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ABSTRACT A specially designed metallic E-shaped fractal-based perfect metamaterial absorber (PMA)
with fairly wideband absorptivity in the K- and Ka-bands of the microwave regime was investigated. The
PMA top surface is comprised of square-shaped split-ring resonators (SRRs) surrounded with the stated
fractal design. The absorptivity of PMA was analyzed in the range of 20—30 GHz for the normal and oblique
incidence of waves. Both the transverse electric (TE) and transverse magnetic (TM) modes were taken up to
observe the robustness of the proposed design. It was observed that the fractal resonators exhibit capacitive
effect at low frequencies, whereas the SRRs manifest capacitive effect at higher frequencies. The simulation
and measured results were found to be in fairly good agreement. It is expected that the proposed design of

PMA would be useful for 5G communication applications.

INDEX TERMS Metamaterial, metamaterial absorber, fractal metasurface, fractal designs.

I. INTRODUCTION
Metamaterials (MMs) are the artificially engineered medi-
ums, wherein periodically repeated subwavelength-sized
metallic or dielectric unit cells are arranged to exhibit unique
and exotic electromagnetic (EM) properties [1]-[4]. These
find potentials in optical imaging [5], cloaking mediums [6],
antennas [7], holography [8], ultra-sensitive sensors [9]-[12],
filters [13], [14], perfect absorbers [15]-[18], etc. [19]-[21].
As known well, perfect absorption remains one of the
interesting applications of MMs. Within the context, perfect
metamaterial absorbers (PMAs) have been investigated with
narrow and wideband absorption characteristics, depend-
ing on the application [15], [22]-[24]. Apart from these,
the usages of PMA in wireless communication, emitters,
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sensors, photodetectors, photovoltaic solar cells and infrared
camouflages are some of the notable ones [25]-[29].

To date, several forms of PMAs have been reported for
suitably operating in the microwave, terahertz, visible and
ultraviolet regimes [13], [30]-[32]. The desired absorption
band can be essentially achieved by tailoring/optimizing
the geometric parameters of the constituent meta-atoms (or
the unit cells). Also, such three-layer PMAs work on the
phenomenon of resonance, that include the top metasurface
allowing penetration by the incidence EM waves, the middle
substrate traps the radiation, and the bottom layer blocks the
transmission of the same.

In the context of absorbers, different techniques have
been exploited by the researchers to broaden the bandwidth
employing multi-resonators in a super unit cell and/or mul-
tilayer structures [24], [29]. However, the drawbacks, such
as large size, fabrication complexities, and high cost, very
often suffice. Some other techniques exploit the use of
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slot-loading [33], frequency selective surfaces [34] and frac-
tals [21], [32], [35]. It remains rather challenging to achieve
broadband absorption with the use of a single metasurface
layer in designing PMAs.

Interestingly, the absorption band can be significantly
enhanced by exploiting the concept of fractals — the
repeated elements arranged in a specific pattern — in the
metasurface architecture. Fractals possess the features, such
as self-similarity, space-filling, and scaling. By carefully
designing and selecting the shape of unit cell, thereby
contributing to construct the proposed device, wideband and
miniaturized microwave and optical devices can be imple-
mented. The present work relies on the fractal space-filling
property that contributes to miniaturization and the self-
similarity, and creates multiple resonances to attain wideband
features [35]-[37].

In this investigation, we aim at developing a fractal
metamaterial absorber (FMA) comprising metallic SRRs
surrounded by E-shaped fractals. We analyse the absorp-
tion spectrum of the resulting metasurface-based design
in the 20-30 GHz microwave regime, for both the
TE- and TM-incidence excitations. We also consider the
effects of incidence obliquity and substrate thickness to
observe relatively wideband absorption — the feature that indi-
cates the proposed structure to have potentials for application
in the K- and Ka-bands. The results indicate the use of FMA
in 5G communication as well as MIMO (massive-input and
massive output) antennas.

Ly

Wy

FIGURE 1. Schematic of the proposed fractal metamaterial absorber;
(a) top view, and (b) enlarged view of metallic split-ring geometry at the
center.

Il. DESIGN AND MODELING

Figure 1a shows the unit cell of the top metasurface architec-
ture of the proposed FMA, whereas fig. 1b exhibits the central
SRR design used as a component of the unit cell. The FMA
itself is a metal-dielectric-metal kind of three-layer config-
uration, wherein the top and bottom layers are composed of
copper (having the conductivity o = 5.8x 107 S/m) separated
by the FR4 dielectric material (having the relative permittivity
& = 4.3 and loss tangent tan § = 0.025). As becomes clear
from fig. 1a, the meta-atom has metallic E-shaped fractal-like
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structure with the inclusion of two square-shaped asymmetric
metallic SRRs at the center.

