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Abstract

The expanding share of renewable energy sources (RESs) in power generation and rise of
electric vehicles (EVs) in transportation industry have increased the significance of energy
storage systems (ESSs). Battery is considered as the most suitable energy storage technol-
ogy for such systems due to its reliability, compact size and fast response. Power converters
are vital for the integration of batteries into power grid and EVs as they play an active role
in both power conversion and battery management. Multilevel converters (MLCs) are types
of power converters and attract widespread interest due to their improved power quality,
reliability and modularity. There are two main challenges in MLC based battery storage
systems (BSSs) which are selecting a proper MLC topology and balancing state-of-charges
(SOCs) of batteries. Although some research has been carried out on either MLCs or SOC
balancing, no single study exists which presents a comprehensive review on MLC based
BSSs for large-scale grid and EV applications. This paper begins by reviewing several major
battery storage technologies that are utilised in MLC based BSSs. Later on, a systematical
review of commonly used and recently proposed MLC topologies for BSSs are provided
along with different control schemes for MLCs by specifically focusing on SOC balancing
techniques. Finally, potential challenges and suggestions for future improvement of MLC
based BSSs are addressed.

1 INTRODUCTION

Energy is recognised as the essence of humanity as it directly
affects the economy, wealth and prosperity of a society. Fossil
fuels, coal, oil and natural gas can be considered as the major
energy sources since almost 85% of the energy in use is sup-
plied by these sources [1]. Increase in the energy demand due
to industrial development and population growth during the
past decades leads to a growth in carbon dioxide (CO2) emis-
sions and consequently environmental challenges such as cli-
mate change, global warming and air pollution [2]. According
to the Fifth Assessment Report published in 2014 by Intergov-
ernmental Panel on Climate Change (IPCC), electricity and heat
production is responsible for 25% of the global CO2 emissions
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while transportation sector takes part in 14% of it [3]. Renew-
able energy sources (RESs) like nuclear, biomass, wave, wind
and solar play an important role in reducing the global CO2
emissions. According to International Energy Agency (IEA),
215 megatonne (Mt) of CO2 emissions are avoided in 2018
due to integration of renewables into the power industry [4].
Moreover, CO2 emissions in transportation sector are reduced
by the deployment of electric vehicles (EVs) since the amount
of CO2 emitted by EVs is 10 times lower than conventional
internal combustion engine vehicles (ICEVs) [5, 6]. Although
there are numerous environmental merits of integrating RESs
into the power grid, there are some challenges to be faced in the
process as well. RESs show intermittent and variable behaviour
since their operating conditions highly depend on local climate
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FIGURE 1 Classification of electrical energy storage technologies in terms
of the form of stored energy

conditions [7, 8]. Furthermore, as the integration of RESs
into power systems increase, it gets much harder for conven-
tional power systems to adapt to oversupply conditions caused
by RESs. Under these circumstances, a curtailment may be
needed in renewable energy generation which is not preferable
since environmental and economic merits of RESs are thrown
away [9]. Therefore, adaptation of a power system to dynamic
demand and supply conditions is very critical in terms of sus-
taining an efficient, reliable and flexible operation. That is where
energy storage systems (ESSs) come into play. An ESS is able
to draw energy from the system when overgeneration occurs
and supply the stored energy to the system when overcon-
sumption occurs. This provides flexibility to the power system
in terms of balancing demand and supply efficiently [10, 11].
ESSs are also utilised in EVs since electrical energy needs to be
stored to provide power for the electric motor of the vehicle
[12–15].

An appropriate ESS should not only store large amounts of
energy but also release it quickly according to load demands.
Energy density, power density, lifetime, cycling time, response
time, cycle efficiency, conversion rate, storage costs, envi-
ronmental impacts and maintenance are the most important
parameters to consider while designing an ESS [16, 17]. ESSs
can be divided into six main categories in terms of the form of
stored energy as seen in Figure 1 [17–20]: mechanical, chemical,
electrochemical, electrical, thermal, thermochemical. Among
these, battery storage systems (BSSs) are attracting a widespread
interest in power industry due to their efficiency, ease of con-
trollability, reliability, compact size, fast response and low
maintenance cost [21, 22]. Batteries are mainly categorised into
four major groups [23]: primary batteries (non-rechargeable),
secondary batteries (rechargeable), fuel cells and electrochem-
ical capacitors. Secondary batteries are very suitable for power
system applications since they are extensively used in large-
scale grids and EVs [24, 25]. Lead-acid (Pb-acid), lithium-ion
(Li-ion), lithium-sulphur (Li-S), nickel-metal hydride (Ni-MH),

FIGURE 2 MLC based BSS applications

nickel-cadmium (Ni-Cd) and nickel-zinc (Ni-Zn) are the most
commonly used rechargeable batteries.

A BSS comprises a power conditioning system (PCS) along
with a battery management system (BMS) [21]. Both function-
alities of a BSS can be achieved by power converters. Power
converters are key to interface batteries into AC grid or utilise
batteries in EVs since they can be responsible for the conversion
between DC and AC power [26]. Moreover, power converters
play a significant role in controlling the power flow, operating
the batteries in the most efficient manner and increase the life-
time of the batteries [27]. Voltage source converters (VSCs) and
multilevel converters (MLCs) are among the most commonly
used types of power converters. Among them, MLCs are gener-
ating considerable interest in BSSs due to their enhanced power
quality, reliability and fault-ride through capability [28, 29].
Figure 2 indicates possible applications of MLC based BSSs.
As seen MLCs not only utilised in renewable energy integrated
large-scale grid applications but also used in EV applications for
charging, vehicle-to-grid (V2G) and EV operation purposes.

A challenging area in this field is to select a proper MLC
topology that is efficient and cost-effective. Another important
problem to solve here is that state-of-charge (SOC) imbalances
may occur between batteries due to differences in electrochemi-
cal characteristics of each battery in the MLC. Those imbalances
between batteries cause degradation in the output voltage and
current quality of the MLC.

A considerable amount of literature has been published on
MLCs [30–35] and SOC balancing techniques [36–40] in BSSs.
Despite this interest, no one to the best of our knowledge has
presented a comprehensive overview of the MLC topologies
for BSS applications. Moreover, no previous study has reviewed
the SOC balancing techniques used in MLCs. In this context,
the purpose of this paper is to make an up-to-date review on
current state-of-the-art of MLC topologies used in BSS appli-
cations, and their control objectives by specifically focusing on
SOC balancing techniques.

The overall structure of the study takes the form of six sec-
tions, including this introductory section. Section 2 begins by
explaining the working principle of rechargeable batteries, and
investigates five of the most important types of those batteries.
In the third section, traditional and recent MLC topologies that
are employed in BSSs are examined. Fourth section presents dif-
ferent types of control techniques that are utilised in MLC based
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BSSs by putting emphasis on SOC balancing. In Section 5, dis-
cussion and future trends on MLC based BSSs are given. Finally,
conclusions are drawn in Section 6.

