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Abstract: In recent years, (p, q)-special polynomials, such as (p, q)-Euler, (p, q)-Genocchi, (p, q)-
Bernoulli, and (p, q)-Frobenius-Euler, have been studied and investigated by many mathematicians,
as well physicists. It is important that any polynomial have explicit formulas, symmetric identities,
summation formulas, and relations with other polynomials. In this work, the (p, q)-sine and (p, q)-
cosine Fubini polynomials are introduced and multifarious abovementioned properties for these
polynomials are derived by utilizing some series manipulation methods. (p, q)-derivative operator
rules and (p, q)-integral representations for the (p, q)-sine and (p, q)-cosine Fubini polynomials are
also given. Moreover, several correlations related to both the (p, q)-Bernoulli, Euler, and Genocchi
polynomials and the (p, q)-Stirling numbers of the second kind are developed.

Keywords: (p, q)-numbers; (p, q)-sine polynomials; (p, q)-cosine polynomials; (p, q)-special polyno-
mials; (p, q)-Fubini polynomials; (p, q) Stirling numbers of the second kind

MSC: 33D15; 11B68; 11B73; 11B75; 11B83; 05A30

1. Introduction

In recent years, (p, q)-calculus has been studied and examined widely by many physi-
cists and mathematicians [1–12] (see also the references cited therein). (p, q)-special poly-
nomials, such as (p, q)-Euler, (p, q)-Genocchi, (p, q)-Bernoulli, (p, q)-Frobenius-Euler, were
firstly considered and developed by Duran et al. [2,3]; then, many authors worked on other
(p, q)-special polynomials (see [6,8,10,12]). For instance, recently, Khan et al. [6] introduced
(p, q)-Fubini-type polynomials and analyzed some of their basic properties. Obad et al. [8]
defined and investigated 2D (p, q)-Appell type polynomials in terms of determinantal
aspect, and they provided several interesting properties. Sadjang [10] defined (p, q)-Appell
type polynomials and provided some of their characterizations, including several algebraic
properties. Sadjang et al. [12] introduced (p, q)-generalizations of two bivariate kinds of
Bernoulli numbers and polynomials and then analyzed multifarious relations and formulae,
including connection formulas, recurrence formulas, (p, q)-integral representations, and
partial (p, q)-differential equations.

Special polynomials have important roles in several subjects of mathematics, engi-
neering, and theoretical physics. The problems arising in mathematics, engineering and
mathematical physics are framed in terms of differential equations. Most of these equations
can only be treated by utilizing diverse families of special polynomials that give novel view-
points of mathematical analysis. Moreover, they are widely used in computational models
of engineering and scientific problems. In mathematics, these special polynomials yield the
derivation of other useful identities in a fairly straightforward way and help to consider
new families of special polynomials. Fubini-type polynomials appear in combinatorial
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mathematics and play an important role in the theory and applications of mathematics;
hence, many number theory and combinatorics experts have extensively studied their prop-
erties and obtained a series of interesting results (see [6,13,14]). In addition, it is important
that any polynomial has explicit formulas, symmetric identities, summation formulas, and
relations with other polynomials. In this paper, our main aim is to consider (p, q)-sine and
(p, q)-cosine Fubini polynomials and derive some of their properties and relations using
series manipulation methods. The results derived in this work extend many earlier results
for the several extensions of Fubini polynomials.

In this work, we make use of the following notations:

N = {1, 2, 3, · · · }, N0 = N∪ {0}, Z = {· · · ,−2,−1, 0, 1, 2, · · · } and R = (−∞, ∞).

The (p, q)-numbers [m]p,q are defined as follows:

[m]p,q =
pm − qm

p− q
, 0 < |q| < |p| ≤ 1.

These can be rewritten such that [m]p,q = pm−1[m]q/p, where [m]q/p is the q-number

in quantum calculus (q-calculus) defined as [m]q/p = (q/p)m−1
(q/p)−1 . Hence, it is observed that

(p, q)-numbers and q-numbers are different; namely, one cannot derive (p, q)-numbers just
by changing q by q/p in the definition of q-numbers. Again, when p = 1, the (p, q)-numbers
reduce to the q-numbers (see [4,5,9,11]).

