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Nonlinear Chaotic Analysis of USD/TRY and EUR/TRY  

Exchange Rates 

Baki Ünal1  

DOLAR/TL ve EURO/TL Döviz Kurlarının Doğrusal 
Olmayan ve Kaotik Analizi 

Nonlinear Chaotic Analysis of USD/TRY and EUR/TRY 
Exchange Rates 

Öz 

Bu çalışmada DOLAR/TL ve EURO/TL döviz kurları 
doğrusal olmayan ve kaotik zaman serileri analizi 
yöntemleriyle analiz edilmiştir. Bu çalışmada kaosun 
tespiti için korelasyon boyutu, Lyapunov katsayısı, vekil 
veri testi yöntemleri kullanılmış ve DOLAR/TL ve 
EURO/TL döviz kurlarında kaosun bulunduğuna dair 
kanıtlar elde edilmiştir. Ayrıca yineleme niceleme analizi 
(YNA) ve çapraz yineleme niceleme analizi (ÇYNA) 
yöntemleri kullanılarak döviz kurlarının kaotik 
özelliklerinin zaman içinde nasıl değiştiği gösterilmiştir. 
Bu çalışmada 2014 yılından sonra determinizm, 
laminarite ve entropi gibi YNA ölçütlerinin istikrarlı bir 
düşüş sergilediği gösterilmiştir. Bu düşüş 2014’ten sonra 
döviz kuru piyasasının daha öngörülemez, daha düzensiz 
ve daha kararsız hale geldiğini göstermektedir.  

Abstract 

In this work USD/TRY and EUR/TRY Exchange rates are 
analyzed with nonlinear and chaotic time series analysis 
methods. In this work to detect chaos, methods such as 
correlation dimension, Lyapunov exponent, and 
surrogate data testing are utilized and obtained 
evidence for chaos in these exchange rates. 
Additionally, by utilizing recurrence quantification 
analysis (RQA) and cross recurrence quantification 
analysis (CRQA) it is demonstrated how chaotic 
properties of the exchange rates change through time. 
In this study, it has been shown that RQA measures such 
as determinism, laminarity, and entropy exhibited a 
steady decline after 2014. This decline indicates that the 
exchange rate market has become more unpredictable, 
more irregular, and more unstable after 2014. 
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1. Introduction 

The study of complex systems has gained importance in recent literature. There are many 
examples of complex systems in biology, neurology, linguistics, sociology, and economics. Some 
complex systems demonstrate chaotic behavior. 

Economics is essentially a social science. However, in the historical development of 
economics, ideas and concepts are transferred to economics from fields of physics such as 
thermodynamics. With the applications of methods from physics in economics, a heterodox 
interdisciplinary research field called econophysics has emerged. Chaos theory is a field that 
originated from physics but spread to social science fields including economics. This study is an 
application of chaos theory in economics. Pioneering works of Stutzer (1980), Benhabib and 
Day (1981), and Day (1982) demonstrated the usefulness of chaos theory in economic analysis. 
After these studies, many studies appeared applying chaos theory in economics (Grandmont, 
1985; Boldrin and Montrucchio, 1986; Deneckere and Pelikan, 1986; Grandmont, 1986; 
Grandmont and Laroque, 1986; Farmer, 1986; Chiarella, 1988; Puu, 1991; Bala et al., 1998; 
Mitra, 2001). Guegan (2009) surveyed the usage of chaos theory in economics and finance. 

Although chaotic systems are defined with differential and difference equations precisely it 
is impossible to predict their long-term behavior because small differences in initial conditions 
amplified exponentially. Chaotic time series look random but their data generating mechanism 
is deterministic. Fluctuations in a time series can be explained in two ways. Fluctuations in a 
time series can be a result of stochastic dynamics or nonlinear chaotic dynamics. In stochastic 
systems, fluctuations are the results of exogenous shocks. However, in nonlinear chaotic 
systems fluctuations are created endogenously. 

In the literature, there is an effort to detect chaos in times series from different fields. The 
symptoms of chaos are positive maximum Lyapunov exponent, fractal dimension, and 
nonlinearity. Chaos theory originated in meteorology with Lorenz (1965). There are two kinds 
of tools to detect and analyze chaos named metric and topological tools. Metric tools include 
BDS (Brock-Dechert-Scheinkman) test (Brock et al., 1996), correlation dimension, Lyapunov 
exponent, and surrogate data testing. Topological tools include Recurrence Plot (RP) and 
Recurrence Quantification Analysis (RQA). 

In our paper, we have two research questions. Our first research question is whether 
USD/TRY and EUR/TRY exchange rates are chaotic. To answer this research question, we 
utilized methods such as correlation dimension, Lyapunov exponent, and surrogate data 
testing. We answered this research question affirmatively. Our second research question is that 
given USD/TRY and EUR/TRY exchange rates are chaotic, how do their chaotic properties 
change through time. To answer this research question, we utilized RQA and Cross Recurrence 
Quantification Analysis (CRQA) in our study. 

The existence of chaos in economics has important consequences from both a theoretical 
and a practical point of view. From the theoretical point of view existence of chaos implies that 
it is possible to model the economic phenomena with mathematical models for example with 
the difference or differential equations. From a practical point of view existence of chaos 
implies that it is impossible to control the system in the long run. But to control the system in 
the short run, different intervention strategies must be adopted for chaotic systems. Chaos in 
economic time series also implies that neoclassic economic theory’s reductionist approach is 
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not suitable for economics. Therefore, chaos theory improved the understanding of economics 
and offers new approaches to the analysis of the economy. 

Our paper is organized as follows: In part two we reviewed the literature. In part three we 
presented the description of methods we used in our study. These methods include phase 
space reconstruction, correlation dimension, Lyapunov exponent, surrogate data testing, RQA, 
and CRQA. In part four we presented applications of methods reviewed in part there. In part 
five we conclude our study. 

