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Abstract: Utilizing (p, q)-numbers and (p, q)-concepts, in 2016, Duran et al. considered (p, q)-
Genocchi numbers and polynomials, (p, q)-Bernoulli numbers and polynomials and (p, q)-Euler
polynomials and numbers and provided multifarious formulas and properties for these polynomials.
Inspired and motivated by this consideration, many authors have introduced (p, q)-special poly-
nomials and numbers and have described some of their properties and applications. In this paper,
using the (p, q)-cosine polynomials and (p, q)-sine polynomials, we consider a novel kinds of (p, q)-
extensions of geometric polynomials and acquire several properties and identities by making use of
some series manipulation methods. Furthermore, we compute the (p, q)-integral representations and
(p, q)-derivative operator rules for the new polynomials. Additionally, we determine the movements
of the approximate zerosof the two mentioned polynomials in a complex plane, utilizing the Newton
method, and we illustrate them using figures.

Keywords: (p, q)-trigonometric functions; (p, q)-calculus, cosine polynomials; sine polynomials;
geometric polynomials; (p, q)-geometric polynomials

MSC: 05A30; 11B73; 11B83

1. Introduction

In 2016, Duran et al. [1] considered and defined (p, q)-Genocchi numbers and poly-
nomials, (p, q)-Bernoulli polynomials and numbers and (p, q)-Euler numbers and polyno-
mials. In addition, they provided many properties and formulas for these polynomials.
After this study presented new extensions of some special polynomials and numbers by the
(p, q)-numbers and (p, q)-concepts, many authors introduced and investigated many other
(p, q)generalizations of the special polynomials and numbers, such as (p, q)-geometric-type
polynomials by Khan et al. [2], (p, q)-Appell type polynomials by Sadjang [3], two bivariate
kinds of (p, q)-Bernoulli numbers and polynomials by Sadjang et al. [4], Apostol type
(p, q)-Frobenius Eulerian polynomials by Khan et al. [5], (p, q)-Frobenius–Euler numbers
and polynomials by Duran et al. [6] and (p, q)-cosine and (p, q)-sine geometric polynomials
by Khan et al. [7]. Recently, Ryoo et al. [8] defined and introduced q-cosine and q-sine Euler
polynomials and also provided some figures including the approximate roots’ movements
of these polynomials. Inspired and motivated by the above studies, in this paper, utilizing
the (p, q)-sine polynomials and (p, q)-cosine polynomials, we introduce new kinds of (p, q)-
generalizations of geometric polynomials and attain diverse properties and formulas by
making use of some series manipulation methods. Moreover, we develop the (p, q)-integral
representations and (p, q)-derivative operator rules for these polynomials. Furthermore,
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we determine the movements of the approximate zerosof the mentioned novel polynomials
in a complex plane using the Newton method and we indicate them in figures.

The twin-basic numbers, also termed (p, q)-numbers, are provided by

[m]p,q =
pm − qm

p− q
,

for 1 ≥ |p| > |q| > 0 (cf. [9–11]).
The (p, q)-derivative operator of a function g with respect to v is given as follows

Dp,q;vg(v) =
g(pv)− g(qv)

(p− q)v
(v 6= 0), (1)

with (Dp,qg(0)) = g′(0), providing that g is differentiable at 0.
The (p, q)-extension of the binomial coefficients is introduced as follows(

m
ν

)
p,q

=
[m]p,q!

[ν]p,q![m− ν]p,q!
(m ≥ ν),

where the (p, q)-analogs of the factorial numbers [m]p,q! are given by

[m]p,q! = [m]p,q · · · [2]p,q[1]p,q for m ∈ N with [0]p,q: = 1.

The (p, q)-extension of addition (v + a)m is given as follows(
v⊕p,q a

)m := (v + a)(pv + aq) · · · (pm−1v + aqm−1) for m ≥ 1

with
(
v⊕p,q a

)0 := 1 and this also has the following expansion

(
v⊕p,q a

)m
=

m

∑
ν=0

p(
m
2 )q(

m−ν
2 )am−νvν

(
m
ν

)
p,q

. (2)

The (p, q)-extension of subtraction (v− a)m is provided as follows(
v	p,q a

)m: = (v− a)(pv− aq) · · · (pm−1v− aqm−1) for m ≥ 1

with
(
v	p,q a

)0: = 1 and this also has the following expansion

(
v	p,q a

)m
=

m

∑
ν=0

p(
m
2 )q(

m−ν
2 )(−a)m−νvν

(
m
ν

)
p,q

. (3)

The (p, q)-analogs of the exponential functions, ep,q(v) and Ep,q(v), are provided as
follows:

ep,q(v) =
∞

∑
m=0

p(
m
2 )vm

[m]p,q!
and Ep,q(v) =

∞

∑
m=0

q(
m
2 )vm

[m]p,q!
, (4)

which have the following relationships

ep,q(v)Ep,q(−v) = 1 and ep−1q−1(v) = Ep,q(v), (5)

and the following rules

Dp,qep,q(v) = ep,q(pv) and Dp,qEp,q(v) = Ep,q(qv). (6)

We observe that
ep,q
(
v⊕p,q ϑ

)
= Ep,q(ϑ)ep,q(v). (7)
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The (p, q)-definite integral is provided (cf. [11]) as follows:

∫ j

0
g(v)dp,qv = j(p− q)

