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Abstract: Each year, unwanted plant pests and diseases, such as Hendel or potato soft rot, cause
damage to crops and ecosystems all over the world. To continue to feed the growing population and
protect the global ecosystems, the surveillance and management of the spread of these pests and
diseases are crucial. Traditional methods of detection are often expensive, bulky and require expertise
and training. Therefore, inexpensive, portable, and user-friendly methods are required. These include
the use of different gas-sensing technologies to exploit volatile organic compounds released by plants
under stress. These methods often meet these requirements, although they come with their own set
of advantages and disadvantages, including the sheer number of variables that affect the profile of
volatile organic compounds released, such as sensitivity to environmental factors and availability of
soil nutrients or water, and sensor drift. Furthermore, most of these methods lack research on their
use under field conditions. More research is needed to overcome these disadvantages and further
understand the feasibility of the use of these methods under field conditions. This paper focuses on
applications of different gas-sensing technologies from over the past decade to detect plant pests and
diseases more efficiently.

Keywords: pest detection; electronic nose; volatile organic compounds; gas sensing; biosecurity;
plant disease

1. Introduction

Insects and plant diseases are an essential part of the global ecosystem. Insects and
diseases are often categorized into three categories: native, alien, and invasive. Native
insects and diseases play an essential role in the health and regeneration of national forests.
Insects and diseases introduced to new ecosystems in recent times, intentionally or not, are
considered “alien”. Those who are native but spread further than their usual territory are
considered “invasive” [1]. Invasive and alien species can threaten a country’s agriculture,
economy, forests, and trade, as well as the livelihoods of farmers and producers across the
country. Alien and invasive plant pests and diseases are introduced by the importation of
plants and plant materials or the migration of different insects and other animals. Therefore,
it is crucial to effectively manage plants and plant products introduced to each country to
maintain and protect the global environment and economy [2].

There are currently many methods utilized across the world to detect and manage
plant pests and diseases. Poland and Rassati [3] break down biosecurity surveillance into
three types of activities: border surveillance, post-border surveillance and containment.
Border surveillance is the act of preventing the entrance of non-native species into the im-
porting country. Post-border surveillance and containment involve managing the spread
of non-native species already within the country. Post-border surveillance is the consistent
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monitoring of the country’s environment for alien or invasive species and containment is
the process of controlling the species once discovered. Each type of surveillance can be
further broken down into specific and generic surveillance. Generic surveillance involves
controlling a range of species, and specific surveillance consists of the management of
a particular species. Standard generic methods of biosecurity surveillance include re-
mote sensing [4,5], aerial surveillance [6], acoustic detection [7], genetic tools and visual
inspections [8–11]. Specific methods include those listed for generic methods, as well
as the addition of trained sniffer dogs and electronic noses (e-noses) [3]. Fang et al. [12]
reported current, traditional, laboratory-based methods for the detection of plant diseases
caused by microorganisms. These include polymerase chain reaction, fluorescence in-situ
hybridization, flow cytometry, immunofluorescence, enzyme-linked immunosorbent
assay and gas chromatography-mass spectrometry (GC-MS). Unfortunately, many of
these methods require more time and money than is available; therefore, faster, portable,
and less expensive strategies are crucial. The emerging methods, discussed ahead, all
meet these requirements.

Volatile organic compounds (VOCs), such as acetone, ethanol, and tridecane, are
continuously released from plant tissues and play a significant role in plant communi-
cation, competition, and defense. If a plant is damaged, it releases a profile of VOCs
correlated to the type of attacker, whether the plant is healthy (has enough sunlight, water,
nutrients) or has been artificially damaged, and depending on environmental conditions
(temperature, humidity) (Figure 1A) [13]. VOCs allow plants to interact with insects and
other plants by attracting pollinators, enemies of an attacker, providing camouflage to
other plants, detecting invasive plants, signaling danger to neighbouring plants, and
allelopathy (emitting an array of VOCs to affect the growth of neighbouring plants)
(Figure 1B) [14]. For example, if a plant is attacked by a pest (i.e., spider mites), it releases
a profile of VOCs unique to the attacker (represented by blue, red, and green molecules
in Figure 1B). Nearby or neighbouring plants may then “smell” this profile, then release
a profile of their own (represented by orange molecules in Figure 1B) to deter attackers
(profile released in this case may resemble that of the pheromones released by enemies
of the attacker) or attract enemies of the attacker (the profile released in this case may
resemble that of the pheromones released by the attacker to attract enemies) [13–15]. The
number of variables that can affect the profile of volatiles released poses a unique chal-
lenge for plant pest and disease discrimination in the field. This problem and potential
solutions are discussed in Section 3.

A major step in plant volatile analysis is headspace collection. Since VOCs emitted
by plants are affected by any damage inflicted on the plant, non-invasive sampling
methods are required to minimize the production interfering VOCs. Tholl et al. [16,17]
wrote detailed reviews on plant volatile sampling methods and separated them into two
categories: static headspace sampling and dynamic headspace sampling. Static headspace
sampling methods entail the use of a container or bag to enclose the plant (Figure 1C). The
term ‘static’ refers to the air being static in the enclosure. Problems typically associated
with static headspace sampling methods include changes in temperature and humidity
in the air surrounding the plant. These changes can affect the VOCs released by the
plant and may cause negative signal interferences as mentioned previously. Due to these
problems, dynamic headspace sampling methods are most common. In these methods, a
continuous stream of a carrier gas is moved through the headspace container, allowing
for the control of temperature and humidity.
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Figure 1. Overview of plant pest and disease detection by way of VOC monitoring using an elec-
tronic nose for example. (A) Effects of external factors on VOCs. VOCs such as acetone and ethanol 
are continuously released from plant tissue due to external factors such as temperature, available 
nutrition, or damage by pests or viral and bacterial infections [13]. (B) VOCs for plant communica-
tion and defense. VOCs released by plants allow communication with insects and other plants (i.e., 
attracting pollinators or signaling danger to neighbouring plants) [14,15]. (C) VOC collection. The 
profile VOCs released by plant tissues at any given moment can be collected using a headspace 
sampling method such as static headspace sampling (shown here) or dynamic headspace sampling 
[16,17]. (D–F) Basic working principle of an electronic nose. (D) An array of different sensors (S1–S8, 
each selective to different analytes) exposed to headspace sample. (E) Example of a response curve 
from an electronic nose with eight sensors (S1–S8) from exposure time, te, to final time, tf, (i.e., 200 s) 
with features 1 and 2 (F1, F2). (F) Sample feature plot for three pathogens (1–3) that affect the same 
plant (such as Ralstonia solanacearum, Clavibacter michiganensis, and Pectobacterium carotovorum, 
causes of different types of rot in potatoes). 