2 BATTERY STORAGE
TECHNOLOGIES

Batteries are the most widespread types of ESSs due to their
superiorities like reliability, efficiency and ruggedness. Chemical
energy is converted to electrical energy in batteries by electro-
chemical reactions. A battery is made up of two electrodes (one
positive and one negative), an electrolyte which is responsible
for charge transfer and a separator which consists of an electri-
cally insulating material [18]. In this section, a brief overview of
several rechargeable battery storage technologies will be given.

2.1 Lead-acid (Pb-acid) batteries

The oldest type of rechargeable battery is lead-acid battery and
it compriseslead oxide (PbO2) in positive electrode and sponge
lead (Pb) in negative electrode. Two electrodes are electrically
insulated by a separator and diluted sulfuric acid is used as elec-
trolyte. Lead-acid batteries present several advantages in power
applications such as fast response times, high cycle efficiency
and low cost [41]. However, deep discharge states severely affect
their lifetimes. Moreover, their share in power industry signifi-
cantly decreased in the past decade due to its disadvantages like
low energy density, low specific energy, high self-discharge rates
and long charge times [42, 43].

2.2 Lithium-ion (Li-ion) batteries

Li-ion batteries gained an extensive use in consumer electronics,
EVs and grid storage applications during the past decade [44,
45]. In the positive electrode, lithium metal oxide (e.g. LiCoO2,
LiNiO2, LiMn2O4) can be used, however, the most popular
material is lithium iron phosphate (LiFePO4). The most widely
used material in the negative electrode is graphite. Lithium salt
dissolved in non-aqueous solvents is used as electrolyte. A sep-
arator which is mostly made up of lithium hexafluorophos-
phate (LiPF6) is used for electrical insulation. Li-ion batteries
have high energy density, high specific energy, long lifetime,
high cycle efficiency, fast response time and low self-discharge
rates [21, 46]. Nevertheless, there are some properties of Li-
ion batteries that limit its applications in power industry such
as high costs and safety issues since they are prone to tem-
perature increases and internal short circuits when they are
overcharged [45].

2.3 Nickel-cadmium (Ni-Cd) batteries

Ni-Cd batteries consist of a nickel hydroxide (Ni(OH)2,
NiOOH) based positive electrode and metallic cadmium based

negative electrode. Aqueous alkali solvents are used as the
electrolyte [47]. It is vital that Ni-Cd batteries can be fully
discharged. Moreover, they have long lifetime and low mainte-
nance requirements. However, since cadmium is a toxic metal,
Ni-Cd batteries are not environmentally friendly. In addition,
memory effect is seen such that their capacity decreases if
they are repeatedly charged after not fully discharged [23].
Ni-Cd batteries are more suitable to applications where extreme
operating temperatures are observed [22, 24].

2.4 Nickel-metal hydride (Ni-MH) batteries

Similar to Ni-Cd batteries, Ni-MH batteries employ nickel
hydroxide based positive electrode and aqueous alkali solvents
as electrolyte. The difference lies in the utilisation of a hydrogen-
absorbing metal alloy like vanadium or titanium as the nega-
tive electrode. Therefore, environmental hazards and memory
effect of Ni-Cd batteries are not reflected to Ni-MH batteries
[47]. They have higher energy density than Ni-Cd batteries. Sim-
ilar to Ni-Cd, Ni-MH batteries have moderate lifetime and can
be recycled. However, they have high self-discharge rates and
their performance decreases after a couple hundreds of cycles
[48]. Although these issues have negative impacts on their use
in power applications, they are frequently utilised in portable
products, EVs and utility-scale applications [49, 50].

2.5 Sodium-sulfur (Na-S) batteries

Na-S batteries utilise molten sulfur and sodium as their pos-
itive and negative electrodes, respectively. Solid beta alumina
ceramic is used as electrolyte and separator in Na-S batteries
[23]. The characteristic property of Na-S batteries is their high
operating temperatures (300–350◦C) to keep the liquid states
of the electrodes. Under these circumstances, it is likely that
battery corrodes and integrity of the cell seal is broken [51].
Hence, thermal management of Na-S batteries is required. On
the other hand, Na-S batteries have high energy density, long
lifetime, low self discharge rates and low cost [23]. These prop-
erties make Na-S batteries a promising candidate on utility-scale
storage applications [21, 24]. Yet, dependence on high temper-
atures is the problem to solve for Na-S batteries in the near
future.

2.6 Aluminum-ion (Al-ion) batteries

Al-ion batteries employ pure aluminum as their positive elec-
trode. Graphite, V2O5, TiO2 and Ni3S2 can be counted among
different materials that are used in negative electrode [52].
Among them, graphite is the most popular one due its electrical
conductivity and low cost [53]. Ionic liquid based electrolytes
are utilised. Aluminum is the most abundant metal and the third
most abundant element on the earth crust, hence cost is sig-
nificantly reduced compared to Li based batteries [54]. It has a
volumetric capacity of 8096 mAh∕cm3 which is four times of
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the Li-ion batteries (2062 mAh∕cm3). Gravimetric capacities of
Al-ion and Li-ion batteries are comparable (2980 and 3860
mAh∕g, respectively) [55]. Moreover, small electrochemical
equivalence (0.336 g∕Ah) of Al makes it an ideal candidate for
rechargeable batteries [56]. High reactivity and corrosivity of
ionic liquid based electrolytes, corrosions that occur in negative
electrode and poor cyclic stability can be counted among the
disadvantages of Al-ion batteries [55, 57]. Table 1 summarises
different aspects of abovementioned rechargeable battery stor-
age technologies.

3 MULTILEVEL CONVERTER
SCHEMES FOR BATTERY STORAGE
SYSTEMS

MLCs are increasingly becoming a key component in BSSs
due to improved power quality, fault-ride through capability
and reliability. MLCs can be utilised in MLCSs as the sole
representative of power conversion stage in BSSs. This con-
figuration is called single-stage MLCS. However, they can also
be combined with bidirectional DC–DC converters to create
two-stage MLCSs in BSSs. MLCs that are used in MLCSs can
be mainly realised in four different configurations: modular
multilevel converters (MMCs), cascaded submodule multilevel
converters (CSM-MLCs), diode-clamped multilevel converters
(DC-MLCs) and flying-capacitor multilevel converters (FC-
MLCs) [28, 29]. Similarly, bidirectional DC–DC converters
that are utilised in MLCSs can be divided into four main cat-
egories: buck–boost (BB) converter, dual active bridge (DAB)
converter, quasi-z-source (QZS) converter and interleaved
converter [63–66]. In this section, traditional types of MLCSs
which are employed in BSSs will be investigated. Furthermore,
recently proposed configurations of these schemes will be
introduced as well as some brand new MLCSs.