While optimizing the metasurface design, we start with the
edge-to-edge connected four equidimensional square copper
patches, each having a size of 8.5 x 8.5 mm?. We then convert
each of these patches to assume symmetric E-shaped design
of the first-order fractal kind. Similarly, the next fractal stages
can be achieved from the previous ones without disturbing the
symmetry of each E-shaped structure. In the final step, two
asymmetric square-shaped SRRs are inserted at the central
void space of the edge-to-edge connected fractals. Finally,
following the symbols in fig. 1, we use the design parameters
as P =26mm,L; = 6 mm, W; = 1.7 mm, L, = 3 mm,
Wy, =034 mm, L3y = W3 = 6 mm, Ly = Wy = 4 mm,
W =S8 = 0.5 mm, and G = 1 mm. Also, we consider the
thickness of metasurface to be 32 um. Using the proposed
metasurface, the FMA 3D configuration assumes the form,
as depicted in fig. 2.

FIGURE 2. Schematic of the proposed FMA configuration.

We first use the CST Microwave Studio simulation,
in order to investigate the absorption characteristics of the
proposed FMA structure. In such an attempt, we employ the
unit cell boundary conditions along the x- and y-directions,
while the open add space boundary conditions along the
z-direction. Further, a time-harmonic plane wave is excited
along the z-direction. Upon illuminating the top fractal meta-
surface, the overall absorption is determined as [35].

Alw)=1-T () —R(w) (1)

A) =1 -1 - IS11()? 2)
where

IS1@)P = [Si1. @) + [Si1, (@) 3)

Here the subscripts ‘xx” and ‘yx’ correspond to the
co- and cross-components, respectively. In our proposed
design, the cross-reflection component is almost vanishing,
ie., |S11, (w)| = 0, thereby giving rise to

A =1-|Si1, )| )
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It is noteworthy that the bottom ground plane of the FMA
(fig. 2) behaves as a perfect reflector to block the transmission
of waves, and therefore, the transmission coefficient S>; ~ 0,
thereby making the absorption features to be controlled by the
reflection characteristics only. To achieve perfect absorption,
the magnitude of reflection should be almost vanishing —
the feature that can be achieved by attaining suitable res-
onance conditions. Interestingly, at resonance, the effective
impedance of the top fractal metasurface (of the absorber)
matches with the free-space impedance, which essentially
would result into the absorption of entire incidence radiation
(by the PMA structure). The normalized impedance Z of
metamaterial is defined as Z = (1 + S11) / (1 — S11) [38].
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FIGURE 3. Effective impedance of the proposed FMA.

Figure 3 shows the frequency-dependence of the nor-
malized effective impedance of the proposed top meta-
surface. According to the impedance matching condition
(i.e., Z = 1), the EM waves would penetrate metasurface.
We observe in fig. 2 that the impedance pattern exhibits
ripples. However, it becomes unity at 29.5 GHz frequency —
the value at which the incidence waves will pass through the
metasurface with vanishing reflection. Apart from this, the
impedance exhibits values close to unity corresponding to
some other frequencies as well, namely 20.4 GHz, 21 GHz,
23.7 GHz and 26 GHz.

Ill. RESULTS AND DISCUSSION

As stated in Section 2, in order to optimize the wide-
band absorption property of the proposed FMA, we start
with designing and simulating different fractal stages of the
unit cell considering the normal incidence of EM radiation.
Figure 4 exhibits the frequency dependence of absorptivity,
considering the four different stages of fractal geometry,
taking into account the transverse electric (TE) and transverse
magnetic (TM) incidence polarizations.

In this stream, we first take the zeroth-order fractal stage;
fig. 4a illustrates the obtained absorption characteristics and
the fractal design in the inset (of figure). We observe the pres-
ence of multiple absorption peaks at different frequencies.

5672

1.0 1.0
0.9 0.9
084 0.8
Z074 Z07]
= =
E 0.6 £ 0.6
054 054
2 2
Z 044 Z 04
<034 <0 11
0.2 4 === TE Mode 0.24 D [ TE Mode
= TM Mode| —— T™ Modc|
0.14 014
(a) (b)
0.0 T T T T 0.0 T T T T
20 22 24 26 28 30 20 22 24 26 28 30
Frequency (GHz) Frequency (GHz)
1.0
094
0.8 4
Z074
Z 0.6
£os
2
2044
i :
HEm= o S
o ST —— TM Mode ’L
[ORL
0.0 T T T T
20 22 24 26 28 30 30

1 26 28
Frequency (GHz) Frequency (GHz)

FIGURE 4. Frequency dependence of absorptivity of the proposed FMA
considering (a) zero-order, (b) first-order, and (c) second-order fractals,
and (d) second-order fractal with SRRs; all under normal incidence.