∞

∑
ν=0

pν

qν+1 g
(

j
pν

qν+1

)
in conjunction with

∫ j

h
g(v)dp,qv =

∫ j

0
g(v)dp,qv−

∫ h

0
g(v)dp,qv. (8)

The (p, q)-generalizations of the sine functions and the cosine functions are provided
(cf. [4]) as follows:

∞
∑

m=0

(−1)m p(
2m+1

2 )v2m+1

[2m+1]p,q ! = sinp,q(v),
∞
∑

m=0

(−1)m p(
m
2 )v2m

[2m]p,q ! = cosp,q(v),

∞
∑

m=0

(−1)mq(
2m+1

2 )v2m+1

[2m+1]p,q ! = SINp,q(v),
∞
∑

m=0

(−1)mq(
m
2 )v2m

[2m]p,q ! = COSp,q(v).
(9)

From (4) and (9), we can easily observe that

ep,q(iv) = cosp,q(v) + i sinp,q(v) and Ep,q(iv) = COSp,q(v) + iSINp,q(v), (10)

which are the (p, q)-extensions of the classical Euler formula eiv = cos v + i sin v, where
i2 = −1 and v ∈ R.

2. On (p, q)-Extensions of Geometric Polynomials

The geometric polynomials, also termed Fubini polynomials, are provided by (cf. [12,13]):

1
1−v(et − 1)

=
∞

∑
m=0

Fm(v)
tm

m!
, (11)

which gives

Fm(v) =
m

∑
ν=0

S2(m, ν)ν!vν, (12)

where the notation S2(m, ν), known as the Stirling numbers of the second kind, are defined
as follows (cf. [14,15]):

(et − 1)ν

ν!
=

∞

∑
m=0

S2(m, ν)
tm

m!
.

Letting v = 1, we acquire Fm(1) := Fm , which shows the corresponding geomet-
ric numbers.

Khan et al. [2] considered the three variable (p, q)-geometric polynomials as follows:

ep,q(vt)Ep,q(ϑt)
1− κ(ep,q(t)− 1)

=
∞

∑
m=0

Fm(v, ϑ; κ : p, q)
tm

[m]p,q!
. (13)

Taking ϑ = 0 in (13), we attain the two variable (p, q)-geometric polynomials provided by

ep,q(vt)
1− κ(ep,q(t)− 1)

=
∞

∑
m=0

Fm(v; κ : p, q)
tm

[m]p,q!
. (14)

The Maclaurin series expansions of evt sin(ϑt) and evt cos(ϑt), are developed as fol-
lows (cf. [16]):

evt sin ϑt =
∞

∑
m=0

Sm(v, ϑ)
tm

m!
and evt cos ϑt =

∞

∑
m=0

Cm(v, ϑ)
tm

m!
, (15)
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where

Sm(v, ϑ) =
b m−1

2 c
∑
ν=0

(
m

2ν + 1

)
vm−2ν−1(−1)νϑ2ν+1 and Cm(v, ϑ) =

b m
2 c

∑
ν=0

(−1)ν

(
m
2ν

)
vm−2νϑ2ν. (16)

Recently, Sadjang et al. [4] introduced and investigated (p, q)-extensions of Sm(v, ϑ)
and Cm(v, ϑ):

sinp,q(ϑt)ep,q(vt) =
∞

∑
m=0

Sm,p,q(v, ϑ)
tm

[m]p,q!
(17)

and

cosp,q(ϑt)ep,q(vt) =
∞

∑
m=0

Cm,p,q(v, ϑ)
tm

[m]p,q!
, (18)

where

Sm,p,q(v, ϑ) =
bm−1

2 c
∑
ν=0

(−1)ν

(
m

2ν + 1

)
p,q

p(4ν2−2)+(m−1
2 )vm−2ν−1ϑ2ν+1 (19)

and

Cm,p,q(v, ϑ) =
bm

2 c
∑
ν=0

(−1)ν

(
m
2ν

)
p,q

p(
m
2 )+2ν(ν−m)vm−2νϑ2ν. (20)

Motivated by the above, we now define new kinds of the (p, q)-extensions of Sm(v, ϑ)
and Cm(v, ϑ) as follows

∞

∑
m=0
Sm,p,q(v, ϑ)

tm

[m]p,q!
= SINp,q(ϑt)ep,q(vt) (21)

and
∞

∑
m=0
Cm,p,q(v, ϑ)

tm

[m]p,q!
= COSp,q(ϑt)ep,q(vt), (22)

which readily yields the following explicit formulas:

Sm,p,q(v, ϑ) =
bm−1

2 c
∑
ν=0

(−1)ν p(
m−2ν−1

2 )

(
m

2ν + 1

)
p,q

q(
2ν+1

2 )vm−2ν−1ϑ2ν+1

and

Cm,p,q(v, ϑ) =
bm

2 c
∑
ν=0

(−1)ν

(
m
2ν

)
p,q

p(
m−2ν

2 )q(
2ν
2 )vm−2νϑ2ν.

Recently, the (p, q)-extensions of the sine-geometric polynomials and cosine-geometric
polynomials F(s)

m (v, ϑ; κ : p, q) and F(c)
m (v, ϑ; κ : p, q) are considered (cf. [7]) as follows:

sinp,q(ϑt)ep,q(vt)
1− κ(ep,q(t)− 1)

=
∞

∑
m=0
F (s)

m (v, ϑ; κ : p, q)
tm

[m]p,q!
(23)

and
cosp,q(ϑt)ep,q(vt)
1− κ(ep,q(t)− 1)

=
∞

∑
m=0
F (c)

m (v, ϑ; κ : p, q)
tm

[m]p,q!
(24)

for q, p ∈ C, providing that 1 ≥ |p| > |q| > 0. Then, several properties were derived in [7].