Figure 1. Overview of plant pest and disease detection by way of VOC monitoring using an electronic
nose for example. (A) Effects of external factors on VOCs. VOCs such as acetone and ethanol are
continuously released from plant tissue due to external factors such as temperature, available nutri-
tion, or damage by pests or viral and bacterial infections [13]. (B) VOCs for plant communication and
defense. VOCs released by plants allow communication with insects and other plants (i.e., attracting
pollinators or signaling danger to neighbouring plants) [14,15]. (C) VOC collection. The profile VOCs
released by plant tissues at any given moment can be collected using a headspace sampling method
such as static headspace sampling (shown here) or dynamic headspace sampling [16,17]. (D–F) Basic
working principle of an electronic nose. (D) An array of different sensors (S1–S8, each selective to
different analytes) exposed to headspace sample. (E) Example of a response curve from an electronic
nose with eight sensors (S1–S8) from exposure time, te, to final time, tf, (i.e., 200 s) with features 1
and 2 (F1, F2). (F) Sample feature plot for three pathogens (1–3) that affect the same plant (such as
Ralstonia solanacearum, Clavibacter michiganensis, and Pectobacterium carotovorum, causes of different
types of rot in potatoes).
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Traditionally, plant VOC “fingerprints” are monitored using GC-MS; however, GC-MS
requires the use of heavy, bulky laboratory equipment that is not suitable for use in the
field and is, therefore, more commonly used alongside the emerging methods of detection
discussed ahead. Most applications today involve the use of electronic noses to detect
pests and diseases in plants by way of VOC monitoring. An electronic nose is an array of
different gas sensors (Figure 1D), combined with pattern recognition and feature extraction
methods to characterize and discriminate between odours. The option exists for researchers
to purchase commercial electronic noses or to develop their own devices. The latter is
a more cost-effective option and allows for more flexibility in terms of use as one can
chose individual sensors to suit their target gases; however, commercial options may be
more robust and reliable. Measurement of sensor array response provides the user with
individual responses per sensor, each with distinctive features. Figure 1E provides an
example signal curve for sensors 1–8 (shown in Figure 1D). The curves provided are only
an example provided to help visualize what a signal might look like, as well as feature
extraction and, therefore, do not represent exactly how all sensors might react in response
to being exposed to a profile of VOCs. In this case, feature 1 (F1) would be the slope from
the exposure time (te) to the final time (tf) and feature 2 (F2) would be the signal value
at tf. Examples of other features include, but are not limited to, the slope from te to the
peak value of the curve, the slope from the peak value to tf, or the peak value itself. The
features chosen depend on the data used. Data may be normalized prior to analysis or
other data analysis methods may be used to further discriminate between plant pests and
diseases [18–20]. In Figure 1F, a sample feature plot is shown. Pathogens 1–3 can be clearly
distinguished and the values for the features associated with each pathogen can be used
for the further classification of unknown samples. For example, in the image, Pathogen 1
has a larger F1 and F2 versus Pathogen 2. Therefore, if an unknown sample has features
comparable to Pathogen 1, it would be characterised as Pathogen 1 [18–20]. Some review
studies have been conducted describing the signal processing and pattern recognition
methods utilised in detail [18–20].

Previous reviews surrounding the detection of plant pests and diseases by monitoring
VOCs have been written; however, some of these papers have focused solely on the
use of electronic noses to detect plant pests and diseases, animal diseases, or human
diseases [19,21,22]. Others have more of a focus on headspace sampling methods or are a
review of the use of VOCs in agriculture, rather than for the use of plant pest and disease
detection (i.e., biogenic volatile compounds for the control of pests or enhancing plant
growth) [17,23,24]. This review begins with a focus on applications in detecting plant
pests and diseases using emerging gas-sensing technologies, which include the use of
electronic noses that take advantage of variance in electrical, gravimetric, and optical
material properties, as well as applications that use other portable gas-sensing devices,
such as biosensors, and field asymmetric ion mobility spectrometry from the past decade.
This is followed by a review of the challenges associated with applying the technologies
discussed and potential future improvements.

2. Emerging VOC Sensing Methods

There are a wide range of gas-sensing technologies used to detect VOCs and, therefore,
plant pests and diseases. Liu et al. [25] provided a detailed description of the working
principles of each technology discussed and the statistical methods commonly applied
alongside them. They classify these sensing methods into two types: electrical variation
(variation in electrical resistance or current) and other sorts of variation (optical sensors,
gravimetric sensors, etc.).

When determining which analytical method to use for a given application, the fol-
lowing parameters are valuable to consider: accuracy, precision, limit of detection (LOD),
selectivity, robustness, cost, response or analysis time, and ease of use. Accuracy is the
degree to which a measurement agrees with an expected result. Precision is a measure
of the variability between the results of multiple trials. The LOD is the smallest amount
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of analyte detectable by the method. Selectivity is the method’s ability to differentiate
between analytes [26]. Since most of the applications mentioned in this review rely on
the analysis of a profile of VOCs, rather than the detection and classification of individual
compounds, the VOCs released by the pathogen in each application are only provided
if they were provided in the study in question. For the same reason, individual studies
use a wide array of different sensors with varied materials to be able to detect a wide
array of VOCs. Therefore, details regarding the sensor materials, such as the metal oxide
of choice in individual sensors, are not discussed below. Studies are available detailing
individual VOCs released during plant stress and information regarding the individual
sensing materials is widely available. Furthermore, only a basic description of the operating
principle of each method is provided, and applications, including sampling method, data
analysis methods and performances, are discussed ahead.

2.1. Methods with Electrical Variation

Gas sensors with variations in electrical properties are the most common methods
for detecting pests and diseases in plants and plant materials. These include methods
using metal oxide semiconductor (MOS) gas sensors, conductive polymer (CP) gas sensors,
and electrochemical gas sensors. The gas sensors discussed in this section are most often
combined with other sensors, of either the same or different types, forming an electronic
nose (i.e., MOS sensors or a combination of MOS and CP sensors) to increase the selectivity
of the device (Figure 1C). Upon observation, this is standard practice in the field of plant
pest and disease detection by VOC monitoring; therefore, the applications discussed in this
section involve the use of electronic noses.

2.1.1. MOS Sensors

The most common sensor used to detect VOCs is the MOS. MOS sensors are most
used in e-noses and are often used alongside GC-MS for testing and calibration purposes.
MOS-type sensors are typically formed of a sensing element with sensing material coated
on one side and a heater on the other. The sensing material is heated to a few hundred
degrees Celsius, causing free electrons to flow through the material [27]. When the sensing
material is exposed to clean air, the material oxidizes, causing a decrease in free electrons
and an increase in the material resistance [27]. When exposed to a reducing gas, the gas
reacts with adsorbed oxygen, releasing free electrons and decreasing the resistance of the
sensing material. The change in resistivity depends on the concentration of target gas in
the air [27]. Dey [28] reported that MOS sensors show excellent sensitivity, fair selectivity,
excellent response time, good stability, and low cost. However, these gas sensors can be
vulnerable to sensor drift caused by changes in surrounding humidity or temperature.
MOS sensors have been previously used to detect bacterial infections, insect infestations
and viral diseases in plants.