We find the absorption patterns corresponding to the
TE- and TM-polarized excitations overlap, thereby making
the FMA to be polarization-insensitive — the feature that
is attributed to the four-fold symmetry of the unit cell in
the metasurface. Upon using the first-order fractal structure
in the unit cell design, which we achieve by converting
each square patch into the form of E-shaped resonator (the
inset of fig. 4b), we still obtain the polarization-insensitive
multi-band absorption patterns (fig. 4b). The spectral charac-
teristics are, however, significantly altered now, as compared
to what we observe in fig. 4a. The second-order fractal
geometry (as in the inset of fig. 4c) in the metasurface
unit cell also exhibits the polarization-insensitive behavior,
as fig. 4c shows. In all these three cases, we observe very high
(polarization-insensitive) absorption in the frequency range
of 20-21 GHz. Interestingly, the impedance characteristic in
fig. 3 also shows nearly unity value of impedance, thereby
confirming high absorption of incidence radiation. Corre-
sponding to some other frequency values as well, for which
the impedance values are close to unity (fig. 3), we obtain
high absorptivity in figs. 4a—c.

Next, we attempt to insert two asymmetric metallic SRRs
into the central void space of the second-order E-shaped
fractal geometry; the inset of fig. 4d exhibits the unit-cell
structure used in the metasurface. We clearly observe in this
case that the polarization-insensitive property of metasurface
is lifted off as the absorption spectra corresponding to the
TE- and TM-polarized incidence radiations are distinct now.
This is essentially attributed to the incorporation of asym-
metric SRRs in the metasurface. In fact, the four-fold sym-
metry in the unit cell structure is lost in this case due
to the inclusion of two asymmetric split-rings, thereby
eliminating the polarization-insensitive characteristics of the
FMA. Further, though the absorption patterns exhibit rip-
ples, the overall absorptivity remains broader in frequency
range in this case. Apart from this, we obtain very high
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absorption corresponding to several impedance values which
remains close to unity (in fig. 3); the increase in absorptivity
is attributed to the capacitive effect of the two asymmetric
split-rings.

A deeper insight into fig. 4d gives the minimum absorption
of over 80% in the frequency range of 20-24 GHz. Within
this span, the FMA exhibits even perfect absorption corre-
sponding to certain values of frequency, namely 20.4 GHz,
21 GHz, 22.5 GHz, and 23.7 GHz. Outside the range of
20-24 GHz, the FMA yields perfect absorption at 29.5 GHz
as well. Interestingly, corresponding to all these frequency
values, fig. 3 exhibits the impedance to be either unity or close
to unity.

We discussed above the results considering the normal
incidence (i.e., 8 = 0°) of the TE- and TM-polarized exci-
tations. We now investigate the absorption characteristics of
FMA under the oblique incidence of EM waves. For this
purpose, we vary the obliquity angle in a range of 0°—40° in
a step of 10°. Also, we take two different values of substrate
thickness, viz. 1.2 mm and 1.6 mm; figs. 5 and 6, respec-
tively, illustrate the achieved frequency-dependent absorption
characteristics.
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FIGURE 5. Frequency-dependent absorptivity of the proposed FMA under
different obliquities considering the (a) TE-, and (b) TM-polarized
incidence excitations, and the dielectric layer thickness as 1.2 mm.