3. New Kinds of (p, q)-Cosine and (p, q)-Sine Geometric Polynomials

Motivated and inspired by definitions (23) and (24), we consider the following definition.
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Definition 1. We introduce novel kinds of (p, q)-sine and (p, q)-cosine geometric polynomials,
for q, p ∈ C, providing that 1 ≥ |p| > |q| > 0, as follows:

∞

∑
m=0

F
(S)
m (v, ϑ; κ : p, q)

tm

[m]p,q!
=

ep,q(vt)SINp,q(ϑt)
1− κ(ep,q(t)− 1)

(25)

and
∞

∑
m=0

F
(C)
m (v, ϑ; κ : p, q)

tm

[m]p,q!
=

ep,q(vt)COSp,q(ϑt)
1− κ(ep,q(t)− 1)

. (26)

Letting ϑ = 0 in (23) and (24), we attain two variables, the (p, q)-geometric polynomials
Fm(v; κ : p, q) provided as follows (cf. [2]) that

ep,q(vt)
1− κ(ep,q(t)− 1)

=
∞

∑
m=0

Fm(v; κ : p, q)
tm

[m]p,q!
. (27)

When v = ϑ = 0 in (23) and (24), we acquire the familiar (p, q)-geometric polynomials
Fm(κ : p, q) provided as follows that

1
1− κ(ep,q(t)− 1)

=
∞

∑
m=0

Fm(κ : p, q)
tm

[m]p,q!

and setting v = ϑ = 0 and κ = 1 in (23) and (24), we acquire the usual (p, q)-geometric
numbers Fm(p, q) provided as follows (cf. [2]) that

1
2− ep,q(t)

=
∞

∑
m=0

Fm(p, q)
tm

[m]p,q!
.

Here we can provide the consideration of Definition 1 arising from the two variables,
the (p, q)-geometric polynomials Fm(v; κ : p, q), as follows.

Theorem 1. The following identities hold:

ep,q(vt)SINp,q(ϑt)
1− κ(ep,q(t)− 1)

=
∞

∑
m=0

(
Fm(

(
v⊕p,q iϑ

)
; κ : p, q)− Fm(

(
v	p,q iϑ

)
; κ : p, q)

2i

)
tm

[m]p,q!
(28)

and

ep,q(vt)COSp,q(ϑt)
1− κ(ep,q(t)− 1)

=
∞

∑
m=0

(
Fm(

(
v⊕p,q iϑ

)
; κ : p, q) + Fm(

(
v	p,q iϑ

)
; κ : p, q)

2

)
tm

[m]p,q!
, (29)

for i2 = −1 and v ∈ R.

Proof. From (14), (7) and Definition 1, we can observe that

∞

∑
m=0

Fm(
(
v⊕p,q iϑ

)
; κ : p, q)

tm

[m]p,q!
=

ep,q(
(
v⊕p,q iϑ

)
t)

1− κ(ep,q(t)− 1)

=
ep,q(vt)Ep,q(iϑt)
1− κ(ep,q(t)− 1)

=

(
COSp,q(ϑt) + iSINp,q(ϑt)

)
ep,q(vt)

1− κ(ep,q(t)− 1)
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and similarly

∞

∑
m=0

Fm(
(
v	p,q iϑ

)
; κ : p, q)

tm

[m]p,q!
=

ep,q(
(
v	p,q iϑ

)
t)

1− κ(ep,q(t)− 1)

=
Ep,q(−iϑt)ep,q(vt)
1− κ(ep,q(t)− 1)

=

(
COSp,q(ϑt)− iSINp,q(ϑt)

)
ep,q(vt)

1− κ(ep,q(t)− 1)
,

which complete the proofs of (28) and (29).

Remark 1. According to Theorem 1 and Definition 1, we can observe that

Fm(
(
v⊕p,q iϑ

)
; κ : p, q)− Fm(

(
v	p,q iϑ

)
; κ : p, q)

2i
= F

(S)
m (v, ϑ; κ : p, q)

and
Fm(
(
v⊕p,q iϑ

)
; κ : p, q) + Fm(

(
v	p,q iϑ

)
; κ : p, q)

2
= F

(C)
m (v, ϑ; κ : p, q).

Theorem 2. We have

m

∑
ν=0

(
m
ν

)
p,q
Sm−ν,p,q(v, ϑ)Fν,p,q(κ) = F

(S)
m (v, ϑ; κ : p, q) (30)

and
m

∑
ν=0

(
m
ν

)
p,q
Cm−ν,p,q(v, ϑ)Fν,p,q(κ) = F

(C)
m (v, ϑ; κ : p, q) (31)

which hold for v, ϑ ∈ R and q, p ∈ C provided that 1 ≥ |p| > |q| > 0.

Proof. In view of (25) and (26), making use of (21) and (22), we can obviously observe that

∞

∑
m=0

F
(S)
m (v, ϑ; κ : p, q)

tm

[m]p,q!
=

ep,q(vt)SINp,q(ϑt)
1− κ(ep,q(t)− 1)

=

(
∞

∑
m=0
Sm,p,q(v, ϑ)

tm

[m]p,q!