Biondi et al. [29] used the PEN3 Electronic Nose (Airsense Analytics, GmBH, Schw-
erin, Germany) to detect potatoes infected with Ralstonia solanacearum or a subspecies of
Clavibacter michiganensis (causes of potato brown rot and ring rot, respectively). Volatile
markers for brown rot include short-chain alcohols and ketones, and 3-methyl-2-pentanone
has been identified as a marker for ring rot. Both static dynamic sampling methods were
used. Linear discriminant analysis (LCA) and principal component analysis (PCA) were
used to analyze samples. The study correctly classified 81.3 and 57.4% of the samples for
static and dynamic sampling methods, respectively [29]. Xu et al. [30] also used the PEN3
e-nose to detect the age and amount of brown rice plant hoppers (Nilaparvata lugens). The
team used static sampling methods coupled with data analysis methods, such as PCA,
LDA, probabilistic neural network (PNN), back-propagation neural network (BPNN) and
loading analysis (Loadings). The discrimination accuracies of age and amount were 96.67%
and 64.67%, respectively, when PNN was used and 96.67% and 47.33%, respectively, when
BPNN was used. PEN3 was also used by Rizzolo et al. [31] to detect Rhynchophorus ferrug-
ineus in palms, with classification rates of up to 100%. Static sampling methods and PCA
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and DA methods were used to analyze the data. Cellini et al. [32] discriminated between
fire blight infected, blossom blight infected, mock-infected and control groups of apples,
using two different MOS sensor arrays: the EOS507C Electronic Nose (Sacmi, Imola, Italy)
and the PEN3 e-nose. Both sensors proved capable of discriminating between infected,
mock-infected, and control groups; however, the EOS507C was the only one that could
distinguish between the two infections. The reason provided for this is that the EOS507C
contains a humidity control system that allows the user to set a dew point, where the
PEN3 simply has a maximum humidity of 95% and may not function properly near the
limits. Static sampling methods were combined with PCA and LDA, processed to facilitate
discrimination. Rutolo et al. [33] used an array of 12 MOS sensors to detect soft rot in
potatoes caused by Pectobacterium carotovorum. The study showed the array was capable
of early detection with selectivities and sensitivities of 80–100%. The team used dynamic
sampling methods and used a wide range of feature extraction and data analysis methods.
VOC markers for soft rot have been determined to be acetone, ethanol, 2-butanone, and
3-hydroxy-2-butanone [29]. In 2017 and 2019, Sun et al. [34–36] showed that the discrim-
ination between Ectropis obliqua and Ectropis grisescens infections of different invasive
times, severities, and ratios in tea plants was possible using the PEN2 e-nose system (an
MOS-based e-nose; Airsense Analytics, GmBH, Schwerin, Germany), feature extraction
and LCA. Discrimination rates as high as 100%, 96.90% and 93.75% were obtained in these
studies, respectively. They also successfully used the PEN2 system to discriminate between
different damage types in tea plants, with discrimination rates as high as 100% using
feature extraction and data analysis methods, such as PCA, locality preserving projections
(LPP), and support vector machine (SVM). The highest discrimination rates occurred with
the combination of LPP and SVM. The early detection of Botrytus cinerea in tomato plants
using the PEN2 e-nose system was shown to be feasible, with a discrimination rate of 100%
with the use of kernel PCA and LCA methods [37]. Mishra et al. [38] used the Fox 4000
e-nose system (Alpha MOS, Toulouse, France) an MOS-based e-nose to accurately detect
Sitophilus granarius infestation in stored wheat grain, using fuzzy logic and statistical anal-
ysis methods, such as PCA. Wen et al. [39] developed a Sweeping Electronic Nose System
(SENS, a MOS sensor array) to detect Hendel (Bactroicera dorsalis) infestation in citrus
fruits, with recognition rates as high as 100% using PCA and LCA. In 2019, Cui et al. used
a four MOS-based sensor array to detect Myzuz persicae-infested tomato plants. Fast sensor
response and high sensitivity were reported. The team used static sampling methods and
PCA data analysis [40]. Wang et al. [41] successfully used the PEN3 e-nose system to detect
wood-boring insect Semanotus bifasciatus infestations of different durations in Platycladus
orientalis, an evergreen tree native to eastern Asia. The team achieved classification rates as
high as 99.80%. Static headspace sampling methods were used alongside PCA, combined
with grid-search SVM. In 2021, a low-cost, six MOS-based electronic nose was tested and
proved to be capable of accurate discrimination of Pythium intermedium and Phytophthora
plurivora using feature extraction and SVM [42].

MOS sensors may also be used to detect viral and fungal infections. The PEN3 e-nose
was used for the detection and classification of fungal diseases (Botrytis sp., Penicillium
sp., and Rhizopus sp.) in post-harvest strawberries, with 96.6% accuracy [43]. In this
study, Pan et al. collected samples using static headspace sampling methods and PCA
for data analysis. Jia et al. [44] used the PEN3 e-nose coupled with dynamic headspace
sampling methods and LCA, SVM and BPNN to differentiate between fresh apples and
apples infected with Aspergillus niger and Penicillium expansum, with recognition rates
as high as 90.0%. The PEN2 e-nose was also used for the detection and classification of
three species of Aspergillus in rice kernels, with accuracies as high as 96.4% using dynamic
headspace sampling methods and PCA, SVM and BPNN data analysis methods [45]. Su-
chorab et al. [46] used an MOS-based e-nose for the detection of fungal-infected building
materials, with 80–85% accuracy. Samples were analyzed using PCA. Nouri et al. [47] re-
ported a fast, reliable, and non-destructive technique for detecting Alternaria spp.-infected
pomegranate and accuracy as high as 91.67%. Samples were collected using dynamic
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headspace sampling and analyzed using LDA, SVM and BPNN. Hazaika et al. [48] used
the Alpha MOS Fox 3000 (a MOS sensor array; Alpha MOS, Toulouse, France) to discrim-
inate between plants mildly and moderately infected with Citrus Tristeza Virus, with a
discrimination accuracy as high as 97.67%. Kresnawaty et al. [49] used an 8 MOS sensor
array to detect and distinguish between species of Ganoderma fungal infection in oil palm,
with accuracies of 99.64%. Samples were collected using dynamic headspace sampling
and SVM analysis methods were used. Oates et al. [50] used a low-cost e-nose, consisting
of eight MOS sensors, to detect lethal bronzing disease in cabbage palms (Salbal palmetto).
Samples were collected using dynamic headspace sampling methods. The device was able
to discriminate between healthy and infected plants using PCA.

