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Abstract
Deep learning with convolutional neural networks (ConvNets) has dramatically improved
the learning capabilities of computer vision applications just through considering raw data
without any prior feature extraction. Nowadays, there is a rising curiosity in interpreting and
analyzing electroencephalography (EEG) dynamics with ConvNets. Our study focused on
ConvNets of different structures, the efficiency of multiple machine learning algorithms with
optimization on ConvNets, constructing for predicting imagined left and right movements on
a subject-independent basis through raw EEG data. We adapted novel lower-upper triangu-
larization based extreme learning machines (LuELM) to the ConvNet architecture. Results
showed that recently advanced methods in machine learning field, i.e. adaptive moments
and batch normalization together with dropout strategy, improved ConvNets predicting abil-
ity, outperforming that of conventional fully-connected neural networks with widely-used
spectral features. The proposed prediction model achieved improvements in classification
performances with the rates of 90.33%, 91.00%, and 89.67% for accuracy, recall, and speci-
ficity, respectively.

Keywords ConvNets · Deep learning · Predicting imagined hand movements · EEG

1 Introduction

Machine learning methods together with electroencephalography (EEG) data empower
researchers to interpret neurological activities, and are key components of the brain-computer
interface (BCI) research field. For instance, such systems can enable locked-in patients to type
phone numbers [44], to use wheel-chair [5] and to operate computer explorer [4]. In addition,
such systems may be used in prediction onset of stroke [3]. Although these successful and
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promising studies, a general framework for extracting features and learning mechanism with
regard to recent advances in machine learning field is still needed.

Deep learning with convolutional neural networks (ConvNets) is of prominent recent
advances in machine learning, particularly computer vision. They are the most successfully
biologically inspired neural networks since their principles and structures rely on nonsci-
entific hierarchical learning [12]. Following achievements in computer vision, it continued
in a straight way in sentiment analysis from text [8] and audio processing [16]. Nowadays,
handcrafted-features have lost their usefulness with ConvNets capability to reveal promi-
nent features from input data via end-to-end hierarchical representation. In addition to the
high classification performances of ConvNets in image and sound analysis, It has also been
a popular focus for the various time-series analysis in recent years. The significant char-
acteristics of Deep Learning including using many hidden layers, transfer learning, and
extracting deterministic features for low-, middle- and high-levels by transferring the feature
activation maps layer-by-layer, feature learning, and more make it easy to achieve effective
generalization capabilities on time-series. ConvNet has been focused on identifying different
neurological disorders and cognitive tasks using EEG recordings. Zhang et al. used ConvNet
on Hilbert-Huang transform-based frequency-energy-time distribution to identify the sleep
apnea disorder. They smoothed the frequency domain plot using the autoencoder model and
applied ConvNet to the EEG channels with sampling rates of 128 Hz and 250 Hz. They
proposed an orthogonal ConvNet algorithm and classified the recordings with classification
accuracy rates of 88.4% and 87.6% for 128 Hz and 250 Hz, respectively [51]. Mousavi et
al. used batch normalization and ConvNet on EEG recordings with a sampling rate of 100
Hz to detect the sleep stage on the different number of sleep stages. They utilized over-
lapped shifting segmentation method to overcome the problem of unbalanced sleep stages.
They applied the increasing size of convolution filters for their model and used two fully
connected layers with MLP on the supervised stage of the model. They achieved the classi-
fication accuracy rates from 92.95% to 98.10% for identifying 2–6 sleep stages [31]. Raghu
et al. applied pre-trained ConvNet architectures including VGGNet, GoogleNet, DenseNet,
ResNet and more using transfer learning flexibility of Deep learning to detect seizure type on
16-channel EEG recordings. They experimented with support vector machines (SVM) and
MLP at supervised learning as different models with various optimizations. They reported
the highest classification accuracy rate of 88.30% using InceptionV3 architecture with SVM
with radial basis kernel function and MLP with Adam optimization [35]. Acharya et al. also
proposed a ConvNet architecture to identify seizure on EEG recordings with a sampling rate
of 173.61 Hz. They compared the efficiency of MLP and ConvNet on EEG. They achieved
classification performance rates of 88.67%, 95.00%, and 90.00% for accuracy, sensitivity,
and specificity using ConvNet, respectively. They reported the superiority of the ConvNet
over simple MLP by feature learning capabilities [1]. Sun et al. proposed a ConvNet with
long short term memory model neural networks for EEG-based human identification. They
analyzed the EEG dataset on motor imagery tasks for their proposal on 16-channel EEG
recordings from 109 subjects with a sampling rate of 160 Hz. They fed the ConvNet features
to the long short term memory model and sequentially two fully connected layers at the
supervised learning stage. They separated the subjects with an averaged accuracy of 99.58%
using directly EEG signals to the ConvNet model [43]. San-Segundo et al. applied ConvNet
to detect epilepsy on various transformation plots. They extracted frequency distributions
using Fourier, wavelet and six intrinsic mode functions using empirical mode decomposi-
tion. They extracted the plots obtained from signal transformations were fed into the ConvNet
with two fully connected layers based on root-mean-square propagation (RmsPROP). They
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reported the increase of seizure detection accuracy rate by 99% to 99.5% using empirical
mode decomposition filter modulations with ConvNet [36].