Figure 5 illustrates the obtained spectral patterns;
figs. 5a and 5b, respectively, being corresponding to the
TE- and TM-polarized incidence conditions. We observe in
these figures that all the used values of incidence obliquity
show ripples in the absorption spectra in the used range of
operating frequencies. However, the proposed FMA exhibits
nearly perfect absorption as well corresponding to certain
frequency values. In the context of observing multiband
absorption in the frequency range of 20-30 GHz, we notice
in fig. 5a that, for the normal incidence (i.e., 6 = 0°
fig. 2) of TE-polarized waves, multiband absorption peaks are
located at the operating frequencies ~21.06 GHz, 22.2 GHz,
23.36 GHz, 24.9 GHz, 27.9 GHz, and 29 GHz with the
respective absorptivity values as ~98.31%, 94.24%, 96.76%,
97.11%, 94.71% and 96%. The increase of obliquity to 10°
yields the peak absorption values to be ~97.75%, 99.99%,
97.11% and 99%, and positioned at the respective operating
frequencies as ~23.6 GHz, 24.3 GHz, 26.4 GHz, and 28 GHz.
The use of 6 = 20° gives ~91.59% and 91% absorptions
at 23.5 GHz and 24.3 GHz frequencies, respectively, and a
wideband absorptivity of ~85% in the 25.5-30 GHz span.
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Further increase of obliquity values to 30° and 40° also results
in multiple absorption peaks. Overall, fig. 5a reveals that
the increase of incidence angle of the TE-polarized wave
generally results in lowering the absorptivity.

The absorption spectra corresponding to the TM-polarized
incidence excitation (fig. 5b) show almost similar trend of
resulting in multiple absorption peaks, as observed in the case
of impinging TE-polarized waves (fig. 5a). The positions of
absorption peaks and the respective magnitudes of absorption
can be observed from these figures, which indicate that the
absorptivity is generally larger for higher frequencies, and its
values typically become lower with the increase in obliquity.
This is essentially attributed to the resonance conditions,
which alter upon changing the incidence angle [39], [40]. Fur-
thermore, the absorption band is also reduced with increasing
obliquity (fig. 5).
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FIGURE 6. Frequency-dependent absorptivity of the proposed FMA under
different obliquities considering the (a) TE-, and (b) TM-polarized
incidence excitations, and the dielectric layer thickness as 1.6 mm.

Now, as stated before, fig. 6 corresponds to the absorption
patterns with increased value of dielectric medium thickness,
i.e., 1.6 mm. We observe in this figure that the spectral
characteristics are almost similar to what fig. 5 depicts (when
the FR4 medium thickness is 1.2 mm) except for some minor
alterations only. As such, a small increase in the FR4 layer
thickness would not leave significant impact on the absorp-
tion features of this FMA.

In order to give a comparative look at the present work
considering some of the previously reported results in sim-
ilar context [39]-[45], we incorporate Table 1 to empha-
size the importance of this investigation. In most of these
earlier works, wideband absorption was attained by exploit-
ing multilayered configurations in designing the absorber.
Reference [41] reports the largest absorption band, which
could be achieved exploiting the metamaterial absorber com-
prised of polymer and carbon nanotubes. The design essen-
tially involves a multilayer kind of structure, which somehow
remains relatively costly to fabricate. Apart from this, the use
of multilayer structures somehow imposes limitations on
practical applications in the modern communication technol-
ogy where systems generally require miniaturized devices.
Table 1 determines the proposed kind of FMA to be attractive
in achieving fairly wideband characteristic.

We now plot the electric field and surface current dis-
tributions corresponding to two different absorption peaks,
as obtained under the normal incidence of TE-polarized
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TABLE 1. Comparison of the present work with some of the previously reported works.

Reference Operatin Absorption  Remarks
numbers frle) uenc € Materials used Configuration = bandwidth
aueney (> 80%)
. Large thickness and
[39] 2-24 GHz  FR4 and copper Multilayer 12-22 GHz costly fabrication
[40] 8-16 GHz  FR4 and copper Multilayer Multiband E;I:ivtifr:h
[41] 540 GHz E;)rll};rtnu%reand carbon Multilayer 8-40 GHz Costly fabrication
. Large thickness and
[42] 2-20 GHz  FR4 and copper Multilayer 5-19 GHz costly fabrication
. 7.8-14.7 Large thickness and
[30] 6-15 GHz  FR4 and copper Multilayer GHz costly fabrication
[43] 1-30 GHz  FR4 and copper Multilayer 4(1}.15_122725.42 Costly fabrication
[44] 5-25 GHz f;‘;;eﬂ"“ and  Multilayer 7521 GH,  COstly fabrication
Rogers TMM4, . Large thickness and
[45] 3-25GHz o fon and copper Multilayer 8-21.5 GHz costly fabrication
‘I?;:rli(osed é(;_;io FR4 and copper Single layer 20-28 GHz Easy fabrication
\ I 1.0 1.0 of the E-shaped resonators located at the upper and lower
0.8 0.8 ends of split-rings. These support the wavelength-dependent
= 0.6- absorption of the proposed metamaterial structures. In fig. 8,
= L@:ﬂjﬂ —_— ’ the current is maximally distributed in the SRRs at the center.
) 2 04 04 In order to experimentally verify the results, we attempt
i 02 0.2 to fabricate the proposed FMA structure. For this purpose,
- - 0 0 we prepare the sample consisting of 6 x 6-unit cells of copper

FIGURE 7. Electric field distribution patterns of FMA at (a) 21 GHz, and
(b) 29 GHz.

medium, fabricated over the FR4 dielectric substrate with
a thickness of 1.6 mm, as fig. 9 illustrates. The fabrication
process has been realized by using the CNC-based LPKF
E33 prototyping machine equipped with the plotting and
milling techniques.