3.1 Modular multilevel converters schemes

Circuit topology of a three-phase MMCS in a BSS is demon-
strated in Figure 3. Each battery is connected to a submodule
(SM) which is essentially a power converter structure. SMs
can be classified in two categories depending on employing a
DC–DC converter stage or not: single-stage SM and two-stage
SM. While two-stage SMs utilise a DC–DC converter stage
to connect the battery to DC–AC converter, the battery is
directly connected to DC–AC converter in single-stage SMs.
Two-stage SMs are advantageous compared to single-stage
SMs since a degree of freedom is provided by the DC–DC
converter for the control of the system, however, efficiency in
power conversion is reduced in two-stage SM configurations
[67]. SMs are series connected to create upper and lower arms
in each phase (leg) of MMCS. Moreover, an inductor to filter
currents is utilised in each arm. A multilevel output waveform
is obtained at the output of MMCSs and number of levels
depend on number and type of submodules and modulation
technique.

Figure 4 shows different types of single-stage SM config-
urations that are used in MMCSs. The most commonly used
single-stage SM is the half-bridge (HB) configuration [68–73].
It consist of two switches which work in an opposite manner
to each other and SM becomes ON and OFF when S1 and
S2 conducts respectively as seen in Figure 4a. In full-bridge
(FB) configuration, there are four switches as seen in Figure 4b
and fault-ride through capability is increased compared to HB
configuration [74–76].

Reference [77] introduces a new single-stage SM configura-
tion called reverse blocking SM as seen in Figure 4c. In this
configuration, two anti-parallel insulated gate bipolar transistors
with reverse blocking capability and an additional bypass circuit
are employed. The proposed SM configuration blocks DC fault
currents effectively.

Some researchers employ both FB and HB configurations in
MMCS [78–80]. These types of topologies are called as hybrid
MMCS as demonstrated in Figure 5. Reference [79] employs FB
SMs along with HB SMs to enhance the DC fault-ride through
capability of MMC. FB SMs with batteries and HB SMs with
capacitors are used in [80] to provide additional system services
by partially decoupling DC and AC grids. In [81], packed U-
cell (PUC) configuration is used as a single-stage SM and higher
number of levels are achieved by using less components.

Figure 6 shows different types of two-stage SM configura-
tions that are used in MMCSs. The most commonly used among
them is buck–boost half-bridge (BB-HB) configuration [63, 66,
78, 82] as seen in Figure 6a. Similarly, buck–boost full-bridge
(BB-FB) configuration is given in Figure 6b [79]. The use of
BB converter in these SM configurations is to regulate capacitor
voltages [83].

Reference [84] proposes a new two-stage SM configuration
called as quasi-full-bridge (QFB) SM with integrated battery as
seen in Figure 6c. Although the name of the SM includes quasi
in it, it operates as a BB-HB SM in normal operating mode and
anti-parallel thyristors are only used in DC fault conditions. It
possesses DC fault-ride through capability and battery current
is smoothed out. Cost is somewhat increased due to utilisation
of thyristors. A back-to-back BB-HB SM configuration is
proposed in [85] as seen in Figure 6d. While boost part of the
converter is responsible for maintaining a constant capacitor
voltage, charging profile of the battery is controlled by the buck
part.

Figure 7a and Figure 7b indicate dual-active bridge half-
bridge (DAB-HB) SM [86] and dual-active bridge full-bridge
(DAB-FB) SM [80] configurations, respectively. The use of DAB
converter in these SM configurations is to regulate the power of
the battery pack and provide galvanic isolation [86]. A two-stage
SM that consist of DAB converter along with series and paral-
lel configuration of four full-bridges is suggested in [87]. As a
result, current capability of the overall topology is doubled and
efficiency of the system is increased.

Figure 7c presents an interleaved boost converter based HB
SM configuration [66]. In this two-stage SM configuration, cur-
rent is distributed between two legs of the interleaved boost
converter as well as power losses. Hence, it is very suitable for
high power BSSs.
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FIGURE 3 Circuit topology of modular multilevel converter scheme
(MMCS) in a BSS

3.2 Cascaded submodule multilevel
converter schemes

Circuit topology of a single-phase CSM-MLCS in a BSS is
demonstrated in Figure 8. Similar to MMCSs, each battery is
connected to a SM which could either be single-stage or two-
stage and those SMs are series connected to generate CSM-
MLCS. As the name suggests, a multilevel output waveform is
obtained and the number of levels change with respect to type
and number of SMs and modulation technique. Figure 9 shows
different types of single-stage SM configurations that are used in
CHB-MLCS based BSSs. Among all, the most commonly used
configuration is the FB [88–103] as shown in Figure 9b. When

the SMs of CSM-MLCSs consist of FBs, the topology is called
cascaded H-bridge (CHB) MLCS.

A hybrid system that combines an ultra-capacitor (UC) along
with a battery is proposed in [104] as seen in Figure 10a. The
main reason to use UCs here is that UCs reduce the ineffi-
ciencies caused by slow dynamics of batteries since power and
energy densities of UCs are much higher than batteries and
UCs can deliver energy much faster than batteries. Hence, UCs
enhance the efficiency of the system, especially in rapidly chang-
ing drive profiles. Another advantage is that fewer number of
semiconductors become active to a certain voltage level com-
pared to traditional FB based SM configuration.

An unorthodox SM configuration that has four terminals
and nine switches is suggested in [105, 106] as shown in Fig-
ure 10b. This configuration enables SMs to be connected in
series and/or parallel. Hence, each SM may be interconnected to
its neighbouring SMs according to the needs of the system such
as requirement of optimum source resistance, balanced aging of
batteries and achieving lowest SOC cycling.

Some researchers combine the single-stage SM configura-
tions given in Figure 9 and create more advanced types of CSM-
MLCSs. References [107–109] propose a CSM-MLCS for DC–
AC applications that utilises both HB SMs given in Figure 9a
and a FB SMs as indicated in Figure 11a. Similarly, the same
topology is used in [110], however, this time for a DC–DC
application. Moreover, references [111, 112] produce a back-to-
back configuration based on this topology for high frequency
wireless EV chargers. In the proposed topology, the use of HB
SMs and FB SMs are to generate multilevel waveform and pro-
vide polarity, respectively. The advantage of this topology is
to achieve a certain number of levels at the output by using
less number of switches. A few years later, a CSM-MLCS that
employs three-level (TL) SMs given in Figure 9c and an FB SM
as seen in Figure 11b are suggested by [113]. Compared to the
topology given in Figure 11a, the proposed topology achieves
higher number of levels at the output with the same number of
SMs. Finally, references [114, 115] suggest a single-phase five-
level topology as seen in Figure 11c. The proposed topology
possesses voltage boosting capability and utilises fewer number
of switches to generate an output waveform with the same num-
ber of levels compared to CHB-MLCs.

Figure 12 shows different types of two-stage SM configura-
tions that are used in CSM-MLCSs. The most commonly used
among them is BB-FB configuration [94, 99] as seen in Fig-
ure 6b. Similarly, BB-HB configuration is given in Figure 6a
[110]. Unlike conventional use of BB-HB SMs, researchers in

FIGURE 4 Traditional and recently proposed single-stage submodule configurations for MMCSs
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FIGURE 5 Circuit topology of a hybrid modular multilevel converter scheme (MMCS) in a BSS

FIGURE 6 Traditional and recently proposed two-stage submodule configurations for MMCSs

[116–118] employ BB-HB SMs in a modular DC–DC con-
verter scheme.