)(
∞

∑
m=0

Fm(p, q)
tm

[m]p,q!

)

=
∞

∑
m=0

(
m

∑
ν=0

(
m
ν

)
p,q

Fν,p,q(κ)Sm−ν,p,q(v, ϑ)

)
tm

[m]p,q!

and

∞

∑
m=0

F
(C)
m (v, ϑ; κ : p, q)

tm

[m]p,q!
=

ep,q(vt)COSp,q(ϑt)
1− κ(ep,q(t)− 1)

=

(
∞

∑
m=0
Cm,p,q(v, ϑ)

tm

[m]p,q!

)(
∞

∑
m=0

Fm(p, q)
tm

[m]p,q!

)

=
∞

∑
m=0

(
m

∑
ν=0

(
m
ν

)
p,q

Fν,p,q(κ)Cm−ν,p,q(v, ϑ)

)
tm

[m]p,q!
,

which gives the claimed Formulas (30) and (31).
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Theorem 3. Let q, p ∈ C provide 1 ≥ |p| > |q| > 0 and 0 ≤ m. The following relations are valid:

F
(S)
m (v, ϑ; κ : p, q) =

bm−1
2 c

∑
k=0

(
m

2k + 1

)
p,q

Fm−1−2k(v; κ : p, q)q(
2k+1

2 )ϑ2k+1(−1)k (32)

and

F
(C)
m (v, ϑ; κ : p, q) =

bm
2 c

∑
k=0

(
m
2k

)
p,q

Fm−2k(v; κ : p, q)q(
2k
2 )ϑ2k(−1)k. (33)

Proof. In terms of (23) and (24), making use of (9), it can be obviously seen that

∞

∑
m=0

F
(S)
m (v, ϑ; κ : p, q)

tm

[m]p,q!
=

SINp,q(ϑt)ep,q(vt)
1− κ(ep,q(t)− 1)

=

(
∞

∑
m=0

(−1)mq(
2m+1

2 )(ϑt)2m+1

[2m + 1]p,q!

)(
∞

∑
m=0

F(s)
m (v; κ : p, q)

tm

[m]p,q!

)

=
∞

∑
m=0

bm
2 c

∑
ν=0

(−1)ν

(
m

2ν + 1

)
p,q

q(
2ν+1

2 )Fm−1−2ν(v; κ : p, q)ϑ2ν+1

 tm

[m]p,q!

and

∞

∑
m=0

F
(C)
m (v, ϑ; κ : p, q)

tm

[m]p,q!
=

COSp,q(ϑt)ep,q(vt)
1− κ(ep,q(t)− 1)

=

(
∞

∑
m=0

(−1)mq(
m
2 )v2m

[2m]p,q!

)(
∞

∑
m=0

F(s)
m (v; κ : p, q)

tm

[m]p,q!

)

=
∞

∑
m=0

bm
2 c

∑
ν=0

Fm−2ν(v; κ : p, q)(−1)ν

(
m
2ν

)
p,q

q(
2ν
2 )ϑ2ν

 tm

[m]p,q!
,

which conclude the proofs of the claimed relations (32) and (33).

Theorem 4. Let q, p ∈ C provided that 1 ≥ |p| > |q| > 0 and 0 ≤ m. The following correlations
are valid:

Sm,p,q(v, ϑ) = κ
m

∑
ν=0

p(
m−ν

2 )

(
m
ν

)
p,q

F
(S)
ν (v, ϑ; κ : p, q)− (κ + 1)F(S)

m (v, ϑ; κ : p, q) (34)

and

Cm,p,q(v, ϑ) = κ
m

∑
ν=0

p(
m−ν

2 )

(
m
ν

)
p,q

F
(C)
ν (v, ϑ; κ : p, q)− (κ + 1)F(C)

m (v, ϑ; κ : p, q). (35)

Proof. Making use of (17), (18), (23) and (24), the proofs of (34) and (35) are based upon the
equalities provided below:

κ + 1−p,q (t)
1− κ(ep,q(t)− 1)

SINp,q(ϑt)ep,q(vt) = SINp,q(ϑt)ep,q(vt)

and
κ + 1−p,q (t)

1− κ(ep,q(t)− 1)
COSp,q(ϑt)ep,q(vt) = COSp,q(ϑt)ep,q(vt).

So, we can skip the elaborations.
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Theorem 5. Let q, p ∈ C provided that 1 ≥ |p| > |q| > 0 and 0 ≤ m. The following identities
are valid:

κF
(S)
m (
(
v⊕p,q 1

)
, ϑ; κ : p, q) + Sm,p,q(v, ϑ) = (κ + 1)F(S)

m (v, ϑ; κ : p, q) (36)

and
κF

(C)
m (

(
v⊕p,q 1

)
, ϑ; κ : p, q) + Cm,p,q(v, ϑ) = (κ + 1)F(C)

m (v, ϑ; κ : p, q). (37)

Proof. Making use of (17), (18), (23) and (24), we can observe that

∞

∑
m=0

[
F
(S)
m (
(
v⊕p,q 1

)
, ϑ; κ : p, q)− F

(S)
m (v, ϑ; κ : p, q)

] tm

[m]p,q!