2. Literature Review 

In the literature, chaos has been extensively investigated in financial and economic time 
series. In these investigations mostly correlation dimension, BDS test, and Lyapunov exponent 
are used. This literature is surveyed in Faggini (2014, 2019). Literature investigating chaos in 
exchange rates is summarized in Table 1. 

Table 1: Literature investigated chaos in exchange rates 

Year Author(s) Tools Results 

1992 Bajo-Rubio et al. Grassberger-Procaccia test and 
Lyapunov test 

Evidence for chaos 

1996 Sewell et al. BDS test Evidence for chaos 

1997 Serletis and Gogas BDS test, NEGM test and 
Lyapunov test 

Evidence for chaos 

2001 Gilmore Close returns test No evidence of chaos 

2002 Bask Lyapunov test No evidence of chaos 

2002 Belaire-Franch et al. Recurrence Plot and 
Recurrence Quantification 
Analysis 

Evidence for chaos 

2003 Schwartz and Yousefi BDS test, correlation 
dimension, and Lyapunov 
exponent 

No evidence of chaos 

2007 Torkamani et al. Correlation dimension and 
Lyapunov test 

Evidence for chaos 

2007 Das and Das Lyapunov exponent and 
surrogate data 

Evidence for chaos 

2009 Liu BDS test, Lyapunov test, and 
surrogate data 

Evidence for chaos 

2010 Adrangi et al. BDS test, correlation 
dimension, and entropy test 

No evidence of chaos 

In the literature, there are several papers that analyze how RQA measures change during 
the time utilizing the sliding window approach (Bastos and Caiado, 2011; Piskun and Piskun, 
2011; Moloney and Raghavendra, 2012; Soloviev et al., 2020). Piskun and Piskun (2011) 
examined how RQA laminarity of major world stock market indexes changed over time and 
demonstrated that laminarity measure can be used as a tool to reveal, monitor, analyze and 
predict economic crises, crashes, and financial bubbles. Moloney and Raghavendra (2012) 
investigated phase transition in the Dow Jones Industrial Index from a bull market to a bear 
market using RQA. Authors demonstrated that when the scaled variance and uncertainty are 
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rising the determinism and predictability of markets collapse. In these cases, the market loses 
its deterministic structure and behaves in a random manner. Soloviev et al. (2020) 
demonstrated that in complex economic systems, RQA measures can be employed as indicators 
and precursors of critical events such as crises in the economy. Authors showed that RQA 
measures such as LAM, DET, Vmean, Lmax, and ENTR are sensitive to economic crises in history. 
During the economic crises, these measures drop significantly. 

Our study makes a significant contribution to the literature. There is literature investigating 
chaos in economic time series. However, in this literature, chaos in USD/TRY and EUR/TRY 
exchange rates are not investigated. Our study is the first study investigating chaos in USD/TRY 
and EUR/TRY exchange rates. Our second contribution to the literature is the application of the 
RQA and CRQA to the USD/TRY and EUR/TRY exchange rates to demonstrate how chaotic 
properties are changed through time. Our study is the first study applying RQA and CRQA to 
the USD/TRY and EUR/TRY exchange rates. Therefore, our study fills a gap in the existing 
literature. 

3. Preliminaries 

3.1. Phase Space Reconstruction 

Deterministic nonlinear time series analysis methods are initialized with phase space 
reconstruction by an embedding process. According to Takens’ (1981), embedding theorem 
reconstruction of phase space by time-delay embedding procedure preserves the system’s 
original attractor from the one-dimensional output of the system. Initially, there is one-
dimensional time series which is observed from the system as below: 

𝐱 = (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛)        (1) 

To reconstruct phase space of 𝐱, two parameters named as time delay τ and embedding 
dimension D must be determined. Therefore, the first vector of reconstructed phase space 𝐗1 
becomes: 

𝐗1 = (𝑥1, 𝑥1+𝜏, 𝑥1+2𝜏, … , 𝑥1+(𝐷−1)𝜏)      (2) 

In this way coordinates of reconstructed phase space can be expressed as a matrix below: 

𝐗 = (

𝐗1
𝐗2

⋮
𝐗𝑛−(𝐷−1)𝜏

) = (

𝑥1 𝑥1+𝜏
𝑥2 𝑥2+𝜏

… 𝑥1+(𝐷−1)𝜏
… 𝑥2+(𝐷−1)𝜏

⋮ ⋮
𝑥𝑛−(𝐷−1)𝜏 𝑥𝑛−(𝐷−2)𝜏

⋱ ⋮
… 𝑥𝑛

)   (3) 

To determine time delay τ and embedding dimension D, false nearest neighbors and mutual 
information methods are proposed in the literature (Huffaker et al., 2017). However, Zbilut 
(2005) proposed that for economic time series, time delay τ can be taken as 1 and embedding 
dimension D can be taken as 10 empirically. In this work, we followed Zbilut’s (2005) proposal 
and adopted these parameter values. This selection is in line with the works of Strozzi et al. 
(2007), Strozzi et al. (2008), Bastos and Caiado (2011) and Xing and Wang (2020). 
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3.2. Correlation Dimension 

To qualify a system as chaotic, its fractal dimension must be fractional (noninteger). A fractal 
is identical to itself on all dimensions since it includes an infinite number of copies of itself. The 
number of variables required to define the system is determined by the fractal dimension. 

A fractal dimension can be calculated in a variety of ways, such as the Hausdorff dimension, 
information dimension, correlation dimension, box-counting dimension. However, these fractal 
dimension calculation methods do not always give the same result. The correlation dimension, 
which is suggested by Grassberger and Procaccia (1983), possesses some advantages such as 
quick implementation and straightforwardness. 

Correlation sum is a metric that quantifies the ratio of points separated by a small distance, 
and defined as below: 

𝐶(𝑁,𝑚, 𝜀) =
1

𝑁(𝑁−1)
∑ Θ𝑚≤𝑡≠𝑠≤𝑁 (𝜀 − ‖𝑋𝑡 − 𝑋𝑠‖)   𝜀 > 0           (4) 

In the statement above Θ represents Heaviside function and ‖.‖ represents norm operator.  