DAB-FB based two-stage SM configuration is demonstrated
in Figure 6c [64, 119, 120]. The merits of using DAB based FB
SMs are that obtaining galvanic isolation, ability to use soft-

switching techniques and requiring a simple control structure
[121].

References [65, 122] propose a QZS based two-stage SM con-
figuration that utilises a DC source(e.g. photovoltaic (PV)) along
with a battery as seen in Figure 13a. QZS SM configuration has

FIGURE 7 Other recently proposed two-stage submodule configurations for MMCSs
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FIGURE 8 Circuit topology of cascaded submodule MLC in a BSS

the ability to balance and boost the DC-link voltage. A DBB-
FB SM configuration is suggested in [123] as seen in Figure
13b. In this configuration, each leg consists of a semiconduc-
tor and a diode and buck–boost properties are observed along
with conventional FB structure. Eliminating the shoot-through
problem that occurs in traditional FB SM configuration and mit-
igating the reverse recovery power dissipation on semiconduc-
tors can be counted among the advantages of this two-stage SM
configuration.

3.3 Diode-clamped multilevel converter
schemes

Circuit topology of a three-phase three-level DC-MLCS in a
BSS is presented in Figure 14a. Three-level DC-MLCSs are
the most popular DC-MLCS that are used in BSSs. Generally,
batteries are connected to DC-MLCSs by DC–DC converter
structures [124–127], however; direct connections are also pos-
sible [128]. Similar to MMCSs and CSM-MLCSs, a DC-MLCS is
called a two-stage DC-MLCS if a DC–DC converter is utilised
to connect the battery pack to the DC–AC converter. If battery
back is directly connected to DC–AC converter, then it is called
a single-stage DC-MLCSs.

In [129], a single-stage hybrid DC-MLCS that utilises PVs
and two batteries instead of one is proposed as seen in Fig-
ure 14b. Cost of the system is reduced and efficiency is increased
since no DC–DC converter stage is present. Similarly, reference
[130] suggests a four-level single-stage DC-MLCS. In [131], two

single-stage six-level DC-MLCSs are connected back to back for
a possible BSS application.

In [124], a two-stage three-level BB based DC-MLCS is pre-
sented. A two-stage five-level DC-MLCS for a hybrid system
that utilies both PVs and batteries is suggested in [132]. To
track the maximum power point (MPP) of PVs, DC–DC con-
verters are employed. Another use of those DC–DC converters
are to store the excess energy generated by PVs into batteries.
Figure 15a,b presents three-level DC–DC converter based DC-
MLCSs [126, 127]. The advantages of using three-level DC–DC
converter over two-level DC–DC converter in a DC-MLCS are
as follows: ability to access both DC buses for power balanc-
ing, reduced voltage stress on semiconductors, improved effi-
ciency and output current waveform. A two-stage five-level DC-
MLCS is proposed in [133], and DAB DC–DC converters are
employed. Although power quality is increased at the output,
cost of the system increases as well.

3.4 Flying-capacitor multilevel converter
schemes

Circuit topology of a four-level FC-MLCS in a BSS is shown
in Figure 16. In the literature, FC-MLCSs are mostly employed
as single-stage multilevel DC–DC converters in BSSs because
of a great reduction in inductance requirements, fast response
and low voltage stresses on switching devices [134–136]. Ref-
erence [134] employs a four-level FC-MLCS to achieve three
discrete DC voltage level at the output. In [135], a five-level FC-
MLCS is suggested which has the abilities like operation in high
frequencies, low ripples in input/output currents and low volt-
age drops on switching devices. Reference [136] utilises a six-
level FC-MLCS as the DC–DC converter prior to an FB-based
DC–AC converter for an EV charging system. A bidirectional
FC based modular DC–DC converter structure is proposed in
[137] and a five-level topology is created. In addition to low
switching stresses, the proposed topology has modular struc-
ture and buck/boost capability.

3.5 The most recent multilevel converter
schemes

In the past decade, there has been a rapid rise in developing new
MLCSs for BSSs. In this section, the most recent single-stage
and two-stage MLCSs that are proposed for BSSs are investi-
gated in detail along with recently proposed DC–DC converter
structures that can be used in MLCSs.

In [138], a two-stage switched-battery boost MLCS is pro-
posed for a standalone application as seen in Figure 17a. The
proposed topology consists of modular switched-battery cells
and an FB. It has two modes of operations: charging mode and
inverter mode. The most important superiorities of the pro-
posed topology are requiring less switches compared to tradi-
tional MLC topologies, enhanced reliability and reduced cost.

A new two-stage MLCS that is based on an asymmetric
HB converter and a front-end circuit is suggested in [139] for
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FIGURE 9 Traditional single-stage submodule configurations for CSM-MLCSs

FIGURE 10 Recently proposed single-stage submodule configurations for CSM-MLCSs

FIGURE 11 Recently proposed cascaded submodule multilevel converter schemes (CSM-MLCS) in a BSS

FIGURE 12 Traditional two-stage submodule configurations for CSM-MLCSs
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FIGURE 13 Recently proposed two-stage submodule configurations for CSM-MLCSs

FIGURE 14 Traditional and recently proposed single-stage diode-
clamped multilevel converter schemes (DC-MLCSs) in a BSS

plug-in hybrid EV applications as seen in Figure 17b. Front-
end circuit provides the proposed topology with flexibility to
change operating mode of the converter and generation of mul-
tilevel waveform. The proposed MLCS requires less switches
and a simpler control algorithm.

A single DC source based two-stage seven-level MLCS is sug-
gested in [140] for EV applications as seen in Figure 17c. It
utilises a single-input dual-output boost DC–DC converter and
the proposed seven-level MLCS employs less switches and DC
sources to achieve same number of levels at the output com-
pared to traditional MLCSs. Moreover, boost gains up to 2.1
can be achieved by the proposed scheme.

A 9-level and a 49-level single-stage MLCSs are proposed by
the same researcher in [141] and [142], respectively. As seen
in the nine-level MLCS in Figure 17d, the proposed topol-

FIGURE 15 Recently proposed two-stage diode-clamped multilevel con-
verter schemes (DC-MLCSs) in a BSS

ogy consists of flying-capacitor and FB modules. Voltage rat-
ings on switches are greatly reduced and hence, efficiency is
increased in this MLCS. It is also possible to reach higher levels
by increasing the flying-capacitor modules and decreasing the
full-bridge modules. The proposed topology is suitable for EV
applications.

In [143], a single-stage five-level MLCS that utilises one leg of
a three-level DC-MLC and a HB converter is proposed. It has
fault-tolerant capability and requires less active switches com-
pared to single-stage DC-MLCSs and FC-MLCSs that generate
an output with the same level.

A MMC based single-stage boost MLCS is proposed for high
power wireless EV charging systems in [144]. The proposed
scheme has boosting capability and improved efficiency com-
pared to traditional MLCSs.
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FIGURE 16 Circuit topology of flying-capacitor (FC) MLCS in a BSS

In [145], a single-phase 17-level MLCS is suggested for EV
applications. The proposed scheme consists of two single-stage
three-level FC-MLCSs with 3:1 DC voltage ratio and an FB
converter. The most significant advantage of this scheme is that
it requires less switching devices to achieve same number levels
compared to CHB-MLCSs.