=
SINp,q(ϑt)ep,q(vt)
1− κ(ep,q(t)− 1)

(
ep,q(t)− 1

)
=

1
κ

(
ep,q(vt)SINp,q(ϑt)
1− κ(ep,q(t)− 1)

− ep,q(vt)SINp,q(ϑt)
)

=
1
κ

(
∞

∑
m=0

F
(S)
m (v, ϑ; κ : p, q)

tm

[m]p,q!
−

∞

∑
m=0
Sm,p,q(v, ϑ)

tm

[m]p,q!

)

and

∞

∑
m=0

[
F
(C)
m (

(
v⊕p,q 1

)
, ϑ; κ : p, q)− F

(C)
m (v, ϑ; κ : p, q)

] tm

[m]p,q!

=
COSp,q(ϑt)ep,q(vt)
1− κ(ep,q(t)− 1)

(
ep,q(t)− 1

)
=

1
κ

(
ep,q(vt)COSp,q(ϑt)
1− κ(ep,q(t)− 1)

− ep,q(vt)COSp,q(ϑt)
)

=
1
κ

(
∞

∑
m=0

F
(C)
m (v, ϑ; κ : p, q)

tm

[m]p,q!
−

∞

∑
m=0
Cm,p,q(v, ϑ)

tm

[m]p,q!

)
,

which complete the proofs.

Some derivative and integral properties are presented as follows.

Theorem 6. Let q, p ∈ C provided that 1 ≥ |p| > |q| > 0 and 0 < m. The following rules
are valid:

F
(S)
m−1(pv, ϑ; κ : p, q)[m]p,q =

∂

∂p,qv
F
(S)
m (v, ϑ; κ : p, q) (38)

F
(S)
m−1(v, qϑ; κ : p, q)[m]p,q =

∂

∂p,qϑ
F
(S)
m (v, ϑ; κ : p, q)

F
(C)
m−1(pv, ϑ; κ : p, q)[m]p,q =

∂

∂p,qv
F
(C)
m (v, ϑ; κ : p, q)

F
(C)
m−1(v, qϑ; κ : p, q)[m]p,q =

∂

∂p,qϑ
F
(C)
m (v, ϑ; κ : p, q).
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Proof. Applying the (p, q)-derivative operator to (23) with respect to v, and also making
use of (6), it can be obviously seen that

∞

∑
m=0

∂

∂p,qv
F
(S)
m (v, ϑ; κ : p, q)

tm

[m]p,q!
=

SINp,q(ϑt) ∂
∂p,qv ep,q(vt)

1− κ(ep,q(t)− 1)

= t
SINp,q(ϑt)ep,q(pvt)

1− κ(ep,q(t)− 1)

=
∞

∑
m=0

F
(S)
m (pv, ϑ; κ : p, q)

tm+1

[m]p,q!
,

which gives the first rule. The other rules can easily be derived in the same way.

Theorem 7. Let q, p ∈ C provided that 1 ≥ |p| > |q| > 0 and 0 ≤ m. The following rules
are valid

F
(S)
m+1(

δ
p , ϑ; κ : p, q)− F

(S)
m+1(

$
p , ϑ; κ : p, q)

[m + 1]p,q
=
∫ δ

$
F
(S)
m (v, ϑ; κ : p, q)dp,qv

and
F
(C)
m+1(

δ
p , ϑ; κ : p, q)− F

(C)
m+1(

$
p , ϑ; κ : p, q)

[m + 1]p,q
=
∫ δ

$
F
(C)
m (v, ϑ; κ : p, q)dp,qv.

Proof. Since ∫ δ

$

∂g(v)

∂p,qv
dp,qv = g(δ)− g($),

cf. [11], making use of Theorem 6, (23) and (24), it is observed that

∫ δ

$

∂

∂p,qv
F
(S)
m (v, ϑ; κ : p, q)dp,qv =

∫ δ
$ F

(S)
m+1(

v
p , ϑ; κ : p, q)dp,qv

[m + 1]p,q

=
1

[m + 1]p,q

(
F
(S)
m+1(

δ

p
, ϑ; κ : p, q)− F

(S)
m+1(

$

p
, ϑ; κ : p, q)

)
and

∫ δ

$

∂

∂p,qv
F
(C)
m (v, ϑ; κ : p, q)dp,qv =

∫ δ
$ F

(C)
m+1(

v
p , ϑ; κ : p, q)dp,qv

[m + 1]p,q

=
1

[m + 1]p,q

(
F
(C)
m+1(

δ

p
, ϑ; κ : p, q)− F

(C)
m+1(

$

p
, ϑ; κ : p, q)

)
,

which completes the proof of the Theorem.

Here are some summation formulas.