The correlation function determines the likelihood that the distance between a pair of 
randomly selected points is less than ε. The correlation dimension is calculated from the 
correlation sum. To calculate correlation dimension, it must be specified how 𝐶(𝑁,𝑚, 𝜀) 
changes as 𝜀 changes. When ε is increased, 𝐶(𝑁,𝑚, 𝜀) increase because the number of nearby 
points increases. Grassberger and Procaccia (1983) demonstrated that for small 𝜀, 𝐶(𝑁,𝑚, 𝜀) 
increase at rate 𝐷𝑐. Therefore, the following approximation can be written: 

𝐶(𝑁,𝑚, 𝜀) ≈ 𝜀𝐷𝑐        (5) 

So, the correlation dimension can be calculated from the following limit: 

𝐷𝑐 = lim
𝜀→0

log𝐶(𝑁,𝑚,𝜀)

log 𝜀
        (6) 

As seen above correlation dimension depends on the choice of embedding dimension, 
selection of radius 𝜀, and the norm operator. Brock (1986) and Kugiumtzis (1997) found that 
the Euclidian norm generates the most reliable results. 

3.3. Lyapunov Exponent 

Although chaotic systems have deterministic time evolution it is impossible to predict the 
far future of these systems. In chaotic systems, small changes in initial conditions are amplified 
exponentially. The Lyapunov exponent is a value that measures a system’s sensitivity to initial 
conditions. Since sensitivity to initial conditions is a hallmark of chaos, the Lyapunov exponent 
can be used to detect chaos in a dynamical system. If a system has sensitive to initial conditions, 
trajectories that are initially close will be separated with exponential rates. However, if the 
system is chaotic this divergence will not explode and trajectories will remain in a bounded set. 
This divergence of trajectories is measured by the maximal Lyapunov exponent. According to 
the sign of the Lyapunov exponent, initially, infinitesimally close trajectories can converge or 
diverge. 

Methods for estimating the Lyapunov exponent falls into two classes. These are direct 
methods and Jacobian methods. Both methods are based on embedding procedure. The idea 
under these methods is to track two nearby points and determine the divergence rate of the 
trajectories from these points. 
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The direct methods are presented by Wolf et al. (1985) and Rosenstein et al. (1993) and are 
based on tracking the divergence rate of nearby points. The method of Rosenstein et al. (1993) 
is presented below: 

This method begins with time delay embedding of initial time series. After that, each point’s 
nearest neighbor is determined. In this process nearest neighbor of reference point 𝑋𝑗 is 

denoted as 𝑋�̂� and following expression can be written: 

𝑑𝑗(0) = min
𝑋�̂�

‖𝑋𝑗 − 𝑋�̂�‖       (7) 

In the expression above 𝑑𝑗(0) denotes the initial distance between 𝑗𝑡ℎ point and its nearest 

neighbor, and ‖∙‖ indicate the norm. By averaging the divergence rate of the nearest neighbors, 

the largest Lyapunov exponent can be determined. Therefore 𝑗𝑡ℎ nearest neighbor pair of 
points separated with a rate of maximal Lyapunov exponent as below: 

𝑑𝑗(𝑖) ≈ 𝐶𝑗𝑒
𝜆1(𝑖∙∆𝑡)        (8) 

In the expression above 𝐶𝑗 denotes the initial separation of the nearest trajectories. If it is 

taken the logarithm of both sides, the following equation is obtained. 

ln 𝑑𝑗(𝑖) ≈ ln 𝐶𝑗 + 𝜆1(𝑖 ∙ ∆𝑡)       (9) 

The previous expression denotes roughly parallel lines (for 𝑗 = 1,2, … ,𝑀) each having a 
slope approximately proportional to 𝜆1. Then the maximal Lyapunov exponent can be 
calculated by the least-squares method by an average line denoted as below: 

𝑦(𝑖) =
1

∆𝑡
〈ln 𝑑𝑗 (𝑖)〉        (10) 

In the expression above 〈∙〉 indicates the average for all 𝑗.  

3.4. Surrogate Data Testing 

Surrogate Data Testing is a method to determine whether the data is linear or nonlinear 
(Schreiber and Schmitz, 2000). Both deterministic chaotic and linear stochastic data are seemed 
to be irregular but their data generating mechanisms are very different. Surrogate data tests 
involve resampling of original time series by bootstrapping methods. However, during this 
resampling, some parameters are fixed. In surrogate data testing null and alternative 
hypotheses are defined as below: 

𝐻0 (Null hypothesis): Data is generated by a linear process. 

𝐻1 (Alternative hypothesis): Data is generated by a nonlinear process. 

The surrogate data method, which is presented by Theiler et al. (1992), involves the steps 
below:  

1. The null hypothesis 𝐻0 compatible with the generation process of the observed time 
series is determined. 

2. Generate a set of resampled series consistent with 𝐻0. These series are different 
implementations of the hypothetical process and are called surrogate series. 

3. A discriminating statistic is computed and the distribution of this statistic is obtained. 

4. Obtained value of discriminating statistic from original series compared with the 
distribution of discriminating statistic obtained from surrogate series by using a significance 
test. 
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For example, assume that we want to test a time series for nonlinearity. In this case, the 
null hypothesis is formed as “data is generated by a linear process”. According to this null 
hypothesis, several Gaussian linear series is generated. A suitable statistic is estimated from 
the original series and each surrogate and it is investigated whether this observed statistic is 
significantly different from surrogates.  

If there is a significant difference between these statistics, the null hypothesis which 
assumes linearity is rejected and can be concluded that original time series data is not 
generated by a linear process.  

