) (23)

is valid for n ∈ N0.

Proof. Using the following equality

tα1+α2

(et − 1)α1+α2
e(x1+x2)t+(y1+y2)(et−1) =

tα1

(et − 1)α1
ex1t+y1(et−1) tα2

(et − 1)α2
ex2t+y2(et−1),

the proof is similar to Theorem 1. So, we omit it.

One of the special cases of Theorem 7 is given, for every n ∈ N0, by

Bel B
(α)
n (x + 1; y) =

n

∑
k=0

(
n
k

)
Bel B

(α)
k (x; y), (24)

which is a generalization of the well-known formula for usual Bernoulli polynomials
given by

Bn(x + 1) =
n

∑
k=0

(
n
k

)
Bk(x) (cf. [11]).

We now provide derivative operator properties for the polynomials Bel B
(α)
n (x; y)

as follows.
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Theorem 8. The difference operator formulas for the Bell-based Bernoulli polynomials

∂

∂x Bel B
(α)
n (x; y) = n Bel B

(α)
n−1(x; y) (25)

and
∂

∂y Bel B
(α)
n (x; y) = n Bel B

(α−1)
n−1 (x; y). (26)

hold for n ∈ N.

Proof. Based on the following derivative properties

∂

∂x
ext+y(et−1) = text+y(et−1) and

∂

∂y
ext+y(et−1) =

(
et − 1

)
ext+y(et−1),

the proof is completed.

A recurrence relation for the Bell-based Bernoulli polynomials is given by the following
theorem.

Theorem 9. The following summation formula

Beln(x; y) = Bel Bn+1(x + 1; y)− Bel Bn+1(x; y)
n + 1

=
1

n + 1

n

∑
k=0

(
n + 1

k

)
Bel Bk(x; y) (27)

holds for n ∈ N0.

Proof. By means of Definition 2, based on the following equality

ext+y(et−1) =
et − 1

t

∞

∑
n=0

Bel Bn(x; y)
tn

n!
,

the proof is done.

Remark 9. The result (27) is an extension of the well-known formula for Bernoulli polynomials
given by (cf. [22,23])

xn =
Bn+1(x + 1)− Bn+1(x)

n + 1

An explicit formula for the Bell-based Bernoulli polynomials is given by the following
theorem.

Theorem 10. The following explicit formula

Bel Bn(x; y) =
∞

∑
k=0

k−1

∑
l=0

yk
(

k− 1
l

)
(−1)k−l−1 (l + x)n+1

n + 1

holds for n ∈ N0.
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Proof. By means of Definition 2, based on the following equality

∞

∑
n=0

Bel Bn(x; y)
tn

n!
=

text

et − 1
ey(et−1) = text

∞

∑
k=0

yk(et − 1
)k−1

= t
∞

∑
k=0

k−1

∑
l=0

yk
(

k− 1
l

)
(−1)k−l−1e(l+x)t

=
∞

∑
n=0

∞

∑
k=0

k−1

∑
l=0

yk
(

k− 1
l

)
(−1)k−l−1(l + x)n tn−1

n!
,

which gives the asserted result.

We give the following theorem.

Theorem 11. The following formula including the Bell-based Bernoulli polynomials of higher-order
and Stirling numbers of the second kind

Beln(x; y) =
n!k!

(n + k)!

n+k

∑
l=0

(
n + k

l

)
Bel B

(k)
l (x; y)S2(n + k− l, m) (28)

is valid for n ∈ N0 and k ∈ N.

Proof. By means of Definition 2, based on the following equality

ext+y(et−1) = k!t−k
(
et − 1

)k

k!

∞

∑
n=0

Bel B
(k)
n (x; y)

tn

n!
,

the proof is completed.

Here, we present the following theorem including the Bell-based Bernoulli polynomi-
als and the Stirling polynomials of the second kind.

Theorem 12. The following correlation

Bel B
(α)
n (x; y) =

n

∑
l=0

∞

∑
k=0

(
n
l

)
(x)kS2(l, k) Bel B

(α)
n−l(y) (29)

holds for non-negative integers n.

Proof. By means of Definition 2 and, using (1) and (19), we obtain

∞

∑
n=0

Bel B
(α)
n (x; y)

tn

n!
=

tα

(et − 1)α ey(et−1)(et − 1 + 1
)x

=
tα

(et − 1)α ey(et−1)
∞

∑
k=0

(x)k

(
et − 1

)k

k!

=
∞

∑
n=0

n

∑
l=0

∞

∑
k=0

(
n
l

)
(x)kS2(l, k) Bel B

(α)
n−l(y)

tn

n!
,

which gives the asserted result (29).

A correlation including the Bell-based Bernoulli polynomials of order α and the Bell-
based Stirling polynomials of the second kind is stated below.
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Theorem 13. The following summation formula

Beln(x1 + x2; y1 + y2) =
n!k!