This paper concentrated on a challenging task of predicting imagined left and right move-
ments through raw EEG data with ConvNet on a subject-independent basis with considering
109 number of subjects. In the literature, studies on EEG motor movement/imagery (EEG-
MMI) database aim to predict imagined movements through the use of SVM or multi-layer
perceptron (MLP) achieved success on either only a subject-dependent basis or a subject-
independent basis but for limited subjects. Mostly, it is claimed that these specialized tasks
could uniquely be predicted just for each subject. Additional researches were performed in
distinguishing executed and imaginarymotormovements [41,48] that differ from our study in
that we concern with predicting imagined motor left and right fist movements. Mohammed et
al. proposed SVM learning model for predicting motor-imagery activities based on wavelet
spectral analysis. They have reached an accuracy of 84% on a subject independent basis
for only 20 subjects [2]. Schirrmeister et al. analyzed EEG to obtain task decoding. They
compared the efficiency and robustness of the filter bank common spatial patterns(FBCSP)
algorithm and ConvNet. They analyzed various large- and small-scaled EEG datasets with
hybrid and ConvNet architectures. They achievedmotor-imagery task classification accuracy
rates of 71.2%, 72.2%, and 67.7% for FBCSP, ConvNet, and Shallow ConvNet, respectively.
They reported the applicability of their proposal for the visualization of EEG bands for
channels [38]. Cecotti and Gräser also used ConvNet on EEG to detect the P300 waves
for event-related potentials. They analyzed two subjects from the P300 speller dataset in
BCI Competition III. They evaluated the generalization performances of multiple machine
learning algorithms on ConvNet. They identified the P300 waves in EEG with classification
performance rates of 70.37–78.19%, 67.40–69.2%, and 31.7–40.9% for accuracy, recall, and
precision, respectively. They reported the advantages of ConvNet withMLP against ConvNet
with SVM (Linear and Gaussian kernels) [6].

Besides, studies not-using EEGMMI database reached promising results with considering
artifact removal at preprocessing, energy, and power features [13], proposing Joint Approx-
imate Diagonalization method for handling non-stationary characteristics of EEG that aids
in predicting imagined movements [30], integrating magnetoencephalographic signals with
EEG and converting EEG time-series into 2D mesh-like hierarchy together with convolu-
tional recurrent neural network [50].