In [146], a single-stage modular DC–DC converter that
employs bidirectional half-bridge DC–DC converter as power
modules is suggested. The proposed topology makes use of
used batteries instead of new batteries and reduces cost signifi-
cantly.

A two-stage five-level T-type MLCS is proposed in [147]. It
employs an interleaved boost converter based DC–DC con-
verter for battery connection and successfully reduces volt-
age and current ripples at the output compared to traditional
MLCSs. Similarly, references [148, 149] suggest a two-stage
MLCS that is based on a boost DC–DC converter and five-
level T-type converter. The proposed scheme utilises two extra
switches and a capacitor to balance the voltages on the capac-
itors of T-type converter. The proposed topology reduces size
and cost and provides fault tolerance.

Figure 18 shows recently proposed DC–DC converter struc-
tures that have not been utilised in MLCSs yet, however, these
structures are worth mentioning in this paper as they could be
a good candidate for a possible use in two-stage MLCSs. Fig-
ure 18a indicates a switched capacitor (SC) boost DC–DC con-
verter [150]. SC circuit is employed to create multilevel DC volt-
age in front of conventional three-phase VSC. Inductor is elim-
inated compared to conventional boost converter in the pro-
posed topology.

A three-phase interleaved BB converter is employed in
[151] along with a conventional VSC for EV applications.
The converter operates in buck mode while battery charging
and regenerative breaking and in boost mode while vehicle
propulsion.

Figure 18b demonstrates an interleaved flyback boost con-
verter (IBFC) for an EV charger application [152]. The merits

of IBFC are to have low number of switches and obtaining low
current ripple if high number of phases are interleaved.

A two-phase interleaved boost converter is combined with a
full-bridge LLC (FB-LLC) multiresonant converter in [153] for
an EV charger application as seen in Figure 18c. While inter-
leaved boost converter is responsible for power factor correc-
tion (PFC) and reducing total harmonic distortion (THD), the
duty of FB-LLC converter is to provide galvanic isolation and
apply DC–DC conversion.

Similar to previous DC–DC converter topology, a Cuk con-
verter and half-bridge LLC (HB-LLC) resonant converter based
DC–DC structure is proposed in [154] as given in Figure 18d.
Here, HB-LLC converter is responsible for obtaining gal-
vanic isolation and DC–DC conversion, PFC is held by Cuk
converter.

4 CONTROL STRATEGIES FOR
MULTILEVEL CONVERTER BASED
BATTERY STORAGE SYSTEMS

Since MLCSs are generally utilised as an interface between AC
and DC grids in BSSs, the direction and amount of power that
is interchanging between AC and DC grids as well as batter-
ies should be controlled. Moreover, balancing the SOCs of the
batteries in different SMs within the MLCS is very critical in
terms of improving the energy utilisation ratio and avoiding
overcharge and overdischarge problems. Pulse width modula-
tion (PWM) techniques also play a critical role in BSSs since
switches in MLCs are controlled by them. A BSS should be
resilient to faults since faults can severely affect the power
exchange between AC and DC grids. Hence, this section will
investigate different control strategies for MLCS based BSSs in
detail.

4.1 Power flow control

MLCSs are responsible for the power exchange between batter-
ies (Pbat), DC (Pdc) and AC (Pac) grids in BSSs. This type of an
exchange often occurs in MMCSs since they utilise a common
DC link along with batteries in each SM [63, 79, 155]. All three
powers in the system flow bidirectional as seen in Figure 19a.
The relationship between those three powers are given as fol-
lows:

Pbat = Pdc − Pac. (1)

Eight different operating regions given in Figure 19b are
obtained in a BSS depending on the direction and nominal pow-
ers (Pnom) of AC and DC grids as given below [63, 79]:

1. MLC as rectifier (Pac < 0):
I) Pdc = Pac → Pbat = 0 : idle,

II) |Pac| > |Pdc| → Pnom ≥ Pbat > 0 : charging,
III) |Pac| < |Pdc| → −Pnom ≤ Pbat < 0 : discharging,
IV) Pac < 0 < Pdc → 2Pnom ≥ Pbat > 0 : charging.
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FIGURE 17 Recently proposed single- and two-stage multilevel converter schemes (MLCSs) in BSSs

FIGURE 18 Recently proposed DC–DC converter schemes that can be used in MLCSs in BSSs
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FIGURE 19 Power flow diagram and operating regions of the MLC based
BSS

2. MLC as inverter (Pac > 0):
V) Pdc = Pac → Pbat = 0 : idle,

VI) |Pac| < |Pdc|→ Pnom ≥ Pbat > 0 : charging,
VII) |Pac| > |Pdc|→−Pnom ≤ Pbat < 0 : discharging,

VIII) Pdc < 0 < Pac →−2Pnom ≤ Pbat < 0 : discharging.

Operating regions can be divided into three main groups
which are batteries are charging (II, IV, VI), batteries are dis-
charging (III, VII, VIII) and batteries are idle (I, V). In regions
I and V, directions and magnitudes of Pdc and Pac are the same,
hence batteries become idle. The directions of Pdc and Pac are
the same in regions II, III, VI and VII but their magnitudes are
different. Thus, batteries are charged or discharged with a power
of Pnom. Finally, directions of Pdc and Pac are opposite in regions
IV and VIII, therefore, batteries are charged or discharged with
a power of 2Pnom.

Different ways of controlling the power flow in MMCSs are
proposed by researchers in recent years. Circulating current is
utilised in [80, 85, 156] to control active and reactive power flow
between batteries and AC grid in MMCs. A method to eliminate
active and reactive power oscillations in AC grid is proposed in
[156]. In [80], batteries are employed as auxiliary power sources
and an extra power injection to AC or DC grid up to 10 % is
achieved by circulating current injection.

In order to control the active and reactive power in
CSM-MLCSs, a d − q coupled controller must be employed
[119, 157–160]. By reflecting the grid components into two-
dimensional plane, active power reference (Idref) and reactive
power reference (Iqref) are obtained. Idref is used to control

active power flow between batteries and AC grid, hence charg-
ing and discharging of the batteries are controlled by the sign
of Idref. Either it is a V2G application [119, 160] or large-scale
grid application [157–159], reactive power compensation may
be required to meet the reactive power demands of the local
loads or support grid voltage. In these cases, Iqref are utilised as
the main control parameter. It should be noted that the effect of
Iqref on battery charging and discharging is negligible in MLCS
based BSSs.

In DC-MLCSs, active and reactive power control are achieved
by d − q coupled controllers similar to CSM-MLCSs. Park’s
transform is utilised in [132] to convert three-phase grid com-
ponents into two-dimensional dq components in a PV based
BSS. Likewise, a decoupled control strategy is employed in
[129] in a PV based BSS. In both systems, batteries are charged
by the excess PV power and discharged to provide support
to PVs when PVs fail to meet the power requirements of
AC grid.