(n + k)!

n+k

∑
l=0

(
n + k

l

)
Bel B

(k)
l (x2; y2) BelS2(n + k− l, k : x1, y1)

(30)
holds for non-negative integers k and n with n ≥ k.

Proof. By (4) and (9), we have

∞

∑
n=0

BelS2(n, k : x1, y1)
tn

n!

∞

∑
n=0

Bel B
(k)
n (x2; y2)

tn

n!
=

tk

k!
e(x1+x2)t+(y1+y2)(et−1),

which implies the claimed result (30).

Recently, implicit summation formulas and symmetric identities for special polyno-
mials have been studied by some mathematicians, cf. [8,20] and see the references cited
therein. Now, we investigate some implicit summation formula and symmetric identities
for Bell-based Bernoulli polynomials of order α.

We note that the following series manipulation formulas hold (cf. [20,24]):

∞

∑
N=0

f (N)
(x + y)N

N!
=

∞

∑
n,m=0

f (n + m)
xn

n!
ym

m!
(31)

and
∞

∑
k,l=0

A(l, k) =
∞

∑
k=0

k

∑
l=0

A(l, k− l). (32)

We give the following theorem.

Theorem 14. The following implicit summation formula

Bel B
(α)
k+l(x; y) =

k,l

∑
n,m=0

(
k
n

)(
l
m

)
(x− z)n+m

Bel B
(α)
k+l−n−m(z; y) (33)

holds.

Proof. Upon setting t by t + u in (18), we derive(
t + u

et+u − 1

)α

ey(et+u−1) = e−z(t+u)
∞

∑
k,l=0

Bel B
(α)
k+l(z; y)

tk

k!
ul

l!
.

Again, replacing z by x in the last equation, and using (31), we get

e−x(t+u)
∞

∑
k,l=0

Bel B
(α)
k+l(x; y)

tk

k!
ul

l!
=

(
t + u

et+u − 1

)α

ey(et+u−1)

By the last two equations, we obtain

∞

∑
k,l=0

Bel B
(α)
k+l(x; y)

tk

k!
ul

l!
= e(x−z)(t+u)

∞

∑
k,l=0

Bel B
(α)
k+l(z; y)

tk

k!
ul

l!
,

which yields

∞

∑
k,l=0

Bel B
(α)
k+l(x; y)

tk

k!
ul

l!
=

∞

∑
n,m=0

(x− z)n+m tn

n!
um

m!

∞

∑
k,l=0

Bel B
(α)
k+l(z; y)

tk

k!
ul

l!
.
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Utilizing (32), we acquire

∞

∑
k,l=0

Bel B
(α)
k+l(x; y)

tk

k!
ul

l!
=

∞

∑
k,l=0

k,l

∑
n,m=0

(x− z)n+m
Bel B

(α)
k+l−n−m(z; y)

n!m!(k− l)!(l −m)!
tkul ,

which implies the asserted result (33).

Corollary 1. Letting k = 0 in (33), the following implicit summation formula holds:

Bel B
(α)
l (x; y) =

l

∑
m=0

(
l
m

)
(x− z)m

Bel B
(α)
l−m(z; y).

Corollary 2. Upon setting k = 0 and replacing x by x + z in (33), we attain

Bel B
(α)
l (x + z; y) =

l

∑
m=0

(
l
m

)
xm

Bel B
(α)
l−m(z; y).

Now, we give the following theorem.

Theorem 15. The following symmetric identity

n

∑
k=0

(
n
k

)
Bel B

(α)
n−k(bx; y) Bel B

(α)
k (ax; y)an−kbk =

n

∑
k=0

(
n
k

)
Bel B

(α)
k (bx; y) Bel B

(α)
n−k(ax; y)akbn−k (34)

holds for a, b ∈ R and n ≥ 0.

Proof. Let

Υ =

(
t2

(eat − 1)
(
ebt − 1

))α

e2abxt+y(eat−1)+y(ebt−1).

Then, the expression for Υ is symmetric in a and b, and we derive the following two
expansions of Υ:

Υ =
∞

∑
n=0

Bel B
(α)
n (bx; y)

(at)n

n!

∞

∑
n=0

Bel B
(α)
n (ax; y)

(bt)n

n!

=
∞

∑
n=0

n

∑
k=0

(
n
k

)
Bel B

(α)
n−k(bx; y) Bel B

(α)
k (ax; y)an−kbk tn

n!

and, similarly,

Υ =
∞

∑
n=0

n

∑
k=0

(
n
k

)
Bel B

(α)
k (bx; y) Bel B

(α)
n−k(ax; y)akbn−k tn

n!
,

which gives the desired result (34).

Here is another symmetric identity for Bel B
(α)
n (x; y) as follows.