Theorem 8. Let q, p ∈ C, provided that 1 ≥ |p| > |q| > 0 and 0 ≤ m. The following equalities
are valid

κ2F
(S)
m (v, ϑ; κ1 : p, q)− κ1F

(S)
m (v, ϑ; κ2 : p, q)

κ2 − κ1
=

m

∑
ν=0

(
m
ν

)
p,q

F
(S)
m−ν(v, ϑ; κ1 : p, q)F(S)ν (κ2 : p, q) (39)

and

κ2F
(C)
m (v, ϑ; κ1 : p, q)− κ1F

(C)
m (v, ϑ; κ2 : p, q)

κ2 − κ1
=

m

∑
ν=0

(
m
ν

)
p,q

F
(C)
m−ν(v, ϑ; κ1 : p, q)F(C)

ν (κ2 : p, q). (40)



Mathematics 2022, 10, 2709 10 of 18

Proof. Making use of (23) and (24), it can be obviously observed that

SINp,q(ϑt)ep,q(vt)(
1− κ2(ep,q(t)− 1)

)(
1− κ1(ep,q(t)− 1

)
)

=
κ2

κ2 − κ1

SINp,q(ϑt)ep,q(vt)
1− κ1(ep,q(t)− 1)

− κ1

κ2 − κ1

SINp,q(ϑt)ep,q(vt)
1− κ2(ep,q(t)− 1)

=
∞

∑
m=0

(
κ2F

(s)
m (v, ϑ; κ1 : p, q)− κ1F

(s)
m (v, ϑ; κ2 : p, q)

κ2 − κ1

)
tm

[m]p,q!

and

COSp,q(ϑt)ep,q(vt)(
1− κ1(ep,q(t)− 1

)
)
(
1− κ2(ep,q(t)− 1)

)
=

κ2

κ2 − κ1

COSp,q(ϑt)ep,q(vt)
1− κ1(ep,q(t)− 1)

− κ1

κ2 − κ1

COSp,q(ϑt)ep,q(vt)
1− κ2(ep,q(t)− 1)

=
∞

∑
m=0

(
κ2F

(C)
m (v, ϑ; κ1 : p, q)− κ1F

(C)
m (v, ϑ; κ2 : p, q)

κ2 − κ1

)
tm

[m]p,q!
,

which conclude the proofs of (39) and (40).

Now, we develop some identities for F
(S)
m (v, ϑ; κ : p, q) and F

(C)
m (v, ϑ; κ : p, q).

Theorem 9. Let q, p ∈ C, provided that 1 ≥ |p| > |q| > 0 and 0 ≤ m. The following summation
identities are valid

κ
m

∑
ν=0

p(
m−ν

2 )

(
m
ν

)
p,q

F
(S)
ν (v, ϑ; κ : p, q) + Sm,p,q(v, ϑ) = (1 + κ)F

(S)
m (v, ϑ; κ : p, q) (41)

and

κ
m

∑
ν=0

p(
m−ν

2 )

(
m
ν

)
p,q

F
(C)
ν (v, ϑ; κ : p, q) + Cm,p,q(v, ϑ) = (1 + κ)F

(C)
m (v, ϑ; κ : p, q). (42)

Proof. Making use of the following identity

1 + κ

(1− κ(ep,q(t)− 1))p,q(t)
=

1
1− κ(ep,q(t)− 1)

+
1

p,q(t)

and from (23) and (24), we obtain

(1 + κ)ep,q(vt)SINp,q(ϑt)
(1− κ(ep,q(t)− 1))p,q(t)

=
ep,q(vt)SINp,q(ϑt)
1− κ(ep,q(t)− 1)

+
ep,q(vt)SINp,q(ϑt)

p,q(t)

and
(1 + κ)ep,q(vt)COSp,q(ϑt)
(1− κ(ep,q(t)− 1))p,q(t)

=
ep,q(vt)COSp,q(ϑt)
1− κ(ep,q(t)− 1)

+
ep,q(vt)COSp,q(ϑt)

p,q(t)
,

which give the claimed results (41) and (42).

The (p, q)-analog of the Stirling numbers of the second kind S2(m, ν : p, q) are provided
as follows (cf. [6]):

(ep,q(t)− 1)ν

[ν]p,q!
=

∞

∑
m=ν

S2(m, ν : p, q)
tm

[m]p,q!
.
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Theorem 10. Let q, p ∈ C, provided that 1 ≥ |p| > |q| > 0 and 0 ≤ m. The following
correlations are valid

m

∑
d=0

d

∑
ν=0

κν[ν]p,q!Sm−d,p,q(v, ϑ)

(
m
d

)
p,q

S2(d, ν : p, q) = F
(S)
m (v, ϑ; κ : p, q) (43)

and
m

∑
d=0

d

∑
ν=0

κν[ν]p,q!Cm−d,p,q(v, ϑ)

(
m
d

)
p,q

S2(d, ν : p, q) = F
(C)
m (v, ϑ; κ : p, q). (44)

Proof. Making use of (23), it can be obviously observed that

∞

∑
m=0

F
(S)
m (v, ϑ; κ : p, q)

tm

[m]p,q!
=

SINp,q(ϑt)ep,q(vt)
1− κ(ep,q(t)− 1)

= SINp,q(ϑt)ep,q(vt)
∞

∑
ν=0

κν(ep,q(t)− 1)ν

=

(
∞

∑
m=0
Sm,p,q(v, ϑ)

tm

[m]p,q!

)(
∞

∑
ν=0

κν
∞

∑
m=ν

[ν]p,q!S2(m, ν : p, q)
tm

[m]p,q!

)

=
∞

∑
m=0

(
m

∑
d=0

d

∑
ν=0

κν[ν]p,q!Sm−d,p,q(v, ϑ)

(
m
d

)
p,q

S2(d, ν : p, q)

)
tm

[m]p,q!
,

which completes the proof of (43). The other correlation (44) can be calculated in the
same way.