2.1.2. CP Sensors

Conductive polymer gas sensors consist of a mixture of polymers and conductive
materials, such as carbon black deposited over two electrodes [51]. When the polymer
encounters target gases, the polymer swells reversibly, creating distance between the
conductive polymer particles (i.e., a decrease in the concentration of carbon black), thus,
changing the electrical resistance of the material [52]. In 1997, the Bloodhound BH114
(conductive polymer-based device; Bloodhound Sensors, Leeds, UK) was used to detect
a range of microorganisms by analyzing the volatiles produced by each microorganism,
using static headspace sampling. The sensor proved capable of distinguishing between
thirteen types of bacteria and three types of yeast, with classification rates of up to 100%
using PCA [53]. In 2008, the VOC profiles emitted by cucumber, pepper and tomato plants
were analyzed to detect damage from pests, diseases and artificial damage using the
Bloodhound ST214 (13 CP array: Scensive Technologies Ltd., Normanton, UK). The e-nose
was able to successfully discriminate between spider-mite-infested, undamaged, and
artificially damaged cucumber leaves. It was also successful in discriminating between
powdery-mildew-infected, tobacco-hornworm-infested, artificially wounded, and un-
wounded control groups of tomato leaves, as well as undamaged leaves of pepper, tomato,
and cucumber plants. Laothawornkitkul et al. [13] reported high discrimination power,
rapid response, and low detection limits for the Bloodhound ST214 e-nose. Li et al. [54]
used Cyranose 320 (32 CP sensor array; Sensigent Intelligent Sensing Solutions, Baldwin
Park, CA, USA) to detect sour skin in onions caused by Burkholderia cepacian, using PCA
and SVM analysis methods. The study reports excellent selectivity, fast response times
(2 min per sample) and high accuracy; however, the study also reports a false positive
rate of 30%. In the same year, Li et al. [55] used the Cyranose 320 system to classify grey
mould, anthracnose, and Alternaria rot in blueberry fruits, three post-harvest diseases
caused by microorganisms. The team reported an overall accuracy of 90% using PCA and
good reversibility; however, some sensor degradation over time was evident. Henderson
et al. [56] used Cyranose 320 to detect stink bug presence and stink bug damage on cotton
bolls. The e-nose could discriminate between the volatiles produced by the southern green
stink bug and the green stink bug (Chinavia halaris) using principal component analysis.
Although the e-nose itself returned confused responses, it could detect stink bug damage
on cotton bolls with a prediction accuracy of 90%. Li et al. [57] used a 32-sensor array
to detect onion sour skin and botrytis neck rot, with a 97.8% classification rate using
PCA and a short sampling time of 2 min. The Cyranose 320 was also used to detect stink
bugs by analyzing the VOCs emitted from cotton bolls with dynamic headspace sampling
methods and discriminating between two stink bug species (southern green stink bug,
Nezara viridula, and brown stinkbug, Euschistus servus) using PCA. The e-nose proved
capable of differentiating between control and damaged cotton bolls, with an accuracy of
87.5%; however, the success rate for differentiating between which species the cotton bolls
were attacked by was much lower, at 65%, indicating the e-nose used in this study was
not capable of species-specific discrimination [58]. Ghaffari et al. [59] used a 13 CP sensor
array to detect and discriminate between Tetranychus urticae-infested and Oidium neolucop-
ersici-infected cucumber, pepper, and tomato plants, with accuracies of up to 96%. Samples
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were collected using static headspace sampling methods and SVM data analysis tools were
used. Gruber et al. [60] constructed a 4 CP e-nose to detect Penicillium digitarium in oranges
using dynamic headspace sampling methods. After only one day post-inoculation, the
e-nose was able to discriminate between infected and healthy oranges using PCA. The
authors report good portability, low power consumption, low cost, a lifetime of over one
year and short response time (~5 min); however, the authors also report a potential issue
with interference from insecticides and other potential fumigants. Wilson [61] reported
high accuracy in the discrimination and classification of bacterial wetwood disease in
American beech and black cherry trees using the Aromascan A32S (32 CP array). Samples
were collected using static headspace sampling methods and data were analyzed using
PCA and Quality Factor statistical values. Lampson et al. [62] constructed a CP e-nose to
detect Kudzu bugs, a soybean pest. The VOC fingerprints released by the Kudzu bugs
were analyzed and correctly classified, with accuracies of up to 94.4%. The group noted
that only 1 s sampling time is needed to detect the pests and that further study on the
feasibility of detection in field conditions is needed.

2.1.3. Electrochemical Sensors

Electrochemical sensors typically detect oxygen and toxic gases, such as carbon monox-
ide. The gas-sensing layer is composed of a working electrode, a counter electrode, an
electrolyte, and a reference electrode. Target gases diffuse into the gas-sensing layer and
undergo oxidation or reduction reactions with the electrolyte, causing current to flow either
from the working electrode to the counter electrode or vice versa. The current produced is
proportional to the concentration of target gas [63,64]. Rutolo et al. [65] used the WOLF
4.1 (9 electrochemical sensor array) to detect soft rot in potatoes. Samples were collected
through dynamic headspace sampling methods. The sensor array combined with linear
discriminant analysis showed 100% specificity and sensitivity, in both symptomatic and
pre-symptomatic groups. The study also reports low cost, low power consumption, good
tolerance to environmental changes, and operation at room temperature.

2.2. Methods with Variance in Other Properties

Many methods for detecting pests and diseases in plants by monitoring VOCs exist
that depend on variance in physical properties other than electrical properties. These
include gravimetric methods (such as those which require the use of quartz crystal mi-
crobalance (QCM sensors), optical methods (such as colorimetric sensors), biosensing
methods, and other methods (such as field asymmetric ion mobility spectrometry (FAIMS)).
QCM sensors work by the attachment of two gold electrodes to a quartz crystal with a
semi-selective coating that generates an alternating current, producing oscillation of the
quartz at a fundamental frequency. Detection functions by measuring the change in
frequency caused by an added mass due to adsorbed material. The frequency shift is
proportional to the mass of the added material [66]. Colorimetric sensors detect VOCs
using nanomaterials and chemo-responsive organic dyes, which interact with the target
compounds and produce a detectable color change. An array of dyes and materials that
react to different compounds and changing colour, can create a “fingerprint” specific
to different odors [67,68]. Biosensors are devices that use a biological sensing element
(i.e., enzymes, cells, etc.) and can detect chemical reactions by the formation of signals
proportional to the target substance [69]. FAIMS functions by first ionizing the VOCs
released by the plant. The ions are then sent through an electrode channel with a ranged
compensation voltage and an applied RF waveform that induces the separation of the
ions based on the different ion mobilities. Each ion then hits the detector at a different
compensation voltage with a certain ion current. These values are plotted to provide the
user with a unique profile for each ion [70–72].
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In 2014, Rutolo et al. used FAIMS to detect soft rot in stored potatoes using dynamic
headspace sampling and PCA, reporting high sensitivity and achieving accuracies of
90% [71]. In 2017, Sinha et al. also used FAIMS to detect sour skin caused by Burkholderia
cepacia in stored onions and soft rot caused by Pectobacterium carotovorum in stored
potatoes. The device could detect sour skin within three days post-inoculation and
soft rot within two days post-inoculation, with accuracies of at least 83% using PCA
and other classification models [72,73]. In 2018, Fang et al. produced a tri-enzyme
electrochemical biosensor to detect methyl salicylate, a volatile biomarker for indication
of plant stress. The study reports high sensitivity and a low limit of detection [74]. Li
et al. [75] developed a smartphone-based VOC sensor for the diagnosis of late blight in
tomato plants. This sensor system consisted of a disposable colorimetric sensor array.
The study reported 100% sensitivity, 90% specificity and 95% accuracy in lab conditions
and 95% sensitivity, 100% selectivity and 97.5% accuracy in field conditions. Wang
et al. [76] used a QCM sensor array to detect invasive bark beetles and juniper bark
borers in Pladycladus orientalus. The paper reported good sensitivity, selectivity, and
stability over at least one month. The sensor array produced high classification rates,
with only one misclassification during the study. Chalupowicz et al. [77] developed a
whole-cell-based biosensor, taking advantage of luminescent changes in bacteria due
to changes in VOCs, and tested the device for the detection of Penicillium digitatum in
oranges. Results of the study showed the feasibility of using these whole-cell-based
biosensors; however, more studies are needed to further determine the characteristics
of the sensors themselves. Wen et al. [78] used a QCM sensor array coated with ethyl-
cellulose for the detection of d-limonene, a marker for Bactrocera dorsalis infestation in
citrus fruits. The study reported repeatable results, with a determination coefficient of
0.9899. The applications, advantages and disadvantages of each method described in
Section 2 are summarized in Table 1.