The (p, q)-extension of the derivative operator of a function g with respect to t is
given by

Dp,qg(t) = Dp,q;tg(t) =
g(pt)− g(qt)

(p− q)t
(t 6= 0), (1)

and (Dp,qg(0)) = g
′
(0), provided that g is differentiable at 0. This operator satisfies the

following properties

Dp,q(g(t) f (t)) = f (qt)Dp,qg(t) + g(p(t))Dp,q f (t) (2)

and

Dp,q

(
g(t)
f (t)

)
=

f (qt)Dp,qg(t)− g(qt)Dp,q f (t)
f (qt) f (pt)

. (3)

The (p, q)-factorial numbers [m]p,q! and the(p, q)-binomial coefficients (m
r )p,q are pro-

vided by
[m]p,q! = [m]p,q · · · [2]p,q[1]p,q for m ∈ N with [0]p,q = 1

and (
m
r

)
p,q

=
[m]p,q!

[r]p,q![m− r]p,q!
(m ≥ r).

The (p, q)-power basis is defined by

(t + a)(pt + aq) · · · (pm−2t + aqm−2)(pm−1t + aqm−1) =
(
t⊕p,q a

)m
(m ≥ 1)

and also has the following expansion

m

∑
r=0

(
m
r

)
p,q

p(
m
2 )q(

m−r
2 )tram−r =

(
t⊕p,q a

)m. (4)

The (p, q)-exponential functions, ep,q(t) and Ep,q(t), are introduced by

ep,q(t) =
∞

∑
m=0

p(
m
2 )tm

[m]p,q!
and Ep,q(t) =

∞

∑
m=0

q(
m
2 )tm

[m]p,q!
, (5)
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which have the following relationships

ep−1q−1(t) = Ep,q(t) and ep,q(t)Ep,q(−t) = 1. (6)

These functions hold the following properties

Dp,qep,q(t) = ep,q(pt) and Dp,qEp,q(t) = Ep,q(qt). (7)

The (p, q)-analog of the usual definite integral is defined [9] by

∫ a

0
g(t)dp,qt = (p− q)a

∞

∑
r=0

pr

qr+1 g
(

a
pr

qr+1

)
in conjunction with

∫ b

a
g(t)dp,qt =

∫ b

0
g(t)dp,qt−

∫ a

0
g(t)dp,qt. (8)

From (5), it is observed that

ep,q(it) =
∞

∑
m=0

p(
m
2 )(itm)

[m]p,q!
=

∞

∑
m=0

(−1m)p(
2m
2 )t2m

[m]p,q!
+

∞

∑
m=0

(−1m)p(
2m+1

2 )t2m+1

[2m + 1]p,q!
. (9)

From (9), the (p, q)-sine function and the (p, q)-cosine function are given [12] by

∞

∑
m=0

(−1)m p(
2m+1

2 )t2m+1

[2m + 1]p,q!
= sinp,q(t) and

∞

∑
m=0

(−1)m p(
m
2 )t2m

[2m]p,q!
= cosp,q(t). (10)

The (p, q)-Bernoulli, (p, q)-Euler, and (p, q)-Genocchi polynomials are introduced as
follows (see [3]):

zep,q(tz)
ep,q(z)− 1

=
∞

∑
m=0

Bm(t : p, q)
zm

[m]p,q!
for |z| < 2π, (11)

[2]p,qep,q(tz)
ep,q(z) + 1

=
∞

∑
m=0

Em(t : p, q)
zm

[m]p,q!
for |z| < π (12)

and
[2]p,qzep,q(tz)

ep,q(z) + 1
=

∞

∑
m=0

Gm(t : p, q)
zm

[m]p,q!
for |z| < π. (13)

When t = 0, the polynomials given above reduce to their corresponding numbers,
shown respectively by Bm(p, q), Em(p, q), and Gm(p, q) for m ∈ N0.

The generating function of geometric polynomials (or Fubini polynomials) is provided
as follows (see [13,14]):

1
1− t(ez − 1)

=
∞

∑
m=0

Fm(t)
zm

m!
, (14)

which implies

Fm(t) =
m

∑
r=0

S2(m, r)r!tr, (15)

where the numbers S2(m, r) are the Stirling numbers of the second kind provided by
(see [15,16])

(ez − 1)r

r!
=

∞

∑
m=0

S2(m, r)
zm

m!
.
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Upon setting t = 1, we attain Fm(1) := Fm, which denotes the corresponding Fubini
numbers.