1.0 1.0
0.8 0.8
0.6- 0.6
04 0.4
0.2 0.2
0 0

FIGURE 8. Surface current distribution patterns of FMA at (a) 21 GHz, and
(b) 29 GHz.

wave; figs. 7 and 8 exhibit these. In particular, figs. 7a and 7b,
respectively, depict the electric field intensity patterns at the
top metasurface of FMA corresponding to the absorption
peaks at 21 GHz and 29 GHz, whereas figs. 8a and 8b
exhibit the respective surface current distributions at these
frequency values. We notice in fig. 7a that the electric field
is maximally localized at the edges of metallic E-shaped
resonators, whereas fig. 7b shows its maximum concentration
at the center of the used SRRs as well as in the middle legs
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FIGURE 9. Fabricated sample of the FMA comprised of 6 x 6-unit
cells (left) and the unit cell itself (right).

The experimental setup for reflection measurement has
been achieved by using the Agilent PNA-L Vector Network
Analyzer (VNA) having an operating frequency band in the
range of 10 MHz to 43.5 GHz. We use horn antennas with
an operating frequency span of 15-40 GHz, in order to
measure the absorptivity of the proposed structure at normal
incidence of radiation having frequencies 20-30 GHz. We fix
the distance between horn antennas and the FMA sample by
considering the far-field region approximation, according to
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which the field can be assumed to be simply as normal (to the
FMA surface) EM radiation. As such, we take the far-field
distance to be > 2D?/x with D being the highest antenna
dimension and A is the center wavelength.
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FIGURE 10. Simulated and measured frequency-dependent absorptivity
of the proposed FMA.

Before proceeding for measurements, we first calibrate
the VNA by using a special calibration kit having a short-
circuit, open-circuit and load connectors. After that, we place
antennas at the front side of FMA, and measure the reflected
power (S11) — the parameter that we use to extract the value
of absorption. Figure 10 exhibits the measured and simulated
results together, which determine the frequency-dependent
absorptivity of the proposed FMA structure. Also, we observe
both the results to be in good agreement at certain frequencies
in the used operating frequency span. Overall, the results
may be considered to be in fairly good agreement in the
20-27.5 GHz frequency range. However, there remains sig-
nificant mismatch between the 28 GHz and 29 GHz fre-
quency points, which may be attributed to calibration errors
and/or minor disturbances around. Minor deviations from the
“perfect-fabrication” of FMA would also cause such dis-
crepancies. Disturbances in the measured absorptivity pattern
would also arise due to imperfect laboratory conditions and
test cables. Calibration errors for such high-frequency appli-
cations would also introduce instabilities in the absorptivity
plots. Nonetheless, the measurement and simulation results
show that the proposed FMA structure has an average of
~80% absorption in the frequency range of 20-30 GHz.

IV. CONCLUSION

In the afore discussed results, we investigated the absorption
characteristics of a new type of metallic E-shaped fractal-
based FMA structure, which incorporates asymmetric square-
shaped metallic SRRs at the center, in the 20—30 GHz
(i.e., for the K and Ka-bands) frequency span exploiting the
simulation and experimental routes, and find the obtained
results to be in fairly good agreement. The simulation results
corresponding to different orders of fractal design indicate
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the use of SRRs at the center of fractal geometry lifts up the
polarization-insensitive property of the resulting metasurface.
However, the use of fractal metasurface without exploiting
the asymmetric SRRs at the center allows the FMA to remain
polarization-insensitive, which is owing to the four-fold sym-
metry in the fractal geometry. Also, minor changes in the
dielectric substrate thickness do not leave major impact on
the absorption spectra. In average, the FMA attains the largest
absorptivity of ~80% for the normal incidence of waves with
the TE- and TM-polarized excitations. At certain operating
frequencies, however, the structure also exhibits nearly per-
fect absorption of waves. The proposed absorber covers the
5G frequency band, and therefore, it would be useful for
the future 5G communication systems for filtering, antenna
isolation, and attenuation related applications.
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