In this surrogate data testing procedure several discriminating statistics such as Lyapunov 
exponent, entropy, and correlation dimension. In this work, we used the time reversibility 
statistic as a discriminating statistic. The time symmetry statistic measures the asymmetry of a 
time series under time reversal by calculating the following expression: 

𝐸[𝑠𝑛 ∙ 𝑠𝑛+1
2 ] − 𝐸[𝑠𝑛

2 ∙ 𝑠𝑛+1]       (11) 

Linear stochastic time series are symmetric beneath time reversal. Therefore, this statistic 
can be utilized to test linearity. 

Surrogate data testing procedure tests whether the series is generated by following the 
ARMA process: 

𝑥𝑡 = ∑ 𝑎𝑖𝑥𝑡−𝑖
𝑀
𝑖=1 + ∑ 𝑏𝑖𝜀𝑡−𝑖

𝑁
𝑖=0        (12) 

The Fourier power spectrum of the surrogate series and original series are the same. This is 
accomplished by performing a Fourier transform on the original time series, randomizing the 
phase, and obtaining surrogates by inverting the transform. (Theiler et al., 1992; Schreiber and 
Schmitz, 2000). 

3.5. Recurrence Plot (RP) and Cross-Recurrence Plot (CRP) 

A recurrence plot is a visual tool that shows recurrences (repetitions) of the time series in 
reconstructed phase space (Eckmann et al., 1987). If the distance between two coordinates in 
different time indices is smaller than a threshold parameter T then we called this a recurrence 
or repetitions. We express these repetitions in a two-dimensional matrix whose rows and 
columns correspond to time indices. Therefore, the RP matrix can be expressed as below: 

𝑅𝑃𝑖𝑗 = Θ(𝑇 − ‖𝑋𝑖 − 𝑋𝑗‖)       (13) 

In the statement above Θ represents the Heaviside function which translates distances 
greater than 𝑇 to 0 and smaller than 𝑇 to 1. 

In RP diagonal and vertical (horizontal) lines have special meanings. In an RP a diagonal line 
observed when 𝑅𝑃𝑖+𝑘,𝑗+𝑘 = 1 for 𝑘 = 1… 𝑙. These diagonal line patterns mean that similar 

states lead to a similar future so it reflects predictability of the dynamics. Also, in an RP a vertical 
(horizontal) line is observed when 𝑅𝑃𝑖,𝑗+𝑘 = 1 (𝑅𝑃𝑖+𝑘,𝑗 = 1) (𝑘 = 1,… , 𝑣). These patterns are 

observed if a state changes very slowly or does not change. In other words, the system is 
trapped in a state for some duration. 

Cross Recurrence Plot (CRP) is similar to recurrence plot but it compares two different time 
series instead of one and reveals recurrences of two-time series (Marwan et al., 2002).  

To plot CRP first two time series with equal length are embedded with the same parameters 
one time series is plotted on the x axis and the other time series is plotted on the y axis. CRP 
can be represented by the following expression: 
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𝐶𝑅𝑃𝑖𝑗 = Θ(𝑇 − ‖𝑋𝑖 − 𝑌𝑗‖)       (14) 

As in RP, we investigate vertical, horizontal, and diagonal line patterns in CRP. Unlike RP, 
CRP is not symmetric around the main diagonal. 

RP and CRP methods can be applied successfully to short and nonstationary data. 

3.6. Recurrence Quantification Analysis (RQA) 

Since RP is a visual analysis tool interpretation of an RP involves the subjectivity of the 
observer. Sometimes it is hard to interpret RP. Two overcome this subjectivity RQA is developed 
(Zbilut and Webber, 1992; Marwan and Kurths, 2002; Zbilut, 2005). In RQA simple pattern 
recognition algorithms are applied to RP and some measures are calculated. Some RQA 
measures are based on diagonal lines and some of them are based on vertical (horizontal) lines. 
Calculations of RQA measures are presented below: 

Determinism (DET) is a measure that takes into account diagonal lines and reflects the 
predictability of the system. Here deterministic means similar present leads to similar future. 
So, the present determines the future. It is known that in RPs short and absent diagonal lines 
reflect stochastic dynamics and long diagonal lines reflect deterministic dynamics. Determinism 
measure is calculated as below: 

𝐃𝐄𝐓 =
∑ 𝑙𝑃(𝑙)𝑁
𝑙=𝑙𝑚𝑖𝑛

∑ 𝑙𝑃(𝑙)𝑁
𝑙=1

        (15) 

In the expression above 𝑃(𝑙) denotes frequency distribution of diagonal lines with length 𝑙. 

The length of the longest diagonal line (Lmax) RQA measure reflects the stability of the 
system. A high longest diagonal line length means a more stable system. The inverse of this 
measure reflects the maximal positive Lyapunov exponent. The length of the longest diagonal 
line is stated as below: 

𝐋𝐦𝐚𝐱 = max({𝑙𝑖; 𝑖 = 1,… ,𝑁𝑙})      (16) 

In the expression above the number of diagonal lines represent with 𝑁𝑙. 

The mean length of the diagonal lines (Lmean) is reflected by the diagonal lines’ average 
length. This measure can be thought of as mean prediction time This measure can be expressed 
as below: 

𝐋𝐦𝐞𝐚𝐧 =
∑ 𝑙𝑃(𝑙)𝑁
𝑙=𝑙𝑚𝑖𝑛

∑ 𝑃(𝑙)𝑁
𝑙=𝑙𝑚𝑖𝑛

        (17) 

Laminarity (LAM) is defined as the percentage of points in RP which constitute vertical lines. 
This pattern indicates that state dynamics change very slowly or do not change et al. Laminarity 
reflects laminar phases (intermittency) in the system and shows chaos-chaos transitions. 
Laminarity can be calculated as below: 

𝐋𝐀𝐌 =
∑ 𝑣𝑃(𝑣)𝑁
𝑣=𝑣𝑚𝑖𝑛

∑ 𝑣𝑃(𝑣)𝑁
𝑣=1

        (18) 

In the statement above frequency distribution of the vertical lines of lengths, 𝑣 is denoted 
with 𝑃(𝑣). 