2. On (p, q)-Sine and (p, q)-Cosine Fubini Polynomials

The Taylor series expansions of the functions etz sin(wz) and etz cos(wz) are presented
as given below (see [17])

∞

∑
m=0

Sm(t, w)
zm

m!
= etz sin wz and

∞

∑
m=0

Cm(t, w)
zm

m!
= etz cos wz, (16)

where

Sm(t, w) =
bm

2 c
∑
r=0

(−1)r
(

m
2r + 1

)
tm−2r−1w2r+1 and Cm(t, w) =

bm
2 c

∑
r=0

(−1)r
(

m
2r

)
tm−2rw2r. (17)

Note that the symbol b.c is the greatest integer function.
In the recent studies, Sadjang and Duran [12] considered (p, q)-generalizations of

Sm(t, w) and Cm(t, w):

∞

∑
m=0

Sm,p,q(t, w)
zm

[m]p,q!
= sinp,q(wz)ep,q(tz) (18)

and
∞

∑
m=0

Cm,p,q(t, w)
zm

[m]p,q!
= cosp,q(wz)ep,q(tz), (19)

where

Sm,p,q(t, w) =
bm

2 c
∑
r=0

(−1)r
(

m
2r + 1

)
p,q

p(4r2−2rm)+(m−1
2 )t(m−2r−1)w(2r+1) (20)

and

Cm,p,q(t, w) =
bm

2 c
∑
r=0

(−1)r
(

m
2r

)
p,q

p(
m
2 )+2r(r−m)tm−2rw2r. (21)

Now, we give our main definition as follows.

Definition 1. For p, q ∈ C in conjunction with 0 < |q| < |p| ≤ 1, the (p, q)-sine and (p, q)-
cosine Fubini polynomials F(s)

m (t, w; γ : p, q) and F(c)
m (t, w; γ : p, q) are introduced by

ep,q(tz)
1− γ(ep,q(z)− 1)

sinp,q(wz) =
∞

∑
m=0
F (s)

m (t, w; γ : p, q)
zm

[m]p,q!
(22)

and
ep,q(tz)

1− γ(ep,q(z)− 1)
cosp,q(wz) =

∞

∑
m=0
F (c)

m (t, w; γ : p, q)
zm

[m]p,q!
. (23)

Letting w = 0 in (22) and (23), we obtain the classical bivariate (p, q)-Fubini polynomi-
als Fm(t; γ : p, q) given by (cf. [6])

ep,q(tz)
1− γ(ep,q(z)− 1)

=
∞

∑
m=0

Fm(t; γ : p, q)
zm

[m]p,q!
.
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Upon setting w = 0 and t = 0 in (22) and (23), we get the usual (p, q)-Fubini polynomials
Fm(γ : p, q) given by

1
1− γ(ep,q(z)− 1)

=
∞

∑
m=0

Fm(γ : p, q)
zm

[m]p,q!

and setting t = w = 0 and γ = 1 in (22) and (23), we obtain the familiar (p, q)-Fubini
numbers Fm(p, q) given by (cf. [6])

1
2− ep,q(z)

=
∞

∑
m=0

Fm(p, q)
zm

[m]p,q!
.

We state the following results.

Theorem 1. The following summation formulae

m

∑
r=0

(
m
r

)
p,q

Fr,p,q(γ)Sm−r,p,q(t, w) = F (s)
m (t, w; γ : p, q) (24)

and
m

∑
r=0

(
m
r

)
p,q

Fr,p,q(γ)Cm−r,p,q(t, w) = F (c)
m (t, w; γ : p, q) (25)

hold for q, p ∈ C in conjunction with 0 < |q| < |p| ≤ 1.

Proof. By (22) and (23), utilizing (18) and (19), we readily see that

∞

∑
m=0
F (s)

m (t, w; γ : p, q)
zm

[m]p,q!
=

sinp,q(wz)ep,q(tz)
1− γ(ep,q(z)− 1)

=

(
∞

∑
m=0

Sm,p,q(t, w)
zm

[m]p,q!