EEG is a non-stationary and nonlinear time-series signal which has recent advancements
for neurological disabilities and more. It is commonly recorded various numbers of channels
that make it analyzed and understood. Whereas increasing the number of EEG channels
gives rise to challenging analysis, various studies are constantly developing novel algorithms
to overcome this issue. Wu et al. proposed a Bayesian framework for easing the multi-
channel EEG analysis and avoiding overfitting the machine learning models by exploiting
the spatial patterns [46]. EEG data are physically dissimilar to typical 2-D or 3-D images
input of ConvNets, they consist of time-series from several electrodes on the scalp surface,
can be conceptualized as 2-D, the voltage varies over time and space, where space refers to
electrodes. In the neuroscience field, EEG data are assumed to be originated from several
dipolar current sources in the brain and they are linear combinations of them. From this
perspective, spatial relations should be preserved and are of key components in EEG data
to reveal data of high signal-to-noise-ratio from that of low signal-to-noise-ratio. Therefore,
the adaptation of ConvNets inputs for EEG data should be handled. In addition, design-
choices and learning strategies should be compared. Unlike ConvNet with many machine
learning algorithms for the supervised learning stage of the models, advanced techniques
were also proposed for motor imagery classification. Li et al. studied on modeling a hybrid
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algorithm to detect event-related potential on EEG by spatio-temporal patterns. They used
restrictedBoltzmannmachines based temporal features onmulti-channel EEG.They reported
an average AUC score of 0.889 for 11 subjects [26]. Qi et al. proposed a regularized spatio-
temporal filtering on EEG. In the first step, they enhanced spatial and high-order temporal
filters. They applied the filters using eigenvalue decomposition. In the second step, they
integrated the Fisher linear discriminant analysis as classifier and feature dimensionality
reduction step on single-trial EEG recordings. They specified the advantages of optimization
on filters and the robustness of their algorithm on various multi-channel EEG datasets [34].

The aim of the study is to compare the competence and efficiency of multiple machine
learning algorithms and optimization techniques at the supervised learning stage of Deep
Learning using ConvNet features for the prediction of motor-imagery tasks through multi-
channel EEG. The paper addresses two classification problems using high generalization
capacity and fast classification kernels in addition to conventional machine learning algo-
rithms on a ConvNet structure with 3 convolutional layers, batch normalization, and
max-pooling layers. The main contributions are highlighted as follows:

1. The proposal and analysis of ConvNet for extracting low- and high-level features from
EEG signals and transferring them into the next layers for imagery task classification

2. ConvNet on EEG signals was evaluated in multiple machine learning algorithms with
optimization. We achieved significant improvements in classification performances for
predicting imagery tasks

3. Novel lower-upper triangularization based Extreme Learning machines (ELM) kernel,
LuELM, which had high generalization capability and accelerated learning speed by
the advantage of using no iterations, was adapted to the supervised learning stage of
ConvNet.

4. The prediction score of motor-imagery tasks through EEG was improved by 88.90% to
90.33%.

In our study, a design-choice that preserves spatial information of multi-channel EEG
data includes dropout layer [42] and batch-normalization [19,27] and with different back-
propagation methods i.e. RmsPROP [17], Adam [22] and stochastic gradient descent with
momentum were evaluated with the same hyper-parameters values i.e. learning rates, reg-
ularization constants. To see the impacts of the ConvNet model on EEG data results of
classical spectral features together with traditional fully-connected multilayer perceptron
were compared. Results showed that recently advanced methods in the machine learning
field, i.e. Adam, batch normalization together with dropout strategy, improved predicting
ability, outperformed that of conventional fully-connected neural networks with spectral fea-
tures estimated with Welch periodogram.

2 Materials andMethods

First, information about EEG recordings and preprocessing were provided. This is followed
by describing Welch and Morlet wavelet methods of spectral analysis. Next, we explained
ConvNet constructed for this study in detail, particularly the design-choice for EEG data.
Afterward, six training strategies were described.
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2.1 Database

We evaluated predicting imagery left and right movements on publicly available EEGMMI
dataset [37] in Physionet [11]. Dataset consists of 160 Hz sampled EEG recordings through
64 electrodes from 109 subjects in the course of 4 motor/imaginary tasks. Each subject
performed 14 experimental runs: two one-minute baseline runs (one with eyes open, one
with eyes closed), and three two-minute runs of each of the 4 following tasks.