Table 1. Summary of applications, advantages, and disadvantages of gas-sensing methods as reported
in the applications discussed in this review.

Sensing Mechanism Applications Advantages Disadvantages

MOS

• Pectobacterium carotovorum [33]
• Ectropis obliqua [34,37,39]
• Sitophilus granarius [36]
• Ectropis grisescens [37,38]
• Bactrocera dorsalis [39]
• Myzus persicae [40]
• Semanotus bifasciatus [41]
• Phytophthora plurivora [42]
• Pythium intermedium [42]
• Botrytus sp. [43]
• Penicillium sp. [43,46]
• Rhizopus sp. [43]
• Penicillium expansum [44]
• Aspergillus sp. [44–46]
• Paecilomyces sp. [46]
• Acremonium sp. [46]
• Ganoderma spp. [47]
• Citrus Tristeza Virus [48]
• Altenaria spp. [49]
• Lethal Bronzing Disease [50]

• high sensitivity [19]
• cross-sensitivity [35]
• fast [19,49]
• reliable [49]
• low cost [49]
• non-destructive [49]

• sensitive to sulphurs [10]
• high temperature [19]
• low selectivity [26]
• sensitive to environmental

factors [26]
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Table 1. Cont.

Sensing Mechanism Applications Advantages Disadvantages

CP

• Manduca sexta [13]
• Escherichia coli [53]
• Pseudomonas aeruginosa [53]
• Citrobacter freundii [53]
• Enterobacter aerogenes [53]
• Bacillus cereus [53]
• Klebsiella aerogenes [53]
• Candida albicans [53]
• Staphylococcus aureus [53]
• Staphylococcus epidermis [53]
• Salmonella reading [53]
• Salmonella poona [53]
• Salmonella garinarium [53]
• Bacillus subtillis [53]
• Burkholderia cepacia [53,57]
• Botrytis cinerea [55]
• Colletotrichum gloeosporioides [55]
• Altenaria sp. [55]
• Chinavia halaris [56]
• Nezara viridula [56,58]
• Botrytis allii [57]
• Euschistus servus [58]
• Tetranychus utricae [13,59]
• Oidium neolycopersici [13,59]
• Penicillium digitatum [60]
• Bacterial Wetwood [61]
• Megacopta cribraria [62]

• high sensitivity [25]
• low cost [25]
• short response

time [19,25]
• low energy

consumption [25]
• portable [25]

• unstable [25]
• poor selectivity [25]
• sensitive to environmental

factors [25]

Electrochemical • Pectobacterium carotovorum [65]

• high selectivity [64,65]
• fast response

time [64,65]
• room temperature

operation [65]
• low power

consumption [64,65]
• low cost [64,65]
• low limit of

detection [65]
• tolerant to

environmental
factors [65]

• limited operational
lifetime [64]

• poor baseline stability [64]

Colorimetric • Phytophthora infestans [69]

• disposable [19]
• portable [19,75]
• fast response [19]
• robust [19]

• sensitive to humidity [19]

FAIMS

• Pectobacterium
carotovorum [71,73]

• Burkholderia cepacia [72]

• operates at
atmospheric
pressure [70]

• inexpensive [70]
• high sensitivity [71]
• tolerance to

environmental
conditions [71]

• portable [71–73]

• lower performance [70]
• lower accuracy [70]
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Table 1. Cont.

Sensing Mechanism Applications Advantages Disadvantages

Biosensing
• Methyl salicylate [74]
• Penicillium digitatum [77]

• real-time [19]
• high specificity [19]

• unstable [19]
• sensitive to pH [19]
• sensitive to environmental

factors [19]

QCM

• Semanotus bifasciatus [76]
• Phloeosinus aubei Perris [76]
• Bactrocera dorsalis [78]

• work at room
temperature with high
sensitivity [19]

• Long lifetime [25]

• poor reproducibility [19]
• low sensitivity [25]
• sensitive to environmental

factors [25]

3. Challenges and Future Improvements

Although studies have shown that discriminating between healthy, damaged, or
infected plants is possible, there are many challenges one might face when applying
these technologies in the real world, and improvements that may be made to combat
these difficulties.

The first challenge, and likely the most debilitating, when it comes to further impli-
cating the analysis of VOCs for plant pests and disease detection is the reactive nature
of VOCs emitted from the plants and the sheer number of variables present, which can
affect the VOC profiles emitted. In the lab, it is much easier to control variables, such as
temperature and humidity. In the field, this becomes much more challenging; therefore,
inconsistent VOC profiles between plants of the same species in the field, even healthy, pose
a unique challenge for disease diagnosis. For instance, healthy plants under environmental
stress may present similar profiles to diseased or damaged plants, making it difficult to
discriminate between them [19,79]. Plants release VOCs in response to disease or damage
due to pests or animals; however, they also release VOCs due to environmental factors,
such as too much light, high or low temperatures, lack or excess of water, lack of oxygen,
nutrient deficiencies, humidity, and more [79]. VOCs emitted by the plants also change
throughout their life cycles [19]. Therefore, the same species grown in various locations,
soils, or environments, or the same species at various stages in their life cycle, will have
different VOC profiles [19,79]. Further studies are needed to continue building databases
that include each species of plant, information regarding soil type, location, weather, and
available nutrients [24]. Another potential solution may be to focus on the VOCs emitted
by the pests or infections themselves, rather than the VOCs emitted from the plants. As
mentioned previously, Henderson et al. [56] used an electronic nose to detect the presence of
stink bugs by detecting the VOCs emitted by the bugs themselves. Senthilkumar et al. [80]
used GC-MS to characterize the VOCs emitted by Tribolium castaneum and Cryptolestes
ferrugineus. Xu et al. [30] used the PEN3 electronic nose to determine the age and amount
of brown rice plant hoppers by sensing the VOCs emitted by the bugs themselves. Barbosa-
Cornellio et al. [81] wrote a review discussing sampling and analysis methods for VOCs
from insects. Potential future studies may include the detection of any of these pests by the
detection of their emitted VOCs, using any of the methods mentioned in this review.

Challenges also exist regarding the methods themselves. Many of the methods dis-
cussed above are sensitive to humidity, temperature, or atmospheric pressure. Some
attempts in mitigating this issue might include the addition of a humidity control system,
such as that added to the EOS507C MOS sensor system [28]. Paknahad et al. [82] devel-
oped a humidity removal membrane for microfluidic-based gas-sensing devices. Further
additions to systems suffering from sensitivity to environmental factors might include
temperature regulating systems or pressure-regulating systems. Furthermore, many of
the methods discussed in this review require the use of a sensor array, containing up to
thirty-five different sensors, each with its own selectivity. This requires a more complicated
analysis process and more frequent calibration due to individual sensor drifts. It also calls
for more frequent replacements of individual components in the system. Therefore, a more
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reliable and straightforward version of electronic noses is required. Unfortunately, most
sensors are not very selective on their own. Previously, gas sensors have been combined
with microfluidic channels to allow component separation along the channel before the
sample reaches the sensor. This type of e-nose only requires one sensor and acts based on
the diffusion properties of the compounds involved, similar to GC-MS (see Figure 2) [83–90].
Paknahad et al. [91] suggested and tested the use of microfluidic-based e-noses, combined
with feature extraction methods, to successfully discriminate between several types of wine.
A similar method could potentially be used for the detection of plant pests and diseases.
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idic channel. (A) Headspace sample containing a mixture of so analytes, red and blue. (B) Sample
flows through microfluidic channel due to diffusion processes. Separation occurs due to adsorption
on the channel walls. (C) Compound with the lowest retention time (time spent within the channel)
will reach the gas sensor. This provides the user with a curve with features specific to the mixture of
gases within the sample allowing for discrimination [84].