4. Further Remarks

In this section, certain zeros of F(S)
n (x, y; z : p, q) and F

(C)
n (x, y; z : p, q),

and their graphical representations are shown.
Remember from (25) and (26) that

∞

∑
n=0

F
(S)
n (x, y; z : p, q)

tn

[n]p,q!
=

ep,q(xt)SINp,q(yt)
1− z(ep,q(t)− 1)

(45)

and
∞

∑
n=0

F
(C)
n (x, y; z : p, q)

tn

[n]p,q!
=

ep,q(xt)COSp,q(yt)
1− z(ep,q(t)− 1)

. (46)

A few of the (p, q)-cosine geometric polynomials are

F
(C)
0 (x, y; z : p, q) = 1,

F
(C)
1 (x, y; z : p, q) = x + z,

F
(C)
2 (x, y; z : p, q) = 2

(
px2

q + p
− y2

q + p
+

pz
q + p

+ xz + z2
)

F
(C)
3 (x, y; z : p, q) = 6

(
p3x3

(q + p)(q2 + qp + p2)
− xy2

q + p
+

p3z
(q + p)(q2 + qp + p2)

)
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+ 6
((

px2

q + p
− y2

q + p

)
z +

2pz2

q + p
+ z3 + x

(
pz

q + p
+ z2

))
F
(C)
4 (x, y; z : p, q) =

24p6x4

(q + p)2(q2 + p2)(q2 + qp + p2)
− 24px2y2

(q + p)2

+
24qy4

(q + p)2(q2 + p2)(q2 + qp + p2)

+
24p6z

(q + p)2(q2 + p2)(q2 + qp + p2)
+ 24z

(
p3x3

(q + p)(q2 + qp + p2)
− xy2

q + p

)
+

24p2z2

(q + p)2 +
48p3z2

(q + p)(q2 + qp + p2)

+ 24
(

3pz3

q + p
+ z4 +

(
px2

q + p
− y2

q + p

)(
pz

q + p
+ z2

))
+ 24x

(
p3z

(q + p)(q2 + qp + p2)
+

2pz2

q + p
+ z3

)
.

We can develop the beautiful roots of the polynomials F(C)
n (x, y; z : p, q) by making use

of a math program on a computer. We plot the roots of the polynomials F(C)
n (x, y; z : p, q)

as follows (Figure 1).

-30 -20 -10 0 10 20 30
-30

-20

-10

0

10

20

30

Re(x)

Im(x)

-30 -20 -10 0 10 20 30
-30

-20

-10

0

10

20

30

Re(x)

Im(x)

-30 -20 -10 0 10 20 30
-30

-20

-10

0

10

20

30

Re(x)

Im(x)

-30 -20 -10 0 10 20 30
-30

-20

-10

0

10

20

30

Re(x)

Im(x)

Figure 1. Stacking structure of approximation roots in (p, q)-cosine geometric polynomials when
n = 15, 20, 25, 30, p = 1

2 , q = 1
10 , y = 3 and z = 2.
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In Figure 1 (top-left), we took n = 15, p = 1
2 , q = 1

10 , y = 3 and z = 2. In Figure 1
(top-right), we took n = 20, p = 1

2 , q = 1
10 , y = 3 and z = 2. In Figure 1 (bottom-left),

we took n = 25, p = 1
2 , q = 1

10 , y = 3 and z = 2. In Figure 1 (bottom-right), we took
n = 30, p = 1

2 , q = 1
10 y = 3, and z = 2.

For 1 ≤ n ≤ 30, stacks of the roots of the polynomials F(C)
n (x, y; z : p, q), forming a 3D

structure, are investigated below (Figure 2).

Figure 2. Stacking structure of approximation roots in (p, q)-cosine geometric polynomials when
1 ≤ n ≤ 30, p = 1

2 , q = 1
10 , y = 3 and z = 2 in 3D.

In Figure 2 (top-left), we drew stacks of roots of F(C)
n (x, y; z : p, q) = 0 for 1 ≤ n ≤ 30,

p = 5
10 , q = 1

10 andy = 3, z = 2. In Figure 2 (top-right), we plotted x and y axes but no z
axis in 3D. In Figure 2 (bottom-left), we drew y and z axes but no x axis in 3D. In Figure 2
(bottom-right), we drew x and z axes but no y axis in 3D.
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Afterwards, we computed an approximate solution fulfilling F
(C)
n (x, y; z : p, q) = 0.

We provide some computations in Table 1.

Table 1. Approximate solutions of F(C)n

(
x, 3; 2 : 1

2 , 1
10

)
= 0.

Degree n x

1 −2.0000

2 −4.7553, 2.3553

3 −4.5311,−1.3505, 3.4017

4 −4.4787− 2.6188i,−4.4787 + 2.6188i,
3.2307− 2.4655i, 3.2307 + 2.4655i,

5 −4.1169− 2.7012i,−4.1169 + 2.7012i,
−1.8786, 3.8066− 2.8686, 3.8066 + 2.8686i

6 −5.6938,−3.7903− 4.1670i,−3.7903 + 4.1670i,
3.1965− 3.9149i, 3.1965 + 3.9149i, 4.3815

7 −5.5158,−3.5488− 4.2483i,−3.5488 + 4.2483i,
−1.8120, 3.4186− 4.2807i, 3.4186 + 4.2807i, 5.0883

8
−5.9591− 2.0319i,−5.9591 + 2.0319i,−3.2464− 5.3214i,

−3.2464 + 5.3214i, 2.8252− 5.1285i,
2.8252 + 5.1285i, 5.1303− 1.9735i, 5.1303 + 1.9735i.