In this study EEG recordings in the course of one of the tasks were considered. The
procedure in the selected task is as follows: A target appears on either the left or right side of
the screen, the subject imagines opening and closing the corresponding fist until the target
disappears. Then the subject relaxes. This trial is repeated 3 times, each repetition has 15
number of right and left labeled segments. Therefore, for each subject there exist 45 number
of labeled segments.

2.2 Preprocessing

Preprocessing was performed at a minimum level to enable ConvNet to capture the dynamics
and characteristics of EEG recordings itself without bias. EEG recordings were filtered above
30 Hz using a designed high-pass filter with an ordinary 3rd order Butterworth filter.

2.3 Multi-Layer Perceptron

In this study, the network contained two fully-connected hidden layers comprising 100 and
75 nodes, respectively. The training set was segmented in estimation and validation subsets
(85 and 15% of the training set respectively). The tangent hyperbolic activation function was
used for the hidden layers and the output layer. The sequential (in other words, batch size
is one) learning strategy was performed for computing gradients. Gradients were computed
with the steepest descent algorithm and a learning rate of 0.01 was set and kept constant
throughout the training process. The training of the network was stopped either at the 100th

epoch or whenever the updates of the weights failed to reduce the loss (mean sum squared
error) of the validation subset for 15 consecutive times. The status of the neural network was
then reverted to the last most successful epoch.

2.4 WelchMethod

Welch method includes dividing time series data into overlapped segments, estimating peri-
odograms of windowed each segment using fast Fourier transform and averaging [45].
Dividing trials into overlapped segments provides a more accurate estimation from non-
stationary time series. However, using the same repetitive information cause problems in
spectral analysis. To eliminate such repetitive information due to overlapping segments, non-
rectangular windowing methods are used. In this way, the amplitude of the data is attenuated
at the initial and last parts of segments therefore their unnecessary (repetitive) information
is decreased. Of several windowing methods, Hann tapering is mostly preferred because it
makes the initial and last parts of segments fully equal to zero [7]. Also, averaging enables
estimating periodograms that have relatively lower variance than the entire time series.

Each trial, which had a duration of 0.4 seconds (656 number of data) was split into Hann
windowed segments of 0.15 ms length that overlaps 50%with the previous segment−except
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for the first one and periodograms were estimated with a resolution of 1.67. The estimated
periodograms of alpha bands (8−12 Hz) with the Welch method were used as features to
train a multi-layer perceptron.

2.5 Deep Convolutional Neural Network

Deep learning with ConvNets [10,25] is of a specialized type of neural networks that par-
ticularly processes grid-like shaped data. They have a strong ability to learn non-linearly
separated features by means of discrete convolutions and non-linear activation. In addition,
employing deep (multiple) layers allows them to represent high-level features as a combina-
tion of low-level features. For affine transformation, they simply use widely-known discrete
convolution operation in at least one of their layer rather than general matrix multiplication.
Discrete convolution with weight-sharing enables convolutional layers to be efficient in the
representation of scale large scale of data (images, audio, etc) and equivariance to translation
(that means shifting of input can easily be captured by naturally shifting discrete convolu-
tion). Following, element-wise non-linear activation functions i.e. ReLU, LeakyReLU are
applied to improve the separability of data. The pooling layer is typically applied follow-
ing the convolution layer that compresses (in a way of down-sampling) output groups of
discrete convolutions in-line. Changing the level of striding in the convolutional layer also
provides such compression. Pooling operations are generally performed with a function of
L2 norm, maximum, mean or weighted mean. Such pooling operations make outputs gain
almost invariant to tiny translations of the network input.

In order to predict imagery tasks through EEG signals, we designed a deep ConvNet
architecture in Fig. 1 inspired by the successful study in [38]. It consists of three convolution
max-pooling layers, with the first layer was dedicated to preserving spatial characteristics
of EEG, followed by two traditional convolution layers, two fully-connected layers and a
dropout layer (probability was set to 0.5). Batch normalization [19,27] (1) and rectified
linear unit (ReLU) (2) activation were applied following each discrete convolution operation
at convolution layers.

ReLU (x) = max(0, x) (1)

H
′ = H − μ

σ
(2)

where H is the activation output of any layer to normalize, is a vector including the means
of each neuron and is a vector including the standard deviation of each neuron.