Trapping time (Vmean) RQA measure indicates the average length of the vertical lines. This 
measure shows the average time that the system is trapped in a state. Trapping time is 
calculated as below: 
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𝐕𝐦𝐞𝐚𝐧 =
∑ 𝑣𝑃(𝑣)𝑁
𝑣=𝑣𝑚𝑖𝑛

∑ 𝑃(𝑣)𝑁
𝑣=𝑣𝑚𝑖𝑛

       (19) 

The recurrence rate (REC) measure reflects the fraction of recurrence points. It shows the 
probability of recurrence in the system. The recurrence rate is calculated as follows: 

𝐑𝐄𝐂 =
1

𝑁2
∑ 𝑅𝑃(𝑖, 𝑗)𝑁
𝑖,𝑗=1        (20) 

Shannon entropy (ENTR) reflects the distribution of diagonal line segments. This measure 
reflects the complexity and diversity of deterministic dynamics in the system. If ENTR value is 
high this means a high complexity and diversity and if ENTR value is low this means a low 
complexity and diversity. The Shannon entropy is calculated as below: 

𝐄𝐍𝐓𝐑 = −∑ 𝑝(𝑙)ln𝑝(𝑙)𝑁
𝑙=𝑙𝑚𝑖𝑛

       (21) 

In the statement above 𝑝(𝑙) denotes the probability that a diagonal line has exactly length 
𝑙. 

3.7. Cross Recurrence Quantification Analysis (CRQA) 

In CRQA measures such as determinism (DET), the average length of diagonal lines (L) and 
recurrence rate (RR) are calculated (Coco and Dale, 2014; Wallot and Leonardi, 2018; Wallot, 
2019). These CRQA measures are calculated similarly to their RQA counterparts. 

In CRQA if the two time series visit the same phase regions then longer diagonals are 
obtained. Otherwise, short diagonals are obtained. Diagonal lines show synchronization 
between two series. Average diagonal line length reflects the duration of synchronization 
between two series. If the two series much more resemble each other diagonal structures are 
increased. 

4. Application 

In this work, we analyzed USD/TRY and EUR/TRY exchange rates with nonlinear time series 
analysis methods. Our data spans 03-01-2005 and 27-11-2020 and consist of daily values. In the 
embedding procedure, we set the embedding dimension to 10 and the time delay to 1. In our 
analysis, we utilized the sliding window method. We set the window size to 400 days and the 
window step to 50. All calculations are performed using R software. Time series graphs of 
USD/TRY and EUR/TRY exchange rates are shown in Figures 1 and 2 respectively. 

By using the method of Grassberger and Procaccia (1983) calculated correlation sum and 
correlation dimension values for different radiuses and embedding dimensions are given in 
Figures 3 and 4 for USD/TRY and EUR/TRY respectively. 

By using the method proposed by Rosenstein et al. (1993) maximal Lyapunov exponents are 
estimated. According to this method estimated maximal Lyapunov exponents are 5.47076 and 
4.099307 for USD/TRY and EUR/TRY respectively. Since maximal Lyapunov exponents are 
positive, the system is sensitive to initial conditions. This finding is a sign of chaos. These 
estimates are obtained from average slopes of lines fitted to divergence graphs shown in 
Figures 5 and 6.  

We also carry out surrogate data testing. As seen in Figures 7 and 8 for both USD/TRY and 
EUR/TRY exchange rates statistics obtained from original data are significantly different from 
surrogate data statistics. Therefore, we reject linearity for both USD/TRY and EUR/TRY 
exchange rates and assume nonlinearity. 
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Change in determinism (DET) for USD/TRY and EUR/TRY exchange rates are shown in 
Figures 9 and 10. After the period between 31-8-2012 and 14-3-2014 determinism tends to fall. 
This means predictability is decreased after this period. For the USD/TRY exchange rate 
minimum determinism value is observed on dates between 4-10-2019 and 23-3-2018. And for 
EUR/TRY exchange rate minimum determinism is observed on dates between10-8-2018 and 
21-2-2020. 

Change in length of the longest diagonal line (Lmax) for USD/TRY and EUR/TRY exchange 
rates are shown in Figures 11 and 12. As we stated above a high longest diagonal line length 
means a more stable system. Figures 11 and 12 reveal that stability is decreased after the 
period 29-3-2013 and 10-10-2014. This inference is compatible with a change in determinism. 

Changes in mean length of the diagonal lines (Lmean) for USD/TRY and EUR/TRY exchange 
rates are shown in Figures 13 and 14. This measure reflects the mean prediction time of the 
system. When we look at these figures there are peaks at the period between 12-3-2005 and 
22-9-2006 in both series. There is another peak in the USD/TRY exchange rate at the period 
between 3-2-2012 and 16-8-3013. EUR/TRY graph shows two additional peaks at the period 
between 5-3-2010 and16-9-2011 and also between 22-6-2012 and 3-1-2014. 

Change in laminarity for USD/TRY and EUR/TRY exchange rates are shown in Figures 15 and 
16. Like determinism, laminarity shows the tendency to fall after the period between 31-8-2012 
and 14-3-2014. This means the irregularity becomes intense after this date. Also, at dates 
between 23-3-2018 and 4-10-2019, there is a sharp decrease in laminarity which reflects the 
highest irregularity of changes in prices. 

Changes in trapping time for USD/TRY and EUR/TRY exchange rates are shown in Figures 17 
and 18. For the USD/TRY exchange rate, trapping time has a maximum value at periods 
between 23-5-2005 and 1-12-2006 and also between 16-8-2013 and 3-2-2012. After the second 
maximum value, trapping time tends to decrease. For EUR/TRY exchange rate, trapping time 
has a maximum value at periods between 14-3-2005 and 22-9-2006. In addition to this 
maximum trapping time value, there are additional two peaks at periods between 29-5-2009 
and 10-12-2010 and between 25-11-2011 and 7-6-2013. After the second peak, trapping time 
tends to decrease. Compatible with determinism and laminarity after the period between 31-
8-2012 and 14-3-2014 trapping times decrease. This reflects that the series become irregular 
after this date. Trapping time figures are similar to the mean length of the diagonal lines’ 
figures. 