)(
∞

∑
m=0

Fm(p, q)
zm

[m]p,q!

)

=
∞

∑
m=0

(
m

∑
r=0

(
m
r

)
p,q

Sm−r,p,q(t, w)Fr,p,q(γ)

)
zm

[m]p,q!

and

∞

∑
m=0
F (c)

m (t, w; γ : p, q)
zm

[m]p,q!
=

cosp,q(wz)ep,q(tz)
1− γ(ep,q(z)− 1)

=

(
∞

∑
m=0

Cm,p,q(t, w)
zm

[m]p,q!

)(
∞

∑
m=0

Fm(p, q)
zm

[m]p,q!

)

=
∞

∑
m=0

(
m

∑
r=0

(
m
r

)
p,q

Cm−r,p,q(t, w)Fr,p,q(γ)

)
zm

[m]p,q!
,

which complete the proofs of (24) and (25).

Theorem 2. The following summation formulae

bm−1
2 c

∑
k=0

(
m

2k + 1

)k

p,q
Fm−1−2k(t; γ : p, q)w2k+1(−1)p(

2k+1
2 ) = F (s)

m (t, w; γ : p, q) (26)

and
bm

2 c
∑
k=0

(
m
2k

)
p,q

Fm−2k(t; γ : p, q)w2k(−1)k p(
2k
2 ) = F (c)

m (t, w; γ : p, q) (27)
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are valid for m ≥ 0 and p, q ∈ C in conjunction with 0 < |q| < |p| ≤ 1.

Proof. By (22) and (23), using (10), we observe that

∞

∑
m=0
F (s)

m (t, w; γ : p, q)
zm

[m]p,q!
=

sinp,q(wz)ep,q(tz)
1− γ(ep,q(z)− 1)

=

(
∞

∑
m=0

(−1)m p(
2m+1

2 )(wz)2m+1

[2m + 1]p,q!

)(
∞

∑
m=0

F(s)
m (t; γ : p, q)

zm

[m]p,q!

)

=
∞

∑
m=0

bm
2 c

∑
k=0

(−1)k
(

m
2k + 1

)
p,q

p(
2k+1

2 )Fm−1−2k(t; γ : p, q)w2k+1

 zm

[m]p,q!

and

∞

∑
m=0
F (c)

m (t, w; γ : p, q)
zm

[m]p,q!
=

cosp,q(wz)ep,q(tz)
1− γ(ep,q(z)− 1)

=

(
∞

∑
m=0

(−1)m p(
m
2 )t2m

[2m]p,q!

)(
∞

∑
m=0

F(s)
m (t; γ : p, q)

zm

[m]p,q!

)

=
∞

∑
m=0

bm
2 c

∑
k=0

Fm−2k(t; γ : p, q)(−1)k
(

m
2k

)
p,q

p(
2k
2 )w2k

 zm

[m]p,q!
,

which means the asserted results (26) and (27).

Theorem 3. The following relationships

γ
m

∑
r=0

p(
r
2)+(m−r

2 )

(
m
r

)
p,q
F (s)

r (t, w; γ : p, q) + Sm,p,q(t, w) = (γ + 1)F (s)
m (t, w; γ : p, q) (28)

and

γ
m

∑
r=0

p(
r
2)+(m−r

2 )

(
m
r

)
p,q
F (c)

r (t, w; γ : p, q) + Cm,p,q(t, w) = (γ + 1)F (c)
m (t, w; γ : p, q) (29)

hold for m ≥ 0 and q, p ∈ C in conjunction with 0 < |q| < |p| ≤ 1.

Proof. Utilizing (18), (19), (22) and (23), the proofs of (28) and (29) are based on the
following equalities:

γ + 1− γep,q(z)
1− γ(ep,q(z)− 1)

sinp,q(wz)ep,q(tz) = sinp,q(wz)ep,q(tz)

and
γ + 1− γep,q(z)

1− γ(ep,q(z)− 1)
cosp,q(wz)ep,q(tz) = cosp,q(wz)ep,q(tz).

Therefore, we omit the details of the proofs.