Gradients were computed at every 100 batches, and weights were updated according
to them with a learning rate of 0.001 that decreases at a level of 0.1 in every 10 epochs.
Updating weights were separately realized with using three different approaches; stochastic
gradient descent with momentum (SGDM) (momentum value was 0.9) optimization and
adaptive moments (Adam) (gradient decay factor, squared gradient decay factor, and epsilon
constant were 0.9, 0.99 and 10−8, respectively) andRmsPROP (squared gradient decay factor
and epsilon constant were 0.99 and 10−8, respectively) adaptive learning optimization. The
training of the network was stopped either at the 100th epoch or whenever the updates of the
weights failed to reduce the loss (cross−entropy) of the validation subset for 15 consecutive
times. The status of the ConvNet was then reverted to the last most successful epoch. (Codes
for downloading data form remote servers and guides for implementing this study in detail
are available at https://github.com/apdullahyayik/).
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Fig. 1 Deep ConvNet
Architecture. Following EEG
input, 3 number of convolutional
layers one of which is 2-D and
allows to preserve spatial
relations. Output sizes (width,
height and depth) corresponding
to layers are given on the left
side. Each pooling is performed
without overlapping. BN and FC
refer to batch normalization and
fully-connected, respectively

2.6 Extreme LearningMachines

ELM is a single layer feed-forward network (SLFN) that uses simple matrix inversion solu-
tions to obtain the output weights. It utilizes random assignment between input and hidden
layer. The initialized neuron weights on a single hidden layer are used to calculate the opti-
mal output weights between the hidden and output layer by single-step matrix inversions
without optimization, learning rate, backpropagation, and iteration [18]. Therefore, the train-
ing time of the ELM can be shortened conspicuously. The conventional ELM is based on
Moore-Penrose inversion with singular value decomposition.

β = HT
(
1

λ
+ HHT

)−1

T (3)

where β, H , and T represent for output weight matrix, randomly assigned hidden layer
matrix, and target matrix, respectively. Due to the efficient generalization capability with
short training time, ELM is preferred by the researchers with more effective kernels.

2.6.1 Lower Upper Triangularization ELM−LuELM

LuELM kernel is a novel ELM classifier that is based on a lower-upper triangularization
matrix inversion solution [24]. It is calculated by simple forward and backward substitutions
of H = LU .
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Fig. 2 Confusion matrices for (a) Multilayer perceptron (MLP) with gradient descent (GD), and for deep
ConvNets with (b) stochastic gradient descent with momentum (SGDM), c RmsPROP, d adaptive momentum
(Adam), e ELM, and f LuELM. Diagonal values correspond to accurately predicted numbers of trial for
each class. Bottom rows correspond to sensitivity and right-most columns correspond to precision values.
Lower-right values are overall accuracies
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Hidden layer outputmatrixH can be decomposed asH = LU where L is a lower triangular
matrix and U is an upper triangular matrix using (LU) triangularization.

Hw = t is the base solution for LuELM. The overall steps for this solution presented as
follows:

• Decompose H such that H = LU . Hence LUw = t
• Let Uw = y, so that Ly = t . Solve this system using forward substitution.

y1 = t1/L1,1

y2 = (t2 − (L2,1y1))/L2,2

y3 = (t3 − (L3,1y1) + (L3,2y2))/L3,3

...

yi = (ti −
i−1∑
j=1

Li j y j )/Lii

(4)

• Solve the triangular system Uw = y using backward substitution.

we = ye/Ue,e

we−1 = (ye−1 − (Ue−1,ewe))/Ue−1,e−1

we−2 = (ye−2 − (Ue−2,e−1we−1) + (Ue−1,ewe))/Ue−2,e−2

...

wi = (yi −
n∑

j=i+1

Ui jw j )/Uii

(5)

Due to training Deep ConvNets needs considerable time and a big dataset, advantages
of ELM commonly transferred to the supervised learning stage of the ConvNets and ELM
achieved high classification performances [20,23,32,47,49]. Therefore, we suggest integrat-
ing novel LuELMkernel learning capabilities for ConvNets onmotor imagery task prediction
through EEG.