Theorem 16. Let a, b ∈ R and n ≥ 0. Then the following identity holds:

n

∑
k=0

b−1

∑
i=0

a−1

∑
j=0

(
n
k

)
Bel B

(α)
k

(
i +

b
a

j + bx1; y
)

Bel B
(α)
n−k(ax2; y)akbn−k (35)

=
n

∑
k=0

b−1

∑
i=0

a−1

∑
j=0

(
n
k

)
Bel B

(α)
k

( a
b

i + j + ax2; y
)

Bel B
(α)
n−k(bx1; y)bkan−k.
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Proof. Let

Ψ =
(at)α(bt)α

(eat − 1)α+1(ebt − 1
)α+1

(
eabt − 1

)2
eab(x1+x2)t+y(eat−1)+x(ebt−1)

=

(
at

eat − 1

)α
(

eabt − 1
eat − 1

)
eabx1t+y(eat−1)

(
bt

ebt − 1

)α
(

eabt − 1
ebt − 1

)
eabx2t+y(ebt−1). (36)

By (18), the formula (36) can be expanded as follows

Ψ =

(
at

eat − 1

)α

eabx1t+y(eat−1)
b−1

∑
i=0

eati
(

bt
ebt − 1

)α

eabx2t+y(ebt−1)
a−1

∑
j=0

ebtj

=
b−1

∑
i=0

a−1

∑
j=0

(
at

eat − 1

)α

e(i+ b
a j+bx1)at+y(eat−1)

(
bt

ebt − 1

)α

eabx2t+y(ebt−1)

=
∞

∑
n=0

n

∑
k=0

b−1

∑
i=0

a−1

∑
j=0

(
n
k

)
Bel B

(α)
k

(
i +

b
a

j + bx1; y
)

Bel B
(α)
n−k(ax2; y)akbn−k tn

n!

and similarly,

Ψ =
∞

∑
n=0

n

∑
k=0

b−1

∑
i=0

a−1

∑
j=0

(
n
k

)
Bel B

(α)
k

( a
b

i + j + ax2; x
)

Bel B
(α)
n−k(bx1; x)an−kbk tn

n!
,

which means the claimed result (35).

Lastly, we provide the following symmetric identity.

Theorem 17. The following symmetric identity

n

∑
l=0

l

∑
k=0

(
n
l

)(
l
k

)
Sn−l(b− 1) Bel B

(α)
k (bx1; y) Bel B

(α+1)
l−k (ax2; y)an+k+1−lbl−k

=
n

∑
l=0

l

∑
k=0

(
n
l

)(
l
k

)
Sn−l(a− 1) Bel B

(α)
k (ax2; y) Bel B

(α+1)
l−k (bx1; y)bn+k+1−lal−k (37)

holds for a, b ∈ Z and n ≥ 0.

Proof. Let

Ω =
(at)α+1(bt)α+1

(eat − 1)α+1(ebt − 1
)α+1

(
eabt − 1

)
eab(x1+x2)t+y(eat−1)+y(ebt−1).

By (3) and (18), we observe that

Ω = at

(
eabt − 1
eat − 1

)(
at

eat − 1

)α

eabx1t+y(eat−1)
(

bt
ebt − 1

)α+1
eabx2t+y(ebt−1)

= at
∞

∑
n=0

Sn(b− 1)
(at)n

n!

∞

∑
n=0

Bel B
(α)
n (bx1; y)

(at)n

n!

∞

∑
n=0

Bel B
(α+1)
n (ax2; y)

(bt)n

n!

=
∞

∑
n=0

n

∑
l=0

l

∑
k=0

(
n
l

)(
l
k

)
Sn−l(b− 1) Bel B

(α)
k (bx1; y) Bel B

(α+1)
l−k (ax2; y)an+k+1−lbl−k tn−1

n!
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and also

Ω =
∞

∑
n=0

n

∑
l=0

l

∑
k=0

(
n
l

)(
l
k

)
Sn−l(a− 1) Bel B

(α)
k (ax2; y) Bel B

(α+1)
l−k (bx1; y)al−kbn+k+1−l tn−1

n!
,

which imply the claimed result (37).

5. Applications Arising from Umbral Calculus

We now review briefly the concept of umbral calculus. For the properties of umbral
calculus, we refer the reader to see the references [1,4–6,9–11,13,15,18].

Let F be the set of all formal power series in the variable t over C with

F =

{
f | f (t) =

∞

∑
k=0

ak
tk

k!
, (ak ∈ C)

}
.