Many of the devices mentioned above have been tested in the lab, but not in the
field. To further understand how the devices will function in the real world and their true
feasibility, the methods need to be tested for use in the field. This may involve testing the
devices at the border, alongside currently used methods or on crops. One challenge with
field testing is the difficulty associated with sample collection. As mentioned previously,
traditional volatile sampling methods can be invasive and may cause unwanted changes in
VOC profiles due to damage or stress to the plant. Sampling VOCs from the headspace of a
plant is a non-invasive alternative to such methods. Static headspace sampling methods of
VOC trapping include headspace enclosure, where a chamber or bag is used to passively
collect VOCs emitted from the plant. The chamber or bag can impact temperature, humidity,
light, and other factors affecting the VOCs emitted from the plant. Other methods include
solid-phase microextraction, where VOCs can be collected from both foliage headspace and
soil headspace [92,93]. Direct contact sorptive extraction, or stir-bar sorptive extraction, is
used as a more adsorbant alternative to SPME, where a stir-bar coated with PDMS is held
on to the surface of foliage with a magnet, to adsorb volatiles directly from the leaf or from
the air around it. The PDMS then undergoes thermal desorption and is coupled with an
analytical method, such as GC-MS [94]. Another challenge associated with field testing is
the presence of interferences due to outside factors and background noise. Solutions include
the development and use of new statistical analysis methods, such as signal processing, and
data analysis tools, such as PCA, LDA and neural networking, as mentioned previously.
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4. Conclusions

Plant pests and diseases can cause the widespread loss of crops and destruction
of global ecosystems. Therefore, it is essential to be able to control and monitor the
introduction and spread of such insects within each country. Traditional methods of
doing so require training and expertise and are often expensive and bulky. Therefore,
simpler, cost-effective methods are needed. Methods that meet these requirements have
been discussed and include electrical gas-sensing technologies and other gas-sensing
technologies that take advantage of volatile organic compounds released by plants under
stress. These methods are less expensive to purchase and produce, faster, and easier for the
public to use than traditional laboratory methods. Most commonly, dynamic headspace
sampling methods are used and PCA, SVM and BPNN appear to be the most common
and effective data analysis tools. Determining which detection method to use depends on
the environment it will be used in, as well as other factors specific to the application (i.e.,
volatiles being detected, type of plant, pest, etc.). Some difficulties associated with each
of the gas-sensing methods discussed include the reactive nature of VOCs and the sheer
number of uncontrollable variables present in the field, sensitivity to environmental factors,
and sensor drift. Furthermore, most studies presented in this review were conducted in the
lab. Further studies in the field are needed to resolve these challenges and determine the
feasibility of using these methods to detect pests and diseases and maintain the health and
diversity of the global ecosystem.
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and identification of fungal contamination of building materials using e-nose. PLoS ONE 2019, 14, e0215179. [CrossRef] [PubMed]

47. Nouri, B.; Mohtasebi, S.S.; Rafiee, S. Quality detection of pomegranate fruit infected with fungal disease. Int. J. Food Prop. 2020,
23, 9–21. [CrossRef]

48. Hazaika, S.; Choudhury, R.; Saikia, S.; Sarma, U. Pathogen Detection in Khasi Mandarin Orange using Serological and Electronic
Nose Diagnostic Technique. Int. J. Innov. Technol. Explor. Eng. 2020, 9, 2981–2985. [CrossRef]

49. Kresnawaty, I.; Mulyatni, A.S.; Eris, D.D.; Prakoso, H.T.; Tri-Panji; Triyana, K.; Widiastuti, H. Electronic nose for early detection of
basal stem rot caused by Ganoderma in oil palm. IOP Conf. Ser. Earth Environ. Sci. 2020, 468, 012029. [CrossRef]

50. Oates, M.J.; Abu-Khalaf, N.; Molina-Cabrera, C.; Ruiz-Canales, A.; Ramos, J.; Bahder, B.W. Detection of Lethal Bronzing Disease
in Cabbage Palms (Sabal palmetto) Using a Low-Cost Electronic Nose. Biosensors 2020, 10, 188. [CrossRef]

51. Muñoz, B.C.; Steinthal, G.; Sunshine, S. Conductive polymer-carbon black composites-based sensor arrays for use in an electronic
nose. Sens. Rev. 1999, 19, 300–305. [CrossRef]

52. Lei, H.; Pitt, W.G.; McGrath, L.K.; Ho, C.K. Modeling carbon black/polymer composite sensors. Sens. Actuators B Chem. 2007, 125,
396–407. [CrossRef]

53. Gibson, T.D.; Prosser, O.; Hulbert, J.N.; Marshall, R.W.; Corcoran, P.; Lowery, P.; Ruck-Keene, E.A.; Heron, S. Detection and
simultaneous identification of microorganisms from headspace samples using an electronic nose. Sens. Actuators B Chem. 1997,
44, 413–422. [CrossRef]

54. Li, C.; Gitaitis, R.; Tollner, B.; Sumner, P.; MacLean, D. Onion sour skin detection using a gas sensor array and support vector
machine. Sens. Instrum. Food Qual. Saf. 2009, 3, 193–202. [CrossRef]

55. Li, C.; Krewer, G.; Kays, S.J. Blueberry Postharvest Disease Detection Using an Electronic Nose; Written for presentation at the 2009
ASABE annual international meeting, Reno, NV, USA, 21–24 June 2009; American Society of Agricultural and Biological Engineers:
St. Joseph, MI, USA, 2009; Volume 8, pp. 5289–5301. [CrossRef]

56. Henderson, W.G.; Khalilian, A.; Han, Y.J.; Greene, J.K.; Degenhardt, D.C. Detecting stink bugs/damage in cotton utilizing a
portable electronic nose. Comput. Electron. Agric. 2010, 70, 157–162. [CrossRef]

57. Li, C.; Schmidt, N.E.; Gitaitis, R. Detection of onion postharvest diseases by analyses of headspace volatiles using a gas sensor
array and GC-MS. LWT-Food Sci. Technol. 2011, 44, 1019–1025. [CrossRef]

58. Degenhardt, D.C.; Greene, J.K.; Khalilian, A. Temporal dynamics and electronic nose detection of stink bug-induced volatile
emissions from cotton bolls. Psyche 2012, 2012, 236762. [CrossRef]

59. Ghaffari, R.; Laothawornkitkul, J.; Iliescu, D.; Hines, E.; Leeson, M.; Napier, R.; Moore, J.P.; Paul, N.D.; Hewitt, C.N.; Taylor, J.E.
Plant pest and disease diagnosis using electronic nose and support vector machine approach. J. Plant Dis. Prot. 2012, 119, 200–207.
[CrossRef]

60. Gruber, J.; Nascimento, H.M.; Yamauchi, E.Y.; Li, R.W.C.; Esteves, C.H.A.; Rehder, G.P.; Gaylarde, C.C.; Shirakawa, M.A. A
conductive polymer based electronic nose for early detection of Penicillium digitatum in post-harvest oranges. Mater. Sci. Eng. C
2013, 33, 2766–2769. [CrossRef]

61. Wilson, A.D. Bacterial Wetwood Detection in Fagus grandifolia and Prunus serotina Sapwood using a Conducting Polymer
Electronic-nose Device. In Proceedings of the Fifth International Conference on Sensor Device Technologies and Applications,
Lisbon, Portugal, 16–20 November 2014; pp. 109–113.