3 Results and Conclusions

The automatic prediction of imagery tasks using EEG comprises the same ConvNet features
and applying several iterations on learning procedures for constituting an optimized classifier
model. Analyzing multi-channel EEG recordings for each subject enhances the capability of
assessing brain activities in detail.

The training set was segmented in estimation and validation subsets for all classifiers (85
and 15% of the training set respectively).

The ConvNet feature vector was tested on multiple machine learning algorithms and
optimization techniques including MLP with GD, Deep ConvNet with SGDM, RmsPROP,
Adam, ELM, and LuELM. Tested classifiers except ELM and LuELM kernel need iterations
and optimization in many parameters. Therefore, the proposed Deep ConvNet and MLP
models were tested within a limited variety of layer size and neuron numbers. Furthermore,
the classification parameters at iterated variety for the best motor-imagery task prediction
rates were reported in the text.
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The independent statistical test characteristics enable evaluating system performance for
many criteria. Moreover, the analysis of the subject-based population proves the reliability
in real life and clinical use. Hereby, we calculated accuracy, precision, specificity, recall,
negative predictive value (NPV), and F1 score from the predictions of the proposed classifier
models using BDPV package in R.

TheMLP classifier was built from two hidden layers for binary classification (Left-Right).
The number of neurons for each hidden layer was experimentally iterated at 50∼250 neurons
increased by 10. The highest prediction performance for MLP with GD was achieved using
90 at the 1st layer and 230 neurons at the 2nd layer. The ELM and LuELM classifiers were
experimentally built at 50∼500 neurons increased by 10. The highest prediction performance
models had 410 neurons and 370 neurons for ELM and LuELM, respectively. The highest
achievements for the test characteristics depending on the classifiers are presented in Table
1, separately.

Previous works in the literature predicted imagined hand movements on a subject-
independent basis with considering only 20 number of subjects [2]. In the proposed model,
the design and generalization capacity of the tasks were enhanced. We proposed a deep Con-
vNet approach for this challenging task through raw EEG data on a subject-independent basis
considering 109 number of subjects. Hand-crafted spectral features of Welch method with
MLP and ConvNet features with multiple classifiers were compared. Confusion matrices and
performance measures are detailed in Fig. 2 and Table 1.

In the case of using the ConvNet features, the proposed models were observed to pre-
dict the motor-imagery tasks through EEG with overall accuracy rates of 83.83∼90.33%,
82.67∼91.67%, 81.33∼89.67%, 82.22∼89.80%, 83.49∼91.41%, and 0.8423∼0.9040 for
accuracy, recall, specificity, precision, NPV, and F1 score, respectively.

The fact that MLP with spectral features failed to predict motor-imagery tasks at a fixed
MLP model. Therefore, we experimented with the ConvNet classifier models to improve
the classification performances at a variety of classification parameters. Using a variety in
neuron sizes had enabled reaching optimummodels for the EEG issue. Nevertheless, theMLP
was less successful than deep ConvNet models. The Deep ConvNet models achieved high
enough performances that the hierarchical feature representation and training strategies in
deep ConvNets are suitable for modeling imagined motor movements on a subject dependent
basis. The reason ofwhy their performance varies considerably forMLP andDeepConvNet is
the feature learning stage advantage of ConvNet. ConvNet provides analyzing low-, middle
and high-level features from the raw EEG plot. Although spectral feature extraction is a
method that proved its efficiency on EEG, various-level features from Deep ConvNet are
more responsible for the prediction of motor imagery tasks at an iterated variety of proposed
models. In addition RmsPROP optimization technique was provided to reach an accuracy
rate of 87.67% that is higher than Adam and SGDM.