Theorem 4. The following formulae

m

∑
r=0

(tr
1 + tr

2)

(
m
r

)
p,q
F (s)

m−r(0, w; γ : p, q)p(
r
2) = F (s)

m (t1, w; γ : p, q) +F (s)
m (t1, w; γ : p, q) (30)

and
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m

∑
r=0

(tr
1 + tr

2)

(
m
r

)
p,q
F (c)

m−r(0, w; γ : p, q)p(
r
2) = F (c)

m (t1, w; γ : p, q) +F (c)
m (t1, w; γ : p, q) (31)

are valid for m ≥ 0 and p, q ∈ C in conjunction with 0 < |q| < |p| ≤ 1.

Proof. Utilizing (18), (19), (22) and (23), the proofs of (28) and (29) are based on the
following equalities:

∞

∑
m=0

[
F (s)

m (t1, w; γ : p, q) +F (s)
m (t2, w; γ : p, q)

] zm

[m]p,q!

=

(
∞

∑
m=0

p(
m
2 )(tm

1 + tm
2 )

zm

[m]p,q!

)(
sinp,q(wz)

1− γ(ep,q(z)− 1)

)

=
∞

∑
m=0

(
m

∑
r=0

(
m
r

)
p,q
F (s)

m−r(0, w; γ : p, q)(tr
1 + tr

2)p(
r
2)

)
zm

[m]p,q!

and

∞

∑
m=0

[
F (c)

m (t1, w; γ : p, q) +F (c)
m (t2, w; γ : p, q)

] zm

[m]p,q!

=

(
∞

∑
m=0

p(
m
2 )(tm

1 + tm
2 )

zm

[m]p,q!

)(
cosp,q(wz)

1− γ(ep,q(z)− 1)

)

=
∞

∑
m=0

(
m

∑
r=0

(
m
r

)
p,q
F (c)

m−r(0, w; γ : p, q)(tr
1 + tr

2)p(
r
2)

)
zm

[m]p,q!
.

Therefore, we omit the details of the proofs.

Now, we give (p, q)-derivative operator rules and (p, q)-integral representations for
the (p, q)-sine and (p, q)-cosine Fubini polynomials with the following theorems.

Theorem 5. The following derivate formulae

∂

∂p,qt
F (s)

m (t, w; γ : p, q) = F (s)
m−1(pt, w; γ : p, q)[m]p,q (32)

∂

∂p,qw
F (s)

m (t, w; γ : p, q) = F (s)
m−1(t, qw; γ : p, q)[m]p,q

∂

∂p,qt
F (c)

m (t, w; γ : p, q) = F (c)
m−1(pt, w; γ : p, q)[m]p,q

∂

∂p,qw
F (c)

m (t, w; γ : p, q) = F (c)
m−1(t, qw; γ : p, q)[m]p,q

hold for m ≥ 0 and q, p ∈ C in conjunction with 0 < |q| < |p| ≤ 1.

Proof. If we apply the (p, q)-derivative operator to the exponential generating function (22)
with respect to t, by utilizing (7), we see that
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∞

∑
m=0

∂

∂p,qt
F (s)

m (t, w; γ : p, q)
zm

[m]p,q!
=

sinp,q(wz) ∂
∂p,qt ep,q(tz)

1− γ(ep,q(z)− 1)

= z
sinp,q(wz)ep,q(ptz)
1− γ(ep,q(z)− 1)

=
∞

∑
m=0
F (s)

m (pt, w; γ : p, q)
zm+1

[m]p,q!
,

which implies (32). The others can be readily proved similarly.

Theorem 6. The following (p, q)-integral representations

∫ υ

$
F (s)

m (t, w; γ : p, q)dp,qt =
F (s)

m+1(
υ
p , w; γ : p, q)−F (s)

m+1(
$
p , w; γ : p, q)

[m + 1]p,q

and ∫ b

$
F (c)

m (t, w; γ : p, q)dp,qt =
F (c)

m+1(
υ
p , w; γ : p, q)−F (c)

m+1(
$
p , w; γ : p, q)

[m + 1]p,q

are valid for m ≥ 0 and q, p ∈ C in conjunction with 0 < |q| < |p| ≤ 1.