4.2 State-of-charge balancing

Prior to investigating SOC balancing techniques in MLCS based
BSSs, the term SOC should be properly defined. SOC of a bat-
tery is defined as its instantaneous capacity denoted as a rate of
its nominal capacity as indicated below:

SOC =
Qins

Qbat
× 100%, (2)

where Qins and Qbat are instantaneous capacity and nominal
capacity of the battery, respectively. A more mathematical rep-
resentation of SOC for a single battery is given as follows:

SOCk(t ) = SOCk(0) + ∫
t

0

ibat

Qbat
dt, (3)

where ibat is denoted as battery current, SOCk(t ) and SOCk(0)
represent instantaneous and initial SOC of the correspond-
ing battery.

Due to differences in electrochemical characteristics of the
batteries that are utilised in MLCS based BSSs, SOCs of those
batteries may vary. This phenomena causes an inhomogeneous
distribution between individual battery voltages. In addition, the
capacity of the whole system decreases rapidly and system fail-
ures may happen. That is why balancing of SOCs are crucial in
MLCS based BSSs. SOC balancing techniques can be divided
into two main groups: active and passive SOC balancing. In
active SOC balancing, energy storage devices like capacitors and
inductors or DC–DC converters are utilised. This increases the
complexity and cost of the system even though it has high effi-
ciency and fast balancing rate. On the other hand, the surplus
energy in the batteries with higher SOCs are dissipated via resis-
tors within the system in passive SOC balancing. This technique
is less complex and more cost-effective compared to active SOC
balancing techniques [161, 162]. In this section, SOC balancing
techniques will be investigated for different MLCSs.
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4.2.1 SOC balancing in MMCSs

Different SOC balancing techniques are used in MMCSs, how-
ever, one of the most famous method is achieved by dividing
SOC balancing into three categories: phase SOC balancing, arm
SOC balancing and SM SOC balancing. In this technique, phase,
arm and SM SOCs are balanced individually and it is very pop-
ular among researchers [63, 67, 79, 86, 162–170]. In SM SOC
balancing, SOC of an individual SM within an arm is made equal
to the mean SOC of all SMs in that arm. A part of the reference
signal that is used to modulate the switches in the correspond-
ing SM is obtained in SM SOC balancing. It should be noted
that some researchers use simple sort and select algorithm for
SM SOC balancing [171, 172]. In this technique, SOCs of all
SMs are sorted and SMs with the higher SOCs are discharged
more or charged less compared to SMs with lower SOCs and
this is achieved by adjusting the reference signal or changing the
carrier rotations in the PWM method. The formula to calculate
mean SOCs of both arms in one phase of an MMCS is given
below:

SOCu j =

∑
SOCu jk

N
,

SOCl j =

∑
SOCl jk

N
,

(4)

where SOCu j and SOCl j represent mean SOCs of upper and
lower arm, respectively. Moreover, SOCu jk and SOCl jk demon-
strate the SOCs of individual SMs within upper and lower arms,
respectively. It should be noted that k takes values between 1
and N where N is the number of SMs within an arm.

In arm SOC balancing, SOC of a branch as given in Equa-
tion (4) is kept equal to mean SOC of all branches in a phase.
Arm SOC balancing yields the AC component of the cir-
culating current. Mean SOC of all branches is calculated as
follows:

SOC j =
SOCu j + SOCl j

2
, (5)

where SOC j is the SOC of the corresponding phase. Finally,
SOC of each phase is aimed to be equal to the mean SOC of
all phases in phase SOC balancing. As a result of phase SOC
balancing, DC component of the circulating current is obtained.
Mean SOC of all three phases is calculated as below:

SOCBSS =

∑
SOC j

3
(6)

where SOCBSS represents the average SOC of the
whole MMCS.

Block diagrams for phase, arm and SM SOC balancing con-
trols in MMCSs are presented in Figure 20. Block diagrams for
lower arm SOC balancing and lower arm SM SOC balancing
are very similar to the block diagrams of upper arm and upper
arm SM SOC balancing controls respectively, hence those dia-
grams are not given in the context for the sake of simplicity.

FIGURE 20 Block diagrams for submodule SOC balancing in MMCSs in
(a) phase, (b) upper arm, (c) submodules in upper arm

As seen, SM SOC balancing controls are realised by controller
parameter Gc . While some researchers use simple proportional
(P) type controllers [63, 79, 162–164, 169, 170], others employ
proportional-integral (PI) controllers [165–167, 172]. It should
be noted that utilisation of proportional-integral-resonant (PIR)
controller is also observed in the literature [67].

Besides traditional techniques, some researchers propose
more advanced SOC balancing techniques in MMCSs. A SOC
balancing method which is based on a virtual SOC (V-SOC)
parameter for EV applications is suggested in [173]. This strat-
egy is based on getting information from the user about the
expected SOC and charge/discharge time. Adding initial SOC
value into the equation yields V-SOC. As a result, a power ratio
factor to share the power between EVs is determined using all
V-SOCs within an arm. In [83], an individual SM SOC balanc-
ing method is proposed. In this technique, first, a battery power
unbalance parameter is determined. This parameter indicates
how the power provided by the battery in a SM varies from the
average battery power in all SMs within the arm. Based on these
parameters, two other parameters named DC and AC factors are
calculated. Finally, DC and AC factors determine the reference
signal that is fed to each SM.

4.2.2 SOC balancing in CSM-MLCSs

In CSM-MLCSs, SOC balancing control techniques are mainly
focused on CHB-MLCSs. In CHB-MLCSs, SOC balancing
techniques are investigated depending on whether the system
is three phase or single phase. If the system is three phase, SOC
balancing is divided into two categories: phase SOC balancing
and SM SOC balancing. If the system is single phase, only SM
SOC balancing control is held. For three-phase CHB-MLCSs,
phase SOC balancing aims to make the average SOC of each
phase equal to the average SOC of all phases. It is achieved by
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FIGURE 21 Phase and SM SOC balancing control diagrams

zero-sequence voltage (v0) injection to the voltage reference of
each phase [38, 64, 121, 174–182]. The injected v0 influences
the power delivered by or extracted from each phase, hence
changes phase voltages but does not affect line to line voltages.
Figure 21a demonstrates phase SOC balancing in CHB-MLCs
by v0 injection technique. The formula to calculate v0 is given
below:

v0 =
√

2K0ΔSOC sin(𝜔t + 𝜙0), (7)

where K0 is proportional gain andΔSOC represents SOC imbal-
ance degree among phases. Phase angle 𝜙0 in Equation 7 is for-
mulated by:

𝜙0 = 𝜃 + 𝛿 − 𝛾, (8)

where 𝜃 is the output of phase locked loop (PLL), 𝛿 is the power
factor angle and 𝛾 indicates SOC imbalance in terms of phase
angle in 𝛼𝛽 axes.

SM SOC balancing in three-phase CHB-MLCSs is given in
Figure 21b. Here, SOC of each SM is kept equal to average
SOC of all SMs in the corresponding phase. Voltage reference
of each SM is modified to control the active power transfer
between SMs.