Let P be the algebra of polynomials in the single variable x over the field complex
numbers and let P∗ be the vector space of all linear functionals on P. In the umbral calculus,
〈L|p(x)〉means the action of a linear functional L on the polynomial p(x). This operator
has a linear property on P∗ given by

〈L + M|p(x)〉 = 〈L|p(x)〉+ 〈M|p(x)〉

and
〈cL|p(x)〉 = c〈L|p(x)〉

for any constant c in C.
The formal power series

f (t) =
∞

∑
k=0

ak
tk

k!
(38)

defines a linear functional on P by setting

〈 f (t)|xn〉 = an (n ≥ 0). (39)

Taking f (t) = tk in (38) and (39) gives

〈tk|xn〉 = n!δn,k, (n, k ≥ 0) (40)

where

δn,k =

{
1, if n = k
0, if n 6= k

.

Actually, any linear functional L in P∗ has the form (38). That is, since

fL(t) =
∞

∑
k=0
〈L|xk〉 t

k

k!
,

we have
〈 fL(t)|xn〉 = 〈L|xn〉,

and so as linear functionals L = fL(t). Moreover, the map L → fL(t) is a vector space
isomorphism from P∗ onto F . Henceforth, F will denote both the algebra of formal power
series in t and the vector space of all linear functionals on P, and so an element f (t) of F
will be thought of as both a formal power series and a linear functional. From (39), we have〈

eyt|xn〉 = yn (41)
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and so 〈
eyt|p(x)

〉
= p(y) (p(x) ∈ P).

The order o( f (t)) of a power series f (t) is the smallest integer k for which the
coefficient of tk does not vanish. If o( f (t)) = 0, then f (t) is called an invertible series.
A series f (t) for which o( f (t)) = 1 will be called a delta series (cf. [1,4–6,9–11,13,15,18]).

If f1(t), ..., fm(t) are in F , then

〈 f1(t)... fm(t)|xn〉 = ∑
i1+i2+...+im=n

(
n

i1,..., im

)
〈 f1(t)|xi1〉...〈 fm(t)|xim〉,

where (
n

i1, · · · , ir

)
=

n!
i1! · · · ir!

.

We use the notation tk for the k-th derivative operator on P as follows:

tkxn =

{
n!

(n−k)! xn−k, k ≤ n

0, k > n
.

If f (t) and g(t) are in F , then

〈 f (t)g(t)|p(x)〉 = 〈 f (t)|g(t)p(x)〉 = 〈g(t)| f (t)p(x)〉 (42)

for all polynomials p(x). Notice that for all f (t) in F , and for all polynomials p(x),

f (t) =
∞

∑
k=0
〈 f (t)|xk〉 t

k

k!
and p(x) =

∞

∑
k=0
〈tk|p(x)〉 x

k

k!
. (43)

Using (43), we obtain

p(k)(x) := Dk p(x) =
∞

∑
l=k

〈tl |p(x)〉
l!

xl−k
k

∏
s=1

(l − s + 1)

providing
p(k)(0) = 〈tk|p(x)〉 and 〈1|p(k)(x)〉 = p(k)(0). (44)

Thus, from (44), we note that
tk p(x) = p(k)(x). (45)

Let f (t) ∈ F be a delta series and let g(t) ∈ F be an invertible series. Then there
exists a unique sequence sn(x) of polynomials satisfying the following property:

〈g(t) f (t)k|sn(x)〉 = n!δn,k (n, k ≥ 0), (46)

which is called an orthogonality condition for any Sheffer sequence, cf. [1,4–6,9–11,13,15,18,22].
The sequence sn(x) is called the Sheffer sequence for the pair of (g(t), f (t)), or this

sn(x) is Sheffer for (g(t), f (t)), which is denoted by sn(x) ∼ (g(t), f (t)).
Let sn(x) be Sheffer for (g(t), f (t)). Then for any h(t) in F , and for any polynomial

p(x), we have

h(t) =
∞

∑
k=0

〈h(t)|sk(x)〉
k!

g(t) f (t)k, p(x) =
∞

∑
k=0

〈g(t) f (t)k|p(x)〉
k!

sk(x) (47)

and the sequence sn(x) is Sheffer for (g(t), f (t)) if and only if

1
g( f (t))

ex f (t) =
∞

∑
n=0

sn(x)
tn

n!
(48)
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for all x in C, where f ( f (t)) = f
(

f (t)
)
= t.

An important property for the Sheffer sequence sn(x) having (g(t), t) is the Appell
sequence. It is also called Appell for g(t) with the following consequence:

sn(x) =
1

g(t)
xn ⇔ tsn(x) = nsn−1(x). (49)

Further important property for Sheffer sequence sn(x) is as follows

sn(x) is Appell for g(t)⇔ 1
g(t)

ext =
∞

∑
n=0

sn(x)
tn

n!
(x ∈ C).

For further information about the properties of umbral theory, see [19] and cited references
therein. Recently, several authors have studied Bernoulli polynomials, Euler polynomials
with various generalizations under the theory of umbral calculus [1,4–6,9–11,13,15,22].