62. Lampson, B.D.; Degenhardt, D.C.; Greene, J.K.; Khalilian, A.; Han, Y.J. Development of a Portable Electronic Sensor for Detection
of the Kudzu Bug, Megacopta cribraria (Fabricius) (Hemiptera: Plataspidae). Adv. Entomol. 2017, 05, 75–86. [CrossRef]

63. Operating Principle—Electrochemical-Type Gas Sensor. Available online: https://www.figarosensor.com/technicalinfo/
principle/electrochemical-type.html (accessed on 20 January 2022).

http://doi.org/10.1016/j.compag.2018.07.022
http://doi.org/10.1016/j.postharvbio.2018.09.017
http://doi.org/10.3390/s19163480
http://doi.org/10.1016/j.compag.2020.105293
http://doi.org/10.3390/s21041326
http://doi.org/10.1016/j.foodres.2014.02.020
http://doi.org/10.3390/s19071526
http://doi.org/10.1016/j.foodchem.2019.04.054
http://www.ncbi.nlm.nih.gov/pubmed/31054682
http://doi.org/10.1371/journal.pone.0215179
http://www.ncbi.nlm.nih.gov/pubmed/30964926
http://doi.org/10.1080/10942912.2019.1705851
http://doi.org/10.35940/ijitee.d2077.029420
http://doi.org/10.1088/1755-1315/468/1/012029
http://doi.org/10.3390/bios10110188
http://doi.org/10.1108/02602289910294745
http://doi.org/10.1016/j.snb.2007.02.041
http://doi.org/10.1016/S0925-4005(97)00235-9
http://doi.org/10.1007/s11694-009-9085-1
http://doi.org/10.13031/2013.27360
http://doi.org/10.1016/j.compag.2009.09.019
http://doi.org/10.1016/j.lwt.2010.11.036
http://doi.org/10.1155/2012/236762
http://doi.org/10.1007/BF03356442
http://doi.org/10.1016/j.msec.2013.02.043
http://doi.org/10.4236/ae.2017.53007
https://www.figarosensor.com/technicalinfo/principle/electrochemical-type.html
https://www.figarosensor.com/technicalinfo/principle/electrochemical-type.html


Biosensors 2022, 12, 239 16 of 17

64. Venkatasetty, H.V. Electrochemical amperometric gas sensors for environmental monitoring and control. SAE Tech. Pap.
1990, 901296. [CrossRef]

65. Rutolo, M.F.; Clarkson, J.P.; Covington, J.A. The use of an electronic nose to detect early signs of soft-rot infection in potatoes.
Biosyst. Eng. 2018, 167, 137–143. [CrossRef]

66. James, D.; Scott, S.M.; Ali, Z.; O’Hare, W.T. Chemical sensors for electronic nose systems. Microchim. Acta 2005, 149, 1–17.
[CrossRef]

67. Janzen, M.C.; Ponder, J.B.; Bailey, D.P.; Ingison, C.K.; Suslick, K.S. Colorimetric sensor arrays for volatile organic compounds.
Anal. Chem. 2006, 78, 3591–3600. [CrossRef]

68. Li, Z.; Askim, J.R.; Suslick, K.S. The Optoelectronic Nose: Colorimetric and Fluorometric Sensor Arrays. Chem. Rev. 2019, 119,
231–292. [CrossRef] [PubMed]

69. Bhalla, N.; Jolly, P.; Formisano, N.; Estrela, P. Introduction to biosensors. Essays Biochem. 2016, 60, 1–8. [CrossRef] [PubMed]
70. Rutolo, M.; Covington, J.A.; Clarkson, J.; Iliescu, D. Detection of potato storage disease via gas analysis: A pilot study using field

asymmetric ion mobility spectrometry. Sensors 2014, 14, 15939–15952. [CrossRef] [PubMed]
71. Costanzo, M.T.; Boock, J.J.; Kemperman, R.H.J.; Wei, M.S.; Beekman, C.R.; Yost, R.A. Portable FAIMS: Applications and future

perspectives. Int. J. Mass Spectrom. 2017, 422, 188–196. [CrossRef] [PubMed]
72. Sinha, R.; Khot, L.R.; Schroeder, B.K. FAIMS based sensing of Burkholderia cepacia caused sour skin in onions under bulk storage

condition. J. Food Meas. Charact. 2017, 11, 1578–1585. [CrossRef]
73. Sinha, R.; Khot, L.R.; Schroeder, B.K.; Si, Y. Rapid and non–destructive detection of Pectobacterium carotovorum causing soft rot in

stored potatoes through volatile biomarkers sensing. Crop Prot. 2017, 93, 122–131. [CrossRef]
74. Fang, Y.; Ramasamy, R.P. A Portable Electrochemical System for Plant Volatile Detection. ECS Trans. 2018, 85, 1359–1367.

[CrossRef]
75. Li, Z.; Paul, R.; Ba Tis, T.; Saville, A.C.; Hansel, J.C.; Yu, T.; Ristaino, J.B.; Wei, Q. Non-invasive plant disease diagnostics enabled

by smartphone-based fingerprinting of leaf volatiles. Nat. Plants 2019, 5, 856–866. [CrossRef]
76. Wang, Z.; Chen, W.; Gu, S.; Wang, J.; Wang, Y. Discrimination of wood borers infested Platycladus orientalis trunks using quartz

crystal microbalance gas sensor array. Sens. Actuators B Chem. 2020, 309, 127767. [CrossRef]
77. Chalupowicz, D.; Veltman, B.; Droby, S.; Eltzov, E. Evaluating the use of biosensors for monitoring of Penicillium digitatum

infection in citrus fruit. Sens. Actuators B Chem. 2020, 311, 127896. [CrossRef]
78. Wen, T.; Sang, M.; Wang, M.; Han, L.; Gong, Z.; Tang, X.; Long, X.; Xiong, H.; Peng, H. Rapid detection of d-limonene emanating

from citrus infestation by Bactrocera dorsalis (Hendel) using a developed gas-sensing system based on QCM sensors coated with
ethyl cellulose. Sens. Actuators B Chem. 2021, 328, 129048. [CrossRef]