In single-phase CHB-MLCSs, SOC balancing among SMs is
achieved by two main methods: sort and select (SS) [37, 65, 123,
183–188] and carrier orientation [107, 108, 113, 189, 190]. In SS
technique, SOCs of all SMs are sorted and SMs with higher SOC
values are discharged more or charged less. In carrier orienta-
tion, carrier signals in PWM technique are interchanged among
SMs so that equal power sharing among SMs is achieved.

Besides traditional SM SOC balancing techniques, some
unique solutions are presented by researchers as well. SM SOCs
are balanced in [191] by selecting proper states in space-vector
PWM. Power of each SM is set to a reference value in [122] to
achieve SOC balancing. References [192, 193] employ some sort
of a SS technique, however, the essence of SOC balancing con-
trol is to adjust phase angles of the high frequency part of the
voltage reference of each SM. Redundant switching states are

utilised for SOC balancing in [194]. An interesting approach is
taken in [195] such that at every 3 s, one SM is removed from
the system and its pseudo open circuit voltage (POCV) is mea-
sured. After measuring the POCVs of all SMs, they are sorted
and these sorted values are fed to nearest voltage matching algo-
rithm. SS technique is also used in [196] to achieve SOC balanc-
ing in a CSM-MLCS with the SM topology given in Figure 10b.

4.2.3 SOC balancing in other MLCSs

In DC-MLCSs and FC-MLCSs, capacitor voltage balancing is
the real issue to be solved instead of SOC balancing [124, 125,
129, 135]. The main reason for this is that these MLCSs do not
have a modularised structure unlike MMCSs and CSM-MLCSs.
Consequently, they mostly employ single battery pack and this
battery pack is connected to the capacitors which provide the
DC voltage to the MLCS [126, 134]. SOC balancing in DC-
MLCSs is investigated in [130]. Here, a multiphase structure
which utilises multiple battery packs in each phase is employed.
PI compensators are used to serve SOC balancing purpose.
Finally, redundant switching states are employed in [143] to
achieve SOC balancing for the proposed MLCS.

4.3 Pulse width modulation

Various PWM techniques are employed by researchers on MLC
based BSSs. However, the most popular one is phase-shifted
PWM (PS-PWM) method as it is extensively utilised in MMCs
[67, 83, 164, 165, 167, 169, 170, 172, 173, 197–200] and CSM-
MLCs [38, 65, 119, 122, 123, 159, 175, 177, 180, 186, 194,
201–205]. In PS-PWM, carriers of subsequent SMs are shifted
in phase and phase-shift angle is determined by the number
of SMs. Level-shifted PWM (LS-PWM) technique is also used
in MMCs [162], DC-MLCs [133] and other topologies [133],
however, it is mostly employed in CSM-MLCs [108, 158, 196,
206]. Carriers of subsequent SMs are shifted in magnitude in LS-
PWM. Utilisation of space-vector PWM (SV-PWM) method is
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very popular in DC-MLCs [125, 128, 129, 132], nevertheless, it
is also employed in CSM-MLCs [191]. Selective harmonic elimi-
nation PWM (SHE-PWM) is an effective technique to eliminate
specific harmonics in CSM-MLCs [37, 187, 207–211], however,
it is used in other topologies occasionally [138]. Fundamental
frequency PWM method improves the efficiency of the sys-
tem by reducing the effective switching frequency of the con-
verter and it is mostly used in CSM-MLCs [115, 157, 160, 185,
190]. Nearest level modulation (NLM) is another technique to
enhance the efficiency of the system and finds itself a use in
CSM-MLCs [183, 195, 212].

Besides traditional PWM schemes, new PWM techniques are
proposed by researchers in recent years. A multi-dimensional
(MD-PWM) technique is proposed for MMC and CHB-MLC
based EV applications in [176, 193] respectively. In MD-PWM,
output of each SM is represented in coordinate axes and a con-
trol region is generated. Switching signals are produced based
on the control region. An odd-harmonic hybrid modulation
(OHHM) technique is suggested in [193] for CHB-MLC based
hybrid BSS. In this technique, a harmonic frequency component
is introduced to the system and active power that is delivered to
the supercapacitors is controlled by this component. A hybrid
PWM technique is proposed in [107] for the CSM-MLC topol-
ogy given in Figure 11a for EV applications. In the proposed
technique, carriers are arranged differently for terminal voltage
balancing and SOC balancing.

A virtual space-vector PWM method is suggested in [130] for
DC-MLCs. Average values of the inner DC-link currents can
be controlled in this technique. References [126, 127] present
a modulation method that is based on an improved version
of SV-PWM. In this technique, carrier waveforms are adjusted
depending on the amplitude of the modulation signal.

4.4 Fault-tolerant control

Fault tolerance in a MLC based BSS is very critical since faults
can directly affect the power exchange between AC and DC
grids. Furthermore, reliability and availability of the vehicle
are severely impacted by faults in EV applications. That is
why different fault-tolerant control techniques are proposed by
researchers for MLC based BSSs. A fault-tolerant SOC balanc-
ing control is suggested in [79] for DC and AC grid faults of
MMCs. When DC grid faults occur, MMC becomes an AC–
AC converter and when AC grid faults occur, MMC becomes
a DC–DC converter. In either case, SOC balancing is achieved
successfully.

In [176], a fault-tolerant control technique is proposed for
CHB-MLCs. In the proposed technique, fault signal is utilised
to adjust the reference voltage for each SM and load is equally
distributed among other healthy SMs to produce a balanced
three-phase output. It is noted that utilisation of this technique
under low modulation indices are more preferable as the perfor-
mance of the method degrades for higher modulation indices.
In [180], a single SM fault-tolerant control method is proposed
for CHB-MLCs. The essence of the proposed technique is zero-
sequence voltage injection. Fault-tolerant control methods pro-

posed for CHB-MLCs in [205] are divided into three categories:
fundamental phase-shift compensation, third harmonic injec-
tion and hybrid compensation. In all three techniques, it is aimed
to enhance the post-fault performance of the system by avoid-
ing over-modulation.

Reference [128] proposes a technique in DC-MLCs for open-
and short-circuit switch faults along with the failure of one bat-
tery supply which can be due to an external short circuit or
an internal battery supply fault. Software-based detection and
localisation of open-circuit faults are the main focus in the
proposed method. Moreover, an open-circuit fault-detection
method using a current estimator and two new fault localisation
techniques are presented.

A transformer based fault-tolerant control scheme is sug-
gested in [143] for a five-level MLC. In the proposed technique,
open- and short-circuit faults occurring in switches and/or
sources are detected and output voltage is maintained at the
nominal value by a center tap transformer.

4.5 Other control techniques

In this section, a review of different control techniques that
are employed in MLC based BSSs will be given. Besides SOC
balancing control, state-of-health (SOH) balancing control is
implemented in MLC based BSSs. To start with, SOH of a bat-
tery is defined as the maximum releasable capacity as a rate of
the rated capacity of the battery [197]. It is hard to estimate the
SOH of a battery, however, it is closely related to depth of dis-
charge (DOD) of the battery. Instantaneous SOH of a battery
can be formulated as given below:

SOH(t ) = SOH(0) −
Cacu

a DOD−b
(9)

where Cacu is the accumulated lifecycle and SOH(0) is the ini-
tial SOH value of the battery. Moreover, the parameters a and b

are battery dependent. As inferred from Equation 9, DOD of a
battery is inversely proportional to SOH of a battery.