Proof. Since ∫ υ

$

∂g(t)
∂p,qt

dp,qt = g(υ)− g($),

(see [9]), using Theorem 5, (22) and (23), we investigate∫ υ

$

∂

∂p,qt
F (s)

m (t, w; γ : p, q)dp,qt =
1

[m + 1]p,q

∫ υ

$
F (s)

m+1(
t
p

, w; γ : p, q)dp,qt

=
F (s)

m+1(
υ
p , w; γ : p, q)−F (s)

m+1(
$
p , w; γ : p, q)

[m + 1]p,q

and ∫ υ

$

∂

∂p,qt
F (c)

m (t, w; γ : p, q)dp,qt =
1

[m + 1]p,q

∫ υ

$
F (c)

m+1(
t
p

, w; γ : p, q)dp,qt

=
F (c)

m+1(
υ
p , w; γ : p, q)−F (c)

m+1(
$
p , w; γ : p, q)

[m + 1]p,q
,

which completes the proof of the theorem.

Now, we state the following summation formula.

Theorem 7. The following summation formulae

γ2F
(s)
m (t, w; γ1 : p, q)− γ1F

(s)
m (t, w; γ2 : p, q)

γ2 − γ1
=

m

∑
r=0

(
m
r

)
p,q
F (s)

m−r(t, w; γ1 : p, q)F (s)
r (γ2 : p, q) (33)

and

γ2F
(c)
m (t, w; γ1 : p, q)− γ1F

(c)
m (t, w; γ2 : p, q)

γ2 − γ1
=

m

∑
r=0

(
m
r

)
p,q
F (c)

m−r(t, w; γ1 : p, q)F (c)
r (γ2 : p, q) (34)

hold for γ1 6= γ2, m ≥ 0 and q, p ∈ C in conjunction with 0 < |q| < |p| ≤ 1.
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Proof. By (22) and (23), we observe that

sinp,q(wz)ep,q(tz)(
1− γ2(ep,q(z)− 1)

)(
1− γ1(ep,q(z)− 1

)
)

=
γ2

γ2 − γ1

sinp,q(wz)ep,q(tz)
1− γ1(ep,q(z)− 1)

−
e sinp,q(wz)ep,q(tz)
1− γ2(ep,q(z)− 1)

γ1

γ2 − γ1

=
∞

∑
m=0

(
γ2F

(s)
m (t, w; γ1 : p, q)− γ1F

(s)
m (t, w; γ2 : p, q)

γ2 − γ1

)
zm

[m]p,q!

and

cosp,q(wz)ep,q(tz)(
1− γ1(ep,q(z)− 1

)
)
(
1− γ2(ep,q(z)− 1)

)
=

γ2

γ2 − γ1

cosp,q(wz)ep,q(tz)
1− γ1(ep,q(z)− 1)

− γ1

γ2 − γ1

cosp,q(wz)ep,q(tz)
1− γ2(ep,q(z)− 1)

=
∞

∑
m=0

(
γ2F

(c)
m (t, w; γ1 : p, q)− γ1F

(c)
m (t, w; γ2 : p, q)

γ2 − γ1

)
zm

[m]p,q!
,

which means the claimed results (33) and (34).

Here are summation formulae for the (p, q)-sine Fubini polynomials and (p, q)-cosine
Fubini polynomials.

Theorem 8. The following formulae

m

∑
r=0

p(
m−r

2 )

(
m
r

)
p,q
F (s)

r (t, w; γ : p, q) +
(t⊕ w)m

p,q

γ
= (1 + γ)F (s)

m (t, w; γ : p, q) (35)

and

m

∑
r=0

p(
m−r

2 )

(
m
r

)
p,q
F (c)

r (t, w; γ : p, q) +
(t⊕ w)m

p,q

γ
= (1 + γ)F (c)

m (t, w; γ : p, q) (36)

are valid for m ≥ 0 and p, q ∈ C in conjunction with 0 < |q| < |p| ≤ 1.

Proof. Utilizing the following equality

1 + γ

(1− γ(ep,q(z)− 1))γep,q(z)
=

1
1− γ(ep,q(z)− 1)

+
1

γep,q(z)

and from (22) and (23), we acquire

(1 + γ)ep,q(tz) sinp,q(wz)
(1− γ(ep,q(z)− 1))γep,q(z)

=
ep,q(tz) sinp,q(wz)
1− γ(ep,q(z)− 1)

+
ep,q(tz) sinp,q(wz)

γep,q(z)

and
(1 + γ)ep,q(tz) cosp,q(wz)
(1− γ(ep,q(z)− 1))γep,q(z)

=
ep,q(tz) cosp,q(wz)
1− γ(ep,q(z)− 1)

+
ep,q(tz) cosp,q(wz)

γep,q(z)
,

which give the claimed results (35) and (36).