Recall from (18) that

∞

∑
n=0

Bel Bn(x; y)
tn

n!
=

t
et − 1

ext+y(et−1). (50)

As t approaches to 0 in (50) gives Bel B0(x; y) = 1 that stands for o( t
et−1 ext+y(et−1)) = 0. It

means that the generating function of Bell-based Bernoulli polynomials is invertible and
thus can be used as an application of Sheffer sequence.

Now we list some properties of Bell-based Bernoulli polynomials arising from umbral
calculus as follows.

From (48) and (49), we have

Bel Bn(x; y) ∼
(

et − 1
t

e−y(et−1), t
)

(51)

and
t Bel Bn(x; y) = n Bel Bn−1(x; y). (52)

It follows from (52) that Bel Bn(x; y) is Appell for et−1
t e−y(et−1).

By (40) and (50), we have

Bel Bn(x; y) =
t

et − 1
ey(et−1)xn = ey(et−1)Bn(x)

=
n

∑
k=0

(
n
k

)
Belk(y)Bn−k(x),

which is the special case of the result in (21). By (45) and (50), we also see that

Bel Bn(x; y) =
t

et − 1
ey(et−1)xn =

t
et − 1

Beln(x; y)

=
∞

∑
k=0

Bk
k!

tkBeln(x; y) =
n

∑
k=0

(
n
k

)
BkBeln−k(x; y).

We give the following theorem.

Theorem 18. For all p(x) ∈ P, there exist constants c0, c1, . . . , cn such that p(x) = ∑n
k=0 ck

Bel Bk(x; y), where

ck =
1
k!

〈
et − 1

t
e−y(et−1)tk | p(x)

〉
. (53)
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Proof. By (46), (48) and (51), we observe that〈
et − 1

t
e−y(et−1)tk | Bel Bn(x; y)

〉
= n!δn,k (n, k ≥ 0),

which yield the following relation〈
et − 1

t
e−y(et−1)tk | p(x)

〉
=

n

∑
l=0

cl

〈
et − 1

t
e−y(et−1)tk | Bel Bl(x; y)

〉
=

n

∑
l=0

cl l!δl,k = k!ck,

which gives the result in (53).

We give the following theorem.

Theorem 19. For n > 0, we have

Bel Bn(x; y) = n
∞

∑
k=1

k−1

∑
l=0

yk

k!

(
k− 1

l

)
(−1)k−1−l(x + l)n−1. (54)

Proof. From (40) and (50), we get

Bel Bn(x; y) =
t

et − 1
ey(et−1)xn =

t
et − 1

∞

∑
k=0

yk
(
et − 1

)k

k!
xn

= t
∞

∑
k=1

k−1

∑
l=0

yk

k!

(
k− 1

l

)
(−1)k−1−leltxn

= n
∞

∑
k=1

k−1

∑
l=0

yk

k!

(
k− 1

l

)
(−1)k−1−l(x + l)n−1,

which is the claimed result (54).

Here are some integral formulas by the following theorems.

Theorem 20. Let p(x) ∈ P. We have〈
et − 1

t
e−y(et−1)

∣∣∣∣p(x)
〉

=
∞

∑
k=0

k+1

∑
l=0

(−y)k
(

k + 1
l

)
(−1)k−l+1

∫ l

0
p(u)du.

Proof. By (41) and (42), we obtain the following calculations〈
et − 1

t
e−y(et−1) | xn

〉
=

1
n + 1

〈
et − 1

t
e−y(et−1) | txn+1

〉
=

1
n + 1

〈
∞

∑
k=0

(−y)k(et − 1
)k+1|xn+1

〉

=
1

n + 1

∞

∑
k=0

k+1

∑
l=0

(−y)k
(

k + 1
l

)
(−1)k−l+1

〈
elt|xn+1

〉
=

1
n + 1

∞

∑
k=0

k+1

∑
l=0

(−y)k
(

k + 1
l

)
(−1)k−l+1ln+1

=
∞

∑
k=0

k+1

∑
l=0

(−y)k
(

k + 1
l

)
(−1)k−l+1

∫ l

0
xndx. (55)
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Thus, from (55), we arrive at〈
et − 1

t
e−y(et−1)tk | p(x)

〉
=

∞

∑
k=0

k+1

∑
l=0

(−y)k
(

k + 1
l

)
(−1)k−l+1

∫ l

0
p(u)du (p(x) ∈ P).

So, the proof is completed.

Example 1. If we take p(x) = Bel Bn(x; y) in Theorem 20, on the one hand, we derive

∞

∑
k=0

k+1

∑
l=0

(−y)k
(

k + 1
l

)
(−1)k−l+1

∫ l

0
Bel Bn(x; y)dx =

〈
et − 1

t
e−y(et−1)

∣∣∣∣ Bel Bn(x; y)
〉

=

〈
1 | et − 1

t
e−y(et−1) t Bel Bn+1(x; y)

n + 1

〉
=

1
n + 1

〈t0|xn+1〉 = n!δn+1,0.