4 Discussion

Most of the studies focusedon analyzing spectral domain features using conventionalmachine
learning algorithms. However, the achievements are incompetent to be used as a predictor
application for motor-imagery tasks through EEG and have no just-noticeable performance
for real-time applications with signal processing stages. Alomari et al. proposed an EEG-
based mouse controller application. They analyzed EEG recordings from 100 subjects at a
range of 0.5-50Hz using Coiflet wavelets of Discrete Wavelet Transform (DWT) features
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on SVM. They predicted the motor-imagery tasks with an accuracy rate of 86.79% [14].
Furthermore, They reached a classification accuracy rate of 88.90% using power, mean,
and energy features from independent component analysis (ICA) on MLP [15]. Similarly,
Major and Conrad analyzed the EEG-based motor tasks using ICA features on MLP. They
applied the 8th order Butterworth filter at 8-30 Hz. They utilized MLP with scaled conjugate
gradient backpropagation and reported an accuracy of 72.81% [29]. Sita and Nair applied
a band-pass filter at the range of 42-50 Hz and task-based segmentation as preprocessing
of their model. They fed ICA features to linear and quadratic discriminant analysis (LDA
and QDA) algorithms. They reported a motor-imagery prediction accuracy rate of 75.84%
on the QDA classifier [40]. Filho et al used the functional connectivity matrix algorithm and
power spectral density (Welch’s transform) as the feature extractor and fed the features into
the LDA classifier. They achieved a classification performance rate of 87.24% [9]. Kim et al.
applied the multivariate empirical mode decomposition and extracted intrinsic mod function
modulations. They fed the modulation features into random forests classifier and reached a
motor task prediction rate of 81.15% [21]. Deep learning has the advantages of minimizing
preprocessing and passing feature extraction approaches on time-series for the classification.
The closest paper is organized as encoding spatial and temporal information from EEG using
recurrent neural networks algorithm.Ma et al. used a sliding windowmethod to augment data
for analysis. They fed the classifier using long short termmemory supports. They reported an
average accuracy rate of 68.20% for motor-imagery tasks [28]. To the best of our knowledge,
the proposed deepConvNetmodel has a higher generalization performance than the literature.

As seen in Table 1, especially, ConvNet with LuELM has superiority on the prediction of
motor-imagery tasks on EEG against other methods considering classification performance
metrics including accuracy, specificity, precision, and F1 score. ConvNet with ELM has
higher achievements in recall and NPV. The results show that ConvNet with both ELM
and LuELM has the advantages of random feature mapping and least square fitting. The
proposed models reached the highest achievements with simple learning procedures, no
iterative adaptation, and no backpropagation.

Whereas adapting LuELM into the ConvNet architecture indicates the main significance
and novelty of this study, the proposed ConvNet uses transfer learning advancements on EEG
without the necessity of feature extraction and signal processing stages. The prediction score
of motor-imagery tasks through EEG was improved to 90.33%, 91.00%, 89.67%, 89.80%,
90.88% and 0.9040 for accuracy, recall, specificity, precision, NPV, and F1 score. Although
the deep learning algorithms need a big number of data, the proposed ConvNet with LuELM
is convenient for small-scale datasets.

The weakest aspect of this study is the variety in ConvNet architectures. It is possible to
reach better prediction performances using large number of hidden layers and neurons at each
layer. This study shows thatConvNets allowaccurate imagery handmovement predicting, that
recent techniques; Adam optimization, batch normalization together with dropout strategy
boost performance with raw EEG data, outperforming conventional fully-connected MLP
with hand-crafted spectral features.

Thus, ConvNets can provide robust learning from EEG data with the only use of minimum
preprocessing. This study also shows that ConvNets can offer promising achievements in the
neuroscience research field.

Our main finding was that Deep ConvNet with both ELM and LuELM classifiers is a
powerful deep architecture for raw EEG, whenever the proposed model only has a minimum
preprocessing stage. Despite deep learning algorithms often need large datasets, the ConvNet
with ELM kernel has advantages of ELM classifier that has high generalization performance
for even 109 subjects. Herein, extracting convolution-based low- and high-level features
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by using ConvNet supported obtaining characteristic information for motor-imagery task
prediction. Feeding the Deep ConvNet models through EEG as an input extends the training
capability for even complex tasks on ELM kernels. Table 2
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