Now, we derive some correlations for the (p, q)-sine and (p, q)-cosine Fubini polyno-
mials in (22) and (23) associated with the (p, q)-Bernoulli, Euler, and Genocchi polynomials
(11)–(13) and the (p, q)-Stirling numbers of the second kind. We first provide the follow-
ing theorem.
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Theorem 9. Each of the following correlations

m+1

∑
r=0

(
m + 1

r

)
p,q

(
Br(1 : p, q)− Br(p, q)

[m + 1]p,q

)
F (s)

m+1−r(t, w; γ : p, q) = F (s)
m (t, w; γ : p, q) (37)

and

m+1

∑
r=0

(
m + 1

r

)
p,q

(
Br(1 : p, q)− Br(p, q)

[m + 1]p,q

)
F (c)

m+1−r(t, w; γ : p, q) = F (c)
m (t, w; γ : p, q) (38)

are valid for m ≥ 0 and p, q ∈ C in conjunction with 0 < |q| < |p| ≤ 1.

Proof. From (11) and (22), we consider that

sinp,q(wz)ep,q(tz)
1− γ(ep,q(z)− 1)

=
ep,q(z)− 1

z
z

ep,q(z)− 1
sinp,q(wz)ep,q(tz)
1− γ(ep,q(z)− 1)

=
1
z

(
∞

∑
m=0

Bm(1 : p, q)
zm

[m]p,q!

)(
∞

∑
m=0
F (s)

m (t, w; γ : p, q)
zm

[m]p,q!

)

−1
z

(
∞

∑
m=0

Bm(p, q)
zm

[m]p,q!

)(
∞

∑
m=0
F (s)

m (t, w; γ : p, q)
zm

[m]p,q!

)
,

which means the claimed correlation (37). The proof of the other correlation (38) can be
done similarly to the proof of the correlation (37).

Theorem 10. The following correlations

m

∑
r=0

(
m
r

)
p,q

(
Er(1 : p, q) + Er(p, q)

[2]p,q

)
F (s)

m−r(t, w; γ : p, q) = F (s)
m (t, w; γ : p, q) (39)

and

m

∑
r=0

(
m
r

)
p,q

(
Er(1 : p, q) + Er(p, q)

[2]p,q

)
F (c)

m−r(t, w; γ : p, q) = F (c)
m (t, w; γ : p, q) (40)

hold for m ≥ 0 and q, p ∈ C in conjunction with 0 < |q| < |p| ≤ 1.

Proof. By (12) and (23), we see that

cosp,q(wz)ep,q(tz)
1− γ(ep,q(z)− 1)

=
ep,q(z) + 1

[2]p,q

[2]p,q

ep,q(z) + 1
cosp,q(wz)ep,q(tz)
1− γ(ep,q(z)− 1)

=
1

[2]p,q

(
∞

∑
m=0

Em(1 : p, q)
zm

[m]p,q!

)(
∞

∑
m=0
F (c)

m (t, w; γ : p, q)
zm

[m]p,q!

)

+
1

[2]p,q

(
∞

∑
m=0

Em(p, q)
zm

[m]p,q!

)(
∞

∑
m=0
F (c)

m (t, w; γ : p, q)
zm

[m]p,q!

)
,

which implies the asserted correlation (40). The proof of the other correlation (39) can be
done similarly to the proof of the correlation (40).

Theorem 11. Each of the following correlations

m+1

∑
r=0

(
m + 1

r

)
p,q

(
Gr(1 : p, q) + Gr(p, q)

[2]p,q[m + 1]p,q

)
F (s)

m+1−r(t, w; γ : p, q) = F (s)
m (t, w; γ : p, q) (41)
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and

m+1

∑
r=0

(
m + 1

r

)
p,q

(
Gr(1 : p, q) + Gr(p, q)

[2]p,q[m + 1]p,q

)
F (c)

m+1−r(t, w; γ : p, q) = F (c)
m (t, w; γ : p, q) (42)

are valid for m ≥ 0 and q, p ∈ C in conjunction with 0 < |q| < |p| ≤ 1.