On the other hand,

(n + 1)
∞

∑
k=0

k+1

∑
l=0

(−y)k
(

k + 1
l

)
(−1)k−l+1

∫ l

0
Bel Bn(x; y)dx

= (n + 1)
∞

∑
k=0

k+1

∑
l=0

(−y)k
(

k + 1
l

)
(−1)k−l+1

n

∑
u=0

(
n
u

)
Bel Bn−u(y)

∫ l

0
xudx

=
∞

∑
k=0

k+1

∑
l=0

n

∑
u=0

Bel Bn−u(y)
(

n + 1
u + 1

)(
k + 1

l

)
(−y)k(−1)k−l+1lu+1,

which yields the following interesting property for n ≥ 0 :

∞

∑
k=0

k+1

∑
l=0

n

∑
u=0

Bel Bn−u(y)
(

n + 1
u + 1

)(
k + 1

l

)
(−y)k(−1)k−l+1lu+1 = 0.

Theorem 21. We have 〈
et − 1

t
e−y(et−1)

∣∣∣∣xn
〉

=
∫ 1

0
Beln(u;−y)du.

Proof. From (51) and (52), we write

Bel Bn(x; y) =
t

et − 1
ey(et−1)xn (n ≥ 0).
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By (41) and (42), we obtain the following calculations〈
et − 1

t
e−y(et−1)

∣∣∣∣xn
〉

=
1

n + 1

〈
et − 1

t
e−y(et−1) | txn+1

〉
=

1
n + 1

〈(
et − 1

)
e−y(et−1)|xn+1

〉
=

1
n + 1

〈
∞

∑
k=0

( Belk(1;−y)− Belk(−y))
k!

tk|xn+1

〉

=
1

n + 1

∞

∑
k=0

( Belk(1;−y)− Belk(−y))
k!

(n + 1)!δn+1,k

=
Beln+1(1;−y)− Beln+1(−y)

n + 1

=
∫ 1

0
Beln(u;−y)du.

So, the proof is completed.

Theorem 22. Let n be non-negative integer. Then, we have〈
et − 1

t
e−y(et−1)

∣∣∣∣ Bel Bn(x; y)
〉

=
∞

∑
k=0

k+1

∑
l=0

(−y)k
(

k + 1
l

)
(−1)k−l+1

∫ l+1

l
Bel Bn(u + 1; y)du.

Proof. By using (22) and (25) for α = 1, we obtain∫ x+z

x
Bel Bn(u; y)du =

1
n + 1

( Bel Bn+1(x + z; y)− Bel Bn+1(x; y)). (56)

Hence, by utilizing (52), we obtain〈
et − 1

t
e−y(et−1)

∣∣∣∣ Bel Bn(x; y)
〉

=
1

n + 1

〈
et − 1

t
e−y(et−1)

∣∣∣∣t Bel Bn+1(x; y)
〉

=
1

n + 1

∞

∑
k=0

k

∑
l=0

(−y)k
(

k
l

)
(−1)k−l

〈(
e(l+1)t − elt

)∣∣∣ Bel Bn+1(x; y)
〉

=
1

n + 1

∞

∑
k=0

k+1

∑
l=0

(−y)k
(

k + 1
l

)
(−1)k−l+1 ( Bel Bn+1(l + 1; y)− Bel Bn+1(l; y))

=
∞

∑
k=0

k+1

∑
l=0

(−y)k
(

k + 1
l

)
(−1)k−l+1

∫ l+1

l
Bel Bn(u + 1; y)du. (57)

Comparing (56) with (57), we complete the proof.

The following theorem is useful for deriving any polynomial as a linear combination
of the Bell-based Bernoulli polynomials.

Theorem 23. For q(x) ∈ Pn, let

q(x) =
n

∑
k=0

bk Bel Bk(x; y),

where

bk =
∞

∑
m=0

m

∑
l=0

(−y)m
(

m
l

)
(−1)m−l

(
q(k−1)(l + 1)− q(k−1)(l)

)
k!

.
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Proof. It follows from Theorem 18 that for q(x) ∈ Pn, we have

q(x) =
n

∑
k=0

bk Bel Bk(x; y),

with 〈
et − 1

t
e−y(et−1)tk|q(x)

〉
= k!bk. (58)

Thus, from (58), we have

bk =
1
k!

〈(
et − 1

)
e−y(et−1)tk−1|q(x)

〉
=

1
k!

∞

∑
m=0

m

∑
l=0

(−y)m
(

m
l

)
(−1)m−l

〈(
e(l+1)t − elt

)∣∣∣tk−1q(x)
〉

=
1
k!

∞

∑
m=0

m

∑
l=0

(−y)m
(

m
l

)
(−1)m−l

〈(
e(l+1)t − elt

)∣∣∣q(k−1)(x)
〉

=
1
k!