Change in Shannon entropy for USD/TRY and EUR/TRY exchange rates are shown in Figures 
19 and 20. As seen in figures Shannon entropy decreased after the period between 31-8-2012 
and 14-3-2014. This means that complexity is reduced after that period. Entropy takes 
minimum values at the period between 23-3-2018 and 4-10-2019. This is also the minimum of 
laminarity. 

In Figure 21 determinism of USD/TRY exchange rate and central bank reserve are compared. 
To make a meaningful comparison we normalize each series with z-scores. As seen from the 
figure there is downward co-movement after the period between 31-8-2012 and 14-3-2014 in 
both series. Also, a lagged relationship is seen between determinism and central bank reserve 
after that period. 

In Figure 22 laminarity of the USD/TRY exchange rate and central bank reserve are 
compared. Again these two series are normalized with z-scores. As in Figure 21, there is a 
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downward co-movement of laminarity and central bank reserve after the period between 31-
8-2012 and 14-3-2014 in Figure 22. 

In this work, we also carry out CRQA. We investigated the changes in CRQA measures such 
as recurrence rate (RR), determinism (DET), and the average length of diagonal lines (L). Change 
in CRQA measure recurrence rate is shown in Figure 23. A high recurrence rate means similar 
dynamics between series. Change in CRQA measure determinism is shown in Figure 24. High 
values of determinism reflect the synchronization of the two time series. Change in CRQA 
measure of the average length of diagonal lines is shown in Figure 25. This CRQA measure 
reflects the duration of the synchronization of the two time series. 

5. Results and Conclusion 

For both USD/TRY and EUR/TRY exchange rates, we obtained positive maximal Lyapunov 
exponent estimates. This finding indicates sensitivity to initial conditions and constitutes 
evidence for chaos. Also, our application of surrogate data tests indicates nonlinearity in both 
exchange rates. This is another evidence of chaos. Since the calculation of a single correlation 
dimension is difficult and involves subjective judgment, we did not calculate single correlation 
dimensions. We only supplied correlation sum and correlation dimension graphs for different 
embedding and radius values in Figure 3 and Figure 4. 

Whether there is chaos in exchange rates has important consequences for theoreticians and 
policymakers. Detecting chaos in the economy adversely effects the validity of the neoclassical 
theory and the results of neoclassical intervention policies. Since in chaotic systems there is 
sensitivity to initial conditions prediction of chaotic systems, in the long run, is impossible. This 
fact is referred to as the butterfly effect. The main result of the chaos in exchange rates is that 
exchange rates can only be affected by intervention policies in the short run. In the long run, it 
is not possible to influence exchange rates with interventions. Chaotic properties of exchange 
rates negatively affect the success of neoclassical intervention policies. The existence of chaos 
in exchange rates necessitates different intervention strategies for policymakers to regulate 
and stabilize the market. Also, the existence of chaos in USD/TRY and EUR/TRY exchange rates 
means that neoclassic economic theory’s reductionist approach is not suitable for the analysis 
of these exchange rates. Therefore, our results are valuable and have implications for 
theoreticians and policymakers. 

Our results indicate that after 2014 both USD/TRY and EUR/TRY exchange rates become 
more unpredictable, more irregular, more unstable, and more random. This finding is 
compatible with the general situation of the Turkish economy. After this date, the general 
situation of the Turkish economy deteriorated. This observation is compatible with the increase 
of Turkey's risk premium after that date. When we look at the change in laminarity for USD/TRY 
and EUR/TRY exchange rates (Figure 15 and 16) in the period between 23-3-2018 and 4-10-
2019 a collapse is observed. This collapse period corresponds to local peaks in USD/TRY and 
EUR/TRY exchange rates (Figure 1 and Figure 2). In line with the literature (Piskun and Piskun, 
2011; Moloney and Raghavendra, 2012; Soloviev et al., 2020), this collapse reflects a critical 
state and indicates a crisis. 

As seen from Figures 21 and 22 reserves of the central bank of Turkey decreased steadily 
after 2014. This decrease can be a result of central bank intervention to stabilize the exchange 
rates. However, after 2014 both regularity (laminarity) and predictability (determinism) 
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declined with central bank reserve. Therefore, it can be said that possible intervention of the 
central bank in the foreign exchange market could not stabilize and regulate the market. 

When CRQA measures are evaluated, there is no clear significant difference between before 
and after 2014 as in RQA. This shows that the interaction between the two exchange rates is 
independent of the Turkish economy. 

For future studies, chaos can be investigated in different exchange rates by using presented 
methods such as correlation dimension, Lyapunov exponent, surrogate data testing. Also, RQA 
and CRQA can be applied to different exchange rates. In this study, we utilized daily data. For 
future studies data with higher time frequencies can be investigated. 

 

Figure 1: USD/TRY exchange rate 

 

 

Figure 2: EUR/TRY exchange rate 
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Figure 3: Correlation sum and correlation dimension for USD/TRY exchange rate 

 

Figure 4: Correlation sum and correlation dimension for EUR/TRY exchange rate 
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Figure 5: Maximal Lyapunov exponent estimation for USD/TRY exchange rate 

 

 

Figure 6: Maximal Lyapunov exponent estimation for EUR/TRY exchange rate 
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Figure 7: Surrogate data testing for USD/TRY exchange rate 

 

 

Figure 8: Surrogate data testing for EUR/TRY exchange rate 
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Figure 9: Change in RQA determinism for USD/TRY exchange rate 

 

 

Figure 10: Change in RQA determinism for EUR/TRY exchange rate 

 

 

Figure 11: Change in RQA longest diagonal line length for USD/TRY exchange rate 
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Figure 12: Change in RQA longest diagonal line length for EUR/TRY exchange rate 

 

 

Figure 13: Change in RQA mean length of the diagonal lines for USD/TRY exchange rate 

 

 