Utilisation of recycled batteries along with new batteries in a
system causes SOH imbalances. For this purpose, a SOH bal-
ancing technique is proposed in [197] for MMCs. In the pro-
posed technique, a relative SOH variable that is calculated based
on normalisation of SOC variation rate of a SM to the SM with
the minimum SOC variation rate is determined. The relative
SOH variable is calculated in every 150 life cycles, SOH values
of all SMs become equal after 600 life cycles. Similarly, an SOH
balancing method for MMCs is proposed in [213] as well. This
time, SOH balancing is achieved by an active balancing circuit
after a predetermined Cacu value.

Model predictive control (MPC) is also becoming popu-
lar among researchers in MLC based BSSs. A finite control
set MPC (FCS-MPC) technique is proposed in [76] to track
AC and DC side currents in MMC for EV charging applica-
tions. The developed control strategy minimises the compu-
tational burden, reduces DC ripples and grid harmonic com-
ponents. A discrete-time disturbance observers (DOBs) based
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MPC scheme to limit the disturbances caused by power qual-
ity problems and parameter mismatches is proposed in [214].
The proposed technique has low computation cost and anti-
disturbance ability.

Equations to calculate optimum switching angles in SHE-
PWM are highly non-linear, hence difficult to solve. That is
why optimisation algorithms are utilised in MLC based BSSs.
One of the most popular optimisation algorithm is genetic algo-
rithm (GA). References [138, 208] propose GA based SHE-
PWM technique for CHB-MLC and the topology given in
Figure 17a, respectively. A comparison of selected works on
MLC based BSSs is presented in Table 2 for different aspects.

5 DISCUSSION AND FUTURE TRENDS

The growing utilisation of MLCSs in BSSs during the last decade
has led to improvements on battery technologies, topologies
and control techniques. Based on the conducted research, some
evident and other more arguable trends can be inferred from
this paper on MLCS based BSSs. Although MLCS is well-
established in power systems, there are still some issues that
need to be solved on its use in BSSs. Some of these trends and
issues will be investigated in this section.

There is an increasing trend in using Li-ion based batteries
in MLCS based BSSs due to its long lifetime and high power
density. However, research on metal-air based battery technol-
ogy yields that its high energy density and low cost make it a
suitable candidate for EV applications [217]. Among metal-air
batteries, aluminum air (Al-air) battery makes a case in terms of
high specific energy, being light and non-toxic, and recyclability.
Non-chargeable nature and self-corrosion in metal electrodes
can be counted among disadvantages. Hence, research direction
on metal-air batteries will mainly be on producing rechargeable
battery cells in the future [218].

It is already known that MLCSs are superior compared to
traditional two- or three-level converter schemes in terms of
low harmonic content, small size and less dependency on mag-
netic circuits. That is why research focus on BSSs has shifted
to MLCSs during the last decade. Nowadays, new MLCSs as
well as novel SM configurations for MMCSs and CSM-MLCSs
are being developed by researchers. Although switch and pas-
sive component count seems to be a straightforward approach
to compare different MLCSs, voltage stress, power sharing of
semiconductors and thermal distribution of the system are other
significant parameters that need to be considered for the new
MLCSs and SM configurations in the market.

A challenge that could be faced in MLCS based BSSs is volt-
age and SOC imbalances between battery packs. This could be
because electrochemical differences between battery packs as
well as utilisation of second-life batteries [116, 117]. Number
of research has been published on SOC balancing mainly focus-
ing on MMCSs and CSM-MLCSs in the recent years. As SOC
imbalances affect the power quality and lifetime of the MLCS
severely, SOC balancing on traditional MLCSs as well as new
MLCSs that employ multiple battery packs will be a challenge in
the near future. Achieving balanced SOC levels between battery

packs does not guarantee balanced voltages in the MLCS since
different series–parallel configurations may be held to create dif-
ferent battery packs. Even though the same series–parallel con-
figuration with the same type of battery is utilised in each battery
pack, differences on discharge curves and aging may generate
different voltages. Using a two-stage SM configuration would
be helpful in this case as output of the DC–DC converter can
be adjusted so that each SM has the same DC voltage. Further-
more, modifying the applied PWM technique could be a solu-
tion in single-stage MLCSs. Here, solutions would be based on
mitigating the effects unbalanced DC voltages on harmonic per-
formance of output voltage and current and improving power
quality at the output instead of having balanced DC voltages in
each SM. Hence, this is a challenge that researchers will move
towards in the future.

Reliability is a key feature in the future enhancement of
MLCSs. Despite having a modular structure provides a degree
of freedom to MMCSs and CSM-MLCSs depending on the
utilised SM configuration, taking advantage of the modularity
highly depends on fault-detection and fault-diagnosis ability of
the MLCS. Hence, fault-tolerant actions can be limited by these
constraints. Since battery and capacitor faults and short- and
open-circuit faults on power switches tend to happen quickly,
having a fully fault-tolerant MLCS does not seem possible
in practice considering the current state-of-the-art. Therefore,
there is definitely a room for improvement on fault-tolerant
control strategies in MLCS based BSSs. To sum up, there may
be promising research directions for future work in MLCS based
BSSs including, but not limited to

1. Designing new types of MLCSs that have reduced compo-
nent count.

2. Employing sliding-mode, fuzzy-logic and artificial neural
network based controllers on various types of MLCSs.

3. Utilisation of other optimisation algorithms such as parti-
cle swarm optimisation (PSO), differential evolution (DE),
art colony system (ACS), clonal search algorithm (CSA),
bee algorithm (BE) and bacterial search algorithm (BSA)
in SHE-PWM and real-time implementation of those algo-
rithms on MLCSs to improve power quality of the system.

4. Minimising the adverse effects of voltage and SOC imbal-
ances between battery packs with possible improvements on
PWM method and/or SOC balancing control.

5. Integration of RESs, especially wind, into BSSs via MLCSs
to mitigate the negative effects of the intermittent nature of
RESs.

6. Novel SOH balancing techniques that improve the lifetime
of the batteries as well as MLCS.

6 CONCLUSION

This paper provides an up-to-date review on current state-of-
the-art of MLCS based BSSs considering the most recent con-
tributions on battery technologies, MLC topologies and control
techniques. First, major rechargeable battery storage technolo-
gies are reviewed. Then, a systematic review of traditional and
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recently proposed MLCSs is provided. Later, various control
schemes that are employed in MLCS based BSSs are investi-
gated. Finally, future directives in MLCS based BSSs consider-
ing the gaps in research are incorporated. It is clear that MLCSs
will take an active part in BSSs and extensive research will be
held on several aspects like reducing the component count in
MLCSs and finding effective solutions for imbalances in battery
voltages and SOCs in the future.
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