∞

∑
m=0

m

∑
l=0

(−y)m
(

m
l

)
(−1)m−l

(
q(k−1)(l + 1)− q(k−1)(l)

)
.

Thus the proof is completed.

When we choose q(x) = En(x), we have the following corollary, which is given by its
proof.

Corollary 3. Let n ≥ 1. We have

En(x) =
∞

∑
m=0

m

∑
l=0

(−y)m
(

m
l

)
(−1)m−l

Bel Bn(x; y)

+2
n−1

∑
k=0

(n)k−1
k!

∞

∑
m=0

m

∑
l=0

(−y)m(−1)m−l
(

m
l

)(
ln−k+1 − En−k+1(l)

)
Bel Bk(x; y).

Proof. Recall that the Euler polynomials En(x) are defined by (cf. [12,23])

∞

∑
n=0

En(x)
tn

n!
=

2
et + 1

ext

which yields

En(x) ∼
(

et + 1
2

, t
)

(n ≥ 0)

and
tEn(x) = nEn−1(x).

Set
q(x) = En(x) ∈ Pn.

Then it becomes

En(x) =
n

∑
k=0

bk Bel Bk(x; y). (59)
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Let us now compute the coefficients bk as follows

bk =
1
k!

〈(
et − 1

)
e−y(et−1)tk−1|En(x)

〉
=

(n)k−1
k!

〈(
et − 1

)
e−y(et−1) | En−k+1(x)

〉
=

(n)k−1
k!

∞

∑
m=0

m

∑
l=0

(−y)m
(

m
l

)
(−1)m−l

〈(
e(l+1)t − elt

)∣∣∣En−k+1(x)
〉

=
(n)k−1

k!

∞

∑
m=0

m

∑
l=0

(−y)m
(

m
l

)
(−1)m−l(En−k+1(l + 1)− En−k+1(l)).

Using E1(x) = x− 1
2 and

En(x + 1)− En(x) = 2(xn − En(x)),

we have

En(x) = bn Bel Bn(x; y) +
n−1

∑
k=0

bk Bel Bk(x; y)

=
∞

∑
m=0

m

∑
l=0

(−y)m
(

m
l

)
(−1)m−l

Bel Bn(x; y)

+2
n−1

∑
k=0

(n)k−1
k!

∞

∑
m=0

m

∑
l=0

(−y)m(−1)m−l
(

m
l

)(
ln−k+1 − En−k+1(l)

)
Bel Bk(x; y).

Recall from (18) that Bell-based Bernoulli polynomials of order r ∈ N0 are given by
the following generating function:

∞

∑
n=0

Bel B
(r)
n (x; y)

tn

n!
=

tr

(et − 1)r ext+y(et−1). (60)

If t tends to 0 on the above, we have Bel B
(r)
0 (x; y) = 1 that stands for o( tr

(et−1)r ext+y(et−1)) =

0. It means that the generating function of Bell-based Bernoulli polynomials of order r is
invertible and thus can be used as an application of Sheffer sequence.

Let

gr(t, x) =
(
et − 1

)r

tr e−y(et−1).

Since gr(t, x) is an invertible series. It follows from (60) that Bel B
(r)
n (x; y) is Appell for(

et−1
t

)r
e−y(et−1). So, by (49), we have

Bel B
(r)
n (x; y) =

1
gr(t, x)

xn,

and
t Bel B

(r)
n (x; y) = n Bel B

(r)
n (x; y).

Thus, we have

Bel B
(r)
n (x; y) ∼

((
et − 1

)r

tr e−y(et−1), t

)
.

We give the following theorem.

Theorem 24. Let n be non-negative integer. Then, we have
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Bel B
(r)
n (x) = ∑

i1+···+ir=n

(
n

i1, · · · , ir

)
Bel Bir (x)

r−1

∏
j=1

Bij . (61)

Proof. By (39) and (60), we get〈
tr

(et − 1)r ezt+y(et−1)|xn
〉

= Bel B
(r)
n (z; y) =

n

∑
l=0

(
n
l

)
Bel B

(r)
n−l(y)z

l . (62)

Here we find that〈
tr

(et − 1)r ey(et−1) | xn
〉

=

〈
t

et − 1
× · · · × tey(et−1)

et − 1
| xn

〉
(63)

= ∑
i1+···+ir=n

(
n

i1, · · · , ir

)
Bel Bir (y)× Bi1 × · · · × Bir−1 .

By using (62), we have 〈
tr

(et − 1)r ey(et−1)|xn
〉

= Bel B
(r)
n (y). (64)

Therefore, by (63) and (64), we arrive at the desired result (61).

By setting q(x) = Bel B
(r)
n (x; y) ∈ Pn in Theorem 23, we provide the following Corollary.