Figure 14: Change in RQA mean length of the diagonal lines for EUR/TRY exchange rate 
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Figure 15: Change in RQA laminarity for USD/TRY exchange rate 

 

 

Figure 16: Change in RQA laminarity for EUR/TRY exchange rate 

 

 

Figure 17: Change in RQA trapping time for USD/TRY exchange rate 
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Figure 18: Change in RQA trapping time for EUR/TRY exchange rate 

 

Figure 19: Change in RQA Shannon entropy for USD/TRY exchange rate 

 

 

Figure 20: Change in RQA Shannon entropy for EUR/TRY exchange rate 
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Figure 21: Change in RQA determinism and central bank reserve. Red line denotes central 
bank reserve and blue line denotes determinism 

 

Figure 22: Change in RQA laminarity and central bank reserve. Red line denotes central bank 
reserve and blue line denotes laminarity 

 

 

Figure 23: Change in CRQA recurrence rate 
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Figure 24: Change in CRQA determinism 

 

Figure 25: Change in CRQA average length of diagonal lines 

 

 

 

 

 

 

 

  



Ağustos 2022, 17 (2) 

431 

References 

Adrangi, B., Allender, M. A., Chatrath, A., & Raffiee, K. (2010), Nonlinear dependencies and chaos in the bilateral 
exchange rate of the dollar. International Business & Economics Research Journal (IBER), Vol. 9, No. 3: 85-96. 

Bajo-Rubio, O., Fernandez-Rodriguez, F., & Sosvilla-Rivero, S. (1992), Chaotic behavior in exchange-rate series: First 
results for the Peseta-US dollar case. Economics Letters, Vol. 39, No. 2: 207-211. 

Bala, V., Majumdar, M., & Mitra, T. (1998), A note on controlling a chaotic tatonnement. Journal of Economic 
Behavior & Organization, Vol. 33, No. 3-4: 411-420. 

Bask, M. (2002), A positive Lyapunov exponent in Swedish exchange rates? Chaos, Solitons & Fractals, Vol. 14, No. 
8: 1295-1304. 

Bastos, J. A., & Caiado, J. (2011), Recurrence quantification analysis of global stock markets. Physica A: Statistical 
Mechanics and its Applications, Vol. 390, No. 7: 1315-1325. 

Belaire-Franch, J., Contreras, D., & Tordera-Lledó, L. (2002), Assessing nonlinear structures in real exchange rates 
using recurrence plot strategies. Physica D: Nonlinear Phenomena, Vol. 171, No. 4: 249-264. 

Benhabib, J., & Day, R. H. (1981), Rational choice and erratic behaviour. The Review of Economic Studies, Vol. 48, 
No. 3: 459-471. 

Boldrin, M., & Montrucchio, L. (1986). On the indeterminacy of capital accumulation paths. Journal of Economic 
Theory, Vol. 40, No. 1: 26-39. 

Brock, W. A. (1986), Distinguishing random and deterministic systems: Abridged version. Journal of Economic 
Theory, Vol. 40, No. 1: 168-195. 

Brock, W. A., Dechert, W. D., Scheinkman, J. A., & LeBaron, B. (1996), A test for independence based on the 
correlation dimension. Econometric reviews, Vol. 15, No. 3: 197-235. 

Chiarella, C. (1988), The cobweb model: Its instability and the onset of chaos. Economic Modelling, Vol. 5, No. 4: 
377-384. 

Coco, M. I., & Dale, R. (2014), Cross-recurrence quantification analysis of categorical and continuous time series: 
an R package. arXiv preprint arXiv:1310.0201. doi:10.3389/fpsyg.2014.00510 

Das, A., & Das, P. (2007), Chaotic analysis of the foreign exchange rates. Applied Mathematics and Computation, 
Vol. 185, No. 1: 388-396. 

Day, R. H. (1982), Irregular growth cycles. The American Economic Review, Vol. 72, No. 3: 406-414. 

Deneckere, R., & Pelikan, S. (1986), Competitive chaos. Journal of Economic Theory, Vol. 40, No. 1: 13-25. 

Eckmann, J. P., Kamphorst, S. O., & Ruelle, D. (1987), Recurrence plots of dynamical systems. Europhysics Letters 
(EPL), Vol. 4, No. 9: 973-977. doi:10.1209/0295-5075/4/9/004 

Faggini, M. (2014), Chaotic time series analysis in economics: balance and perspectives. Chaos: An Interdisciplinary 
Journal of Nonlinear Science, Vol. 24, No. 4: 042101. doi:10.1063/1.4903797 

Faggini, M., Bruno, B., & Parziale, A. (2019), Does chaos matter in financial time series analysis? International 
Journal of Economics and Financial Issues, Vol. 9, No. 4: 18-24. 

Farmer, R. E. (1986), Deficits and cycles. Journal of Economic Theory, Vol. 40, No. 1: 77-88. 

Gilmore, C. G. (2001), An examination of nonlinear dependence in exchange rates, using recent methods from 
chaos theory. Global Finance Journal, Vol. 12, No. 1: 139-151. 

Grandmont, J. M. (1985), On endogenous competitive business cycles. Econometrica: Journal of the Econometric 
Society, Vol. 53, No. 5: 995-1045. 

Grandmont, J. M. (1986), Stabilizing competitive business cycles. Journal of Economic Theory, Vol. 40, No. 1: 57-
76. 

Grandmont, J. M., & Laroque, G. (1986), Stability of cycles and expectations. Journal of Economic Theory, Vol. 40, 
No. 1: 138-151. 

Grassberger, P., & Procaccia, I. (1983), Measuring the strangeness of strange attractors. Physica. D, Vol. 9, No. 1-
2: 189-208. 

Guegan, D. (2009), Chaos in economics and finance. Annual Reviews in Control, Vol. 33, No. 1: 89-93. 

Huffaker, R. G., Huffaker, R., Bittelli, M., & Rosa, R. (2017), Nonlinear time series analysis with R. Oxford: Oxford 
University Press. 