Proof. From (13) and (22), we investigate

sinp,q(wz)ep,q(tz)
1− γ(ep,q(z)− 1)

=
ep,q(z) + 1

z[2]p,q

z[2]p,q

ep,q(z) + 1
sinp,q(wz)ep,q(tz)
1− γ(ep,q(z)− 1)

=
1

z[2]p,q

(
∞

∑
m=0
F (s)

m (t, w; γ : p, q)
zm

[m]p,q!

)(
∞

∑
m=0

Gm(1 : p, q)
zm

[m]p,q!

)

+
1

z[2]p,q

(
∞

∑
m=0
F (s)

m (t, w; γ : p, q)
zm

[m]p,q!

)(
∞

∑
m=0

Gm(p, q)
zm

[m]p,q!

)
,

which means the desired correlation (41). The proof of the other correlation (42) can be
done similarly to the proof of the correlation (41).

The (p, q)-Stirling numbers S2(m, r : p, q) of the second kind are defined by (cf. [2])

(ep,q(z)− 1)r

[r]p,q!
=

∞

∑
m=r

S2(m, r : p, q)
zm

[m]p,q!
.

Theorem 12. The following correlations

m

∑
k=0

k

∑
r=0

)γr[r]p,q!Sm−k,p,q(t, w)

(
m
k

)
p,q

S2(k, r : p, q = F (s)
m (t, w; γ : p, q) (43)

and
m

∑
k=0

k

∑
r=0

γr[r]p,q!Cm−k,p,q(t, w)

(
m
k

)
p,q

S2(k, r : p, q) = F (c)
m (t, w; γ : p, q) (44)

hold for m ≥ 0 and q, p ∈ C in conjunction with 0 < |q| < |p| ≤ 1.

Proof. From (22), using the series manipulation method, we attain

∞

∑
m=0
F (s)

m (t, w; γ : p, q)
zm

[m]p,q!
=

sinp,q(wz)ep,q(tz)
1− γ(ep,q(z)− 1)

= sinp,q(wz)ep,q(tz)
∞

∑
r=0

γr(ep,q(z)− 1)r

=

(
∞

∑
m=0

Sm,p,q(t, w)
zm

[m]p,q!

)(
∞

∑
r=0

γr
∞

∑
m=r

[r]p,q!S2(m, r : p, q)
zm

[m]p,q!

)

=
∞

∑
m=0

(
m

∑
k=0

k

∑
r=0

γr[r]p,q!Sm−k,p,q(t, w)

(
m
k

)
p,q

S2(k, r : p, q)

)
zm

[m]p,q!
,

which proves the correlation (43). The proof of the other correlation (44) can be done
similarly to the proof of the correlation (43).

3. Conclusions

In recent years, (p, q)-extensions of many special polynomials. such as Bernoulli,
Euler, Genocchi, and Hermite polynomials, have been considered and investigated by
many mathematicians (see [2,3,6,8,10,12]).
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In this work, (p, q)-sine Fubini polynomials and (p, q)-cosine Fubini polynomials have
been introduced and multifarious summation formulae and relationships for these poly-
nomials have been derived by utilizing some series manipulation methods. Furthermore,
(p, q)-derivative operator rules and (p, q)-integral representations for the (p, q)-sine Fubini
polynomials and (p, q)-cosine Fubini polynomials have been provided. Moreover, diverse
correlations related to both the (p, q)-Stirling numbers and the (p, q)-Euler, Bernoulli, and
Genocchi polynomials have been developed. When q→ p = 1, all acquired results in this
work reduce to classical results for sine-Fubini and cosine-Fubini polynomials. The results
obtained in this paper are also generalizations of the many earlier (p, q)-results, some of
which involve related references in [6].

We think that this idea of constructing new (p, q)-polynomial sequences has possible
applications in physics, science, and engineering, as well as in mathematics, such as in
combinatorics, integral transforms, approximation theory, and analytic number theory;
see [1–12] and the references cited therein. As one of our future research projects, we would
like to continue and extend this idea in various directions.
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