Corollary 4. Let n ∈ N0 and r ∈ N0. Then

Bel B
(r)
n (x; y) =

n

∑
k=0

∞

∑
m=0

m

∑
l=0

(
m
l

)(
n
k

)
(−y)m(−1)m−l

Bel B
(r−1)
n−k (l; y) Bel Bk(x; y).

Proof. By Theorem 23, we write

Bel B
(r)
n (x; y) =

n

∑
k=0

bk Bel Bk(x; y), (65)

where the coefficient bk is given by

bk =
∞

∑
m=0

m

∑
l=0

(−y)m
(

m
l

)
(−1)m−l

(
q(k−1)(l + 1)− q(k−1)(l)

)
k!

(66)

=
∞

∑
m=0

m

∑
l=0

(−y)m
(

m
l

)
(−1)m−l (n)k−1

k!

(
Bel B

(r)
n−k+1(l + 1; y)− Bel B

(r)
n−k+1(l; y)

)
.

From (60), we have

∞

∑
n=0

(
Bel B

(r)
n (l + 1; y)− Bel B

(r)
n (l; y)

) tn

n!
=

tr

(et − 1)r elt+y(et−1)(et − 1
)

= t
tr−1

(et − 1)r−1 elt+y(et−1)

=
∞

∑
n=0

Bel B
(r−1)
n (l; y)

tn+1

n!
.
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By comparing the coefficients tn in the above equation, we get

Bel B
(r)
n (l + 1; y)− Bel B

(r)
n (l; y) = n Bel B

(r−1)
n−1 (l; y). (67)

From (65), (66) and (67), the proof is completed.

The following theorem is useful for acquiring any polynomial as a linear combination
of the Bell-based Bernoulli polynomials of order r.

Theorem 25. For n ∈ N0, we have

q(x) =
n

∑
k=0

br
k Bel B

(r)
k (x; y) ∈ Pn,

where

br
k =

1
k!

∞

∑
m=0

m+r

∑
l=0

(−y)m
(

m + r
l

)
(−1)m+r−lq(k−r)(l).

Proof. Let us assume that

q(x) =
n

∑
k=0

br
k Bel B

(r)
k (x; y) ∈ Pn. (68)

We use a similar method in order to find the coefficient br
k as same as Theorem 23. So we

omit the details and give the following equality:〈(
et − 1

)r

tr e−y(et−1)tk|q(x)

〉
=

n

∑
l=0

br
l

〈 (
et − 1

)r

tr e−y(et−1)tk

∣∣∣∣∣ Bel B
(r)
n (x; y)

〉

=
n

∑
l=0

br
l l!δl,k = k!br

k

which gives for k ≥ r,

br
k =

1
k!

〈(
et − 1

)r

tr e−y(et−1)tk|q(x)

〉

=
1
k!

〈
∞

∑
m=0

(−y)m(et − 1
)m+rtk−r|q(x)

〉

=
1
k!

∞

∑
m=0

m+r

∑
l=0

(−y)m
(

m + r
l

)
(−1)m+r−l

〈
etl |q(k−r)(x)

〉
=

1
k!

∞

∑
m=0

m+r

∑
l=0

(−y)m
(

m + r
l

)
(−1)m+r−lq(k−r)(l).

Henceforth, by (68) and coefficient br
k, the proof is done.

Finally, we state the following Corollary:

Corollary 5. The following equality

Bel Bn(x; y) =
n

∑
k=0

∞

∑
m=0

m+r

∑
l=0

(
m + r

l

)
(−y)m(−1)m+r−l (n)k−r

k! Bel Bn−k+r(l; y) Bel B
(r)
k (x; y)

holds for n, r ∈ N0,
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Proof. Let us consider q(x) = Bel Bn(x; y) ∈ Pn. Then, by Theorem 25, we have

Bel Bn(x; y) =
n

∑
k=0

br
k Bel B

(r)
k (x; y). (69)

From Theorem 25 and (69), after some basic computations, we arrive at the claimed
result.

6. Conclusions

In the present paper, we have considered Bell-based Stirling polynomials of the second
kind and derived some useful relations and properties including some summation formulas
related to the Bell polynomials and Stirling numbers of the second kind. Then, we have
introduced Bell-based Bernoulli polynomials of order α and have investigated multifarious
correlations and formulas including some summation formulas and derivative properties.
Also, we have acquired diverse implicit summation formulas and symmetric identities for
Bell-based Bernoulli polynomials of order α. Moreover, we have analyzed some special
cases of the results. Furthermore, we have attained several interesting formulas of Bell-
based Bernoulli polynomials of order α arising from umbral calculus to have alternative
ways of deriving our results.The results obtained in this paper are generalizations of
the many earlier results, some of which are involved in the related references in [1–23].
For future directions, we will consider that the polynomials introduced in this paper can
be examined within the context of the monomiality principle.
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