Kugiumtzis, D. (1997), Assessing different norms in nonlinear analysis of noisy time series. Physica D: Nonlinear 
Phenomena, Vol. 105, No. 1-3: 62-78. 

Liu, L. (2009), Testing for nonlinearity and chaoticity in exchange rate time series, SEI online. 

Lorenz, E. N. (1965), A study of the predictability of a 28-variable atmospheric model. Tellus, Vol. 17, No. 3: 321-
333. 



Eskişehir Osmangazi Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi 

432 

Marwan, N., & Kurths, J. (2002), Nonlinear analysis of bivariate data with cross recurrence plots. Physics Letters A, 
Vol. 302, No. 5-6: 299-307. doi:10.1016/s0375-9601(02)01170-2 

Marwan, N., Thiel, M., & Nowaczyk, N. R. (2002), Cross recurrence plot based synchronization of time series. 
Nonlinear Processes in Geophysics, Vol. 9, No. 3/4: 325-331. 

Mitra, T. (2001), A sufficient condition for topological chaos with an application to a model of endogenous growth. 
Journal of Economic Theory, Vol. 96, No. 1-2: 133-152. 

Moloney, K., & Raghavendra, S. (2012), Examining the dynamical transition in the Dow Jones Industrial. Physics 
Letters A, Vol. 223, No. 4: 255-260. 

Piskun, O., & Piskun, S. (2011), Recurrence quantification analysis of financial market crashes and crises. arXiv 
preprint arXiv:1107.5420. http://arxiv.org/abs/1107.5420 

Puu, T. (1991), Chaos in duopoly pricing. Chaos, Solitons & Fractals, Vol. 1, No. 6: 573-581. 

Rosenstein, M. T., Collins, J. J., & De Luca, C. J. (1993), A practical method for calculating largest Lyapunov 
exponents from small data sets. Physica D: Nonlinear Phenomena, Vol. 65, No. 1-2: 117-134. 

Schreiber, T., & Schmitz, A. (2000), Surrogate time series. Physica D: Nonlinear Phenomena, Vol. 142, No. 3-4: 346-
382. 

Schwartz, B., & Yousefi, S. (2003), On complex behavior and exchange rate dynamics. Chaos, Solitons & Fractals, 
Vol. 18, No. 3: 503-523. 

Serletis, A., & Gogas, P. (1997), Chaos in East European black market exchange rates. Research in Economics, Vol. 
51, No. 4: 359-385. 

Sewell, S. P., Stansell, S. R., Lee, I., & Below, S. D. (1996), Using chaos measures to examine international capital 
market integration. Applied Financial Economics, Vol. 6, No. 2: 91-101. 

Soloviev, V., Serdiuk, O., Semerikov, S., & Kiv, A. (2020), Recurrence plot-based analysis of financial-economic 
crashes. CEUR Workshop Proceedings. 

Strozzi, F., Zaldívar, J. M., & Zbilut, J. P. (2007), Recurrence quantification analysis and state space divergence 
reconstruction for financial time series analysis. Physica A: Statistical Mechanics and Its Applications, Vol. 376: 487-
499. 

Strozzi, F., Gutierrez, E., Noè, C., Rossi, T., Serati, M., & Zaldívar, J. M. (2008), Measuring volatility in the nordic spot 
electricity market using recurrence quantification analysis. The European Physical Journal Special Topics, Vol. 164, No. 
1: 105-115. 

Stutzer, M. J. (1980), Chaotic dynamics and bifurcation in a macro model. Journal of Economic Dynamics and 
Control, Vol. 2: 353-376. 

Takens, F. (1981), Detecting strange attractors in turbulence. In R. D. & Y. L.S. (Eds.), Dynamical Systems and 
Turbulence (pp. 366-381). Berlin, Heidelberg: Springer. 

Theiler, J. (1990), Estimating the fractal dimension of chaotic time series. Lincoln Laboratory Journal, Vol. 3: 63-86. 

Theiler, J., Eubank, S., Longtin, A., Galdrikian, B., & Farmer, J. D. (1992), Testing for nonlinearity in time series: the 
method of surrogate data. Physica D: Nonlinear Phenomena, Vol. 58, No. 1-4: 77-94. 

Torkamani, M. A., Mahmoodzadeh, S., Pourroostaei, S., & Lucas, C. (2007), Chaos theory and application in foreign 
exchange rates vs. IRR (Iranian Rial). International Journal of Human and Social Sciences, Vol. 1, No. 3: 130-134. 

Xing, Y., & Wang, J. (2020), Linkages between global crude oil market volatility and financial market by complexity 
synchronization. Empirical Economics, Vol. 59, No. 5: 2405-2421. 

Wallot, S. (2019), Multidimensional Cross-Recurrence Quantification Analysis (MdCRQA)–a method for quantifying 
correlation between multivariate time-series. Multivariate Behavioral Research, Vol. 54, No. 2: 173-191. 

Wallot, S., & Leonardi, G. (2018), Analyzing multivariate dynamics using cross-recurrence quantification analysis 
(crqa), diagonal-cross-recurrence profiles (dcrp), and multidimensional recurrence quantification analysis (mdrqa)–a 
tutorial in r. Frontiers in Psychology, Vol. 9: 2232. doi: 10.3389/fpsyg.2018.02232 

Wolf, A., Swift, J. B., Swinney, H. L., & Vastano, J. A. (1985), Determining Lyapunov exponents from a time series. 
Physica D: Nonlinear Phenomena, Vol. 16, No. 3: 285-317. 

Zbilut, J. P. (2005), Use of recurrence quantification analysis in economic time series. In M. Salzano & A. Kirman 
(Eds.), Economics: Complex Windows (pp. 91-104). Milano: Springer. 

Zbilut, J. P., & Webber, C. L. (1992). Embeddings and delays as derived from quantification of recurrence plots. 
Physics Letters A, Vol. 171, No. 3-4: 199-203. doi:10.1016/0375-9601(92)90426-m 