79. Jansen, R.M.C.; Wildt, J.; Kappers, I.F.; Bouwmeester, H.J.; Hofstee, J.W.; van Henten, E.J. Detection of Diseased Plants by Analysis
of Volatile Organic Compound Emission. Annu. Rev. Phytopathol. 2011, 49, 157–174. [CrossRef] [PubMed]

80. Senthilkumar, T.; Jayas, D.S.; White, N.D.G.; Freund, M.S.; Shafai, C.; Thomson, D.J. Characterization of volatile organic
compounds released by granivorous insects in stored wheat. J. Stored Prod. Res. 2012, 48, 91–96. [CrossRef]

81. Barbosa-Cornelio, R.; Cantor, F.; Coy-Barrera, E.; Rodríguez, D. Tools in the Investigation of Volatile Semiochemicals on Insects:
From Sampling to Statistical Analysis. Insects 2019, 10, 241. [CrossRef]

82. Paknahad, M.; Bachhal, J.S.; Hoorfar, M. Diffusion-based humidity control membrane for microfluidic-based gas detectors. Anal.
Chim. Acta 2018, 1021, 103–112. [CrossRef]

83. Martini, V.; Bernardini, S.; Bendahan, M.; Aguir, K.; Perrier, P.; Graur, I. Fabrication and characterization of gas detection
microfluidic system. Procedia Eng. 2010, 5, 1188–1191. [CrossRef]

84. Hossein-Babaei, F.; Ghafarinia, V. Gas analysis by monitoring molecular diffusion in a microfluidic channel. Anal. Chem. 2010, 82,
8349–8355. [CrossRef]

85. Hossein-Babaei, F.; Paknahad, M.; Ghafarinia, V. A miniature gas analyzer made by integrating a chemoresistor with a microchan-
nel. Lab Chip 2012, 12, 1874–1880. [CrossRef]

86. Hossein-Babaei, F.; Amini, A. Recognition of complex odors with a single generic tin oxide gas sensor. Sens. Actuators B Chem.
2014, 194, 156–163. [CrossRef]

87. Mehrabi, P.; Hui, J.; Montazeri, M.M.; Nguyen, K.T.; Logel, A.; O’Brian, A.; Hoorfar, M. Smelling Through Microfluidic Olfaction
Technology. In CSME Conference Proceedings; YorkSpace: Denver, Colorado, 2018. [CrossRef]

88. Paknahad, M.; Bachhal, J.S.; Ahmadi, A.; Hoorfar, M. Characterization of channel coating and dimensions of microfluidic-based
gas detectors. Sens. Actuators B Chem. 2017, 241, 55–64. [CrossRef]

89. Paknahad, M.; Mcintosh, C.; Hoorfar, M. Selective detection of volatile organic compounds in microfluidic gas detectors based on
“like dissolves like”. Sci. Rep. 2019, 9, 161. [CrossRef] [PubMed]

90. Janfaza, S.; Kim, E.; O’Brien, A.; Najjaran, H.; Nikkhah, M.; Alizadeh, T.; Hoorfar, M. A Nanostructured Microfluidic Artificial
Olfaction for Organic Vapors Recognition. Sci. Rep. 2019, 9, 19051. [CrossRef] [PubMed]

91. Paknahad, M.; Ahmadi, A.; Rousseau, J.; Nejad, H.R.; Hoorfar, M. On-Chip Electronic Nose for Wine Tasting: A Digital
Microfluidic Approach. IEEE Sens. J. 2017, 17, 4322–4329. [CrossRef]

92. Eilers, E.J.; Pauls, G.; Rillig, M.C.; Hansson, B.S.; Hilker, M.; Reinecke, A. Novel Set-Up for Low-Disturbance Sampling of Volatile
and Non-volatile Compounds from Plant Roots. J. Chem. Ecol. 2015, 41, 253–266. [CrossRef] [PubMed]

http://doi.org/10.4271/901296
http://doi.org/10.1016/j.biosystemseng.2018.01.001
http://doi.org/10.1007/s00604-004-0291-6
http://doi.org/10.1021/ac052111s
http://doi.org/10.1021/acs.chemrev.8b00226
http://www.ncbi.nlm.nih.gov/pubmed/30207700
http://doi.org/10.1042/EBC20150001
http://www.ncbi.nlm.nih.gov/pubmed/27365030
http://doi.org/10.3390/s140915939
http://www.ncbi.nlm.nih.gov/pubmed/25171118
http://doi.org/10.1016/j.ijms.2016.12.007
http://www.ncbi.nlm.nih.gov/pubmed/29335669
http://doi.org/10.1007/s11694-017-9537-y
http://doi.org/10.1016/j.cropro.2016.11.028
http://doi.org/10.1149/08513.1359ecst
http://doi.org/10.1038/s41477-019-0476-y
http://doi.org/10.1016/j.snb.2020.127767
http://doi.org/10.1016/j.snb.2020.127896
http://doi.org/10.1016/j.snb.2020.129048
http://doi.org/10.1146/annurev-phyto-072910-095227
http://www.ncbi.nlm.nih.gov/pubmed/21663436
http://doi.org/10.1016/j.jspr.2011.09.006
http://doi.org/10.3390/insects10080241
http://doi.org/10.1016/j.aca.2018.03.021
http://doi.org/10.1016/j.proeng.2010.09.324
http://doi.org/10.1021/ac101767r
http://doi.org/10.1039/c2lc00035k
http://doi.org/10.1016/j.snb.2013.12.061
http://doi.org/10.25071/10315/35359
http://doi.org/10.1016/j.snb.2016.10.048
http://doi.org/10.1038/s41598-018-36615-6
http://www.ncbi.nlm.nih.gov/pubmed/30655569
http://doi.org/10.1038/s41598-019-55672-z
http://www.ncbi.nlm.nih.gov/pubmed/31836802
http://doi.org/10.1109/JSEN.2017.2707525
http://doi.org/10.1007/s10886-015-0559-9
http://www.ncbi.nlm.nih.gov/pubmed/25795090


Biosensors 2022, 12, 239 17 of 17

93. Deasy, W.; Shepherd, T.; Alexander, C.J.; Birch, A.N.E.; Evans, K.A. Development and Validation of a SPME-GC-MS Method for in
situ Passive Sampling of Root Volatiles from Glasshouse-Grown Broccoli Plants Undergoing Below-Ground Herbivory by Larvae
of Cabbage Root Fly, Delia radicum L. Phytochem. Anal. 2016, 27, 375–393. [CrossRef] [PubMed]

94. Kfoury, N.; Scott, E.; Orians, C.; Robbat, A. Direct Contact Sorptive Extraction: A Robust Method for Sampling Plant Volatiles in
the Field. J. Agric. Food Chem. 2017, 65, 8501–8509. [CrossRef] [PubMed]

http://doi.org/10.1002/pca.2637
http://www.ncbi.nlm.nih.gov/pubmed/27687886
http://doi.org/10.1021/acs.jafc.7b02847
http://www.ncbi.nlm.nih.gov/pubmed/28854785

	Introduction 
	Emerging VOC Sensing Methods 
	Methods with Electrical Variation 
	MOS Sensors 
	CP Sensors 
	Electrochemical Sensors 

	Methods with Variance in Other Properties 

	Challenges and Future Improvements 
	Conclusions 
	References