Plots of the real roots of F(C)
n (x, y; z : p, q) for 1 ≤ n ≤ 30 are shown in Figure 3.

Figure 3. Stacking structure of approximation roots in (p, q)-cosine geometric polynomials when
1 ≤ n ≤ 30, p = 9

10 , 8
10 , 6

10 , 5
10 , q = 1

10 , 2
10 , 3

10 , 4
10 , y = 3 and z = 2.

In Figure 3 (top-left), we took p = 9
10 , q = 1

10 , y = 3, and z = 2. In Figure 3 (top-
right), we took p = 8

10 , q = 2
10 , y = 3, and z = 2. In Figure 3 (bottom-left), we took

p = 6
10 , q = 3

10 , y = 3 and z = 2. In Figure 3 (bottom-right), we took p = 5
10 , q = 4

10 , y = 3
and z = 2.

Next, certain zeros of the (p, q)-sine geometric polynomials and their graphical repre-
sentations are shown.
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A few of them are

F
(S)
0 (x, y; z : p, q) = 0,

F
(S)
1 (x, y; z : p, q) = y,

F
(S)
2 (x, y; z : p, q) = 2xy + 2y z

F
(S)
3 (x, y; z : p, q) =

6px2y
q + p

− 6q3y3

(q + p)(q2 + qp + p2)
+ 6xyz + 6y

(
pz

q + p
+ z2

)
F
(S)
4 (x, y; z : p, q) =

24p3x3y
(q + p)(q2 + qp + p2)

− 24q3xy3

(q + p)(q2 + qp + p2)

+
24px2yz

q + p
− 24q3y3z

(q + p)(q2 + qp + p2)

+ 24xy
(

pz
q + p

+ z2
)
+ 24y

(
p3z

(q + p)(q2 + qp + p2)
+

2pz2

q + p
+ z3

)
.

Now, we can develop the beautiful zeros of the polynomials F(S)
n (x, y; z : p, q) by mak-

ing use of a math program on a computer. The roots of the polynomials F(S)
n (x, y; z : p, q)

are illustrated in Figure 4.
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0

5
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Re(x)

Im(x)

-10 -5 0 5 10
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0
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10

Re(x)
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Figure 4. Stacking structure of approximation roots in (p, q)-sine geometric polynomials when
n = 30, p = 9

10 , 8
10 , 6

10 , 5
10 , q = 1

10 , 2
10 , 3

10 , 4
10 , y = 3 and z = 2.
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In Figure 4 (top-left), we took n = 30, p = 9
10 , q = 1

10 , y = 3 and z = 2. In Figure 4
(top-right), we took n = 30, p = 8

10 , q = 2
10 , y = 3 and z = 2. In Figure 4 (bottom-left),

we took n = 30, p = 6
10 , q = 3

10 , y = 3 and z = 2. In Figure 4 (bottom-right), we took
n = 30, p = 5

10 , q = 4
10 , y = 3 and z = 2.

Stacks of roots of the polynomials F
(S)
n (x, y; z : p, q) = 0 for 2 ≤ n ≤ 30, forming a

three-dimensional structure, were developed and these are shown in Figure 5.

Figure 5. Stacking structure of approximation roots in (p, q)-sine geometric polynomials when
2 ≤ n ≤ 30, p = 1

2 , q = 1
10 , y = 3 and z = 2 in 3D.

In Figure 5 (top-left), we drew stacks of roots of F(S)
n (x, y; z : p, q) = 0 for 2 ≤ n ≤ 30,

p = 5
10 , q = 1

10 , y = 3 and z = 2. In Figure 5 (top-right), we drew x and y axes but no z
axis in 3D. In Figure 5 (bottom-left), we drew y and z axes but no x axis in 3D. In Figure 5
(bottom-right), we drew x and z axes but no y axis in 3D.
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Then, we computed an approximate solution fulfilling F
(S)
n (x, y; z : p, q) = 0. We

provide some computations in Table 2.

Table 2. Approximate solutions of F(S)n

(
x, 3; 2 : 1

2 , 1
10

)
= 0.

Degree n x

2 −2.0000

3 −1.2− 2.30259i,−1.2 + 2.30259i

4 −2.67026, 0.0951305− 2.97641i, 0.0951305 + 2.97641i

5 −2.30056− 1.70626i,−2.30056 + 1.70626i,
1.05256− 3.0114i, 1.05256 + 3.0114i

6 −2.93412,−1.48295− 2.6397i,
−1.48295 + 2.6397i, 1.70041− 2.84003i, 1.70041 + 2.84003i

7 −2.72344− 1.32366i,−2.72344 + 1.32366i,−0.666199− 3.0794i,
−0.666199 + 3.0794i, 2.13972− 2.61824i, 2.13972 + 2.61824i

8
−3.07418,−2.19106− 2.21365i,

−2.19106 + 2.21365i, 0.0333249− 3.2403i,
0.0333249 + 3.2403i, 2.44484− 2.39949i, 2.44484 + 2.39949i

9
−2.93869− 1.07528i,−2.93869 + 1.07528i,

−1.57796− 2.76974i,−1.57796 + 2.76974i, 0.603827− 3.25043i,
0.603827 + 3.25043i, 2.66283− 2.20036i, 2.66283 + 2.20036i.

5. Conclusions

Utilizing (p, q)-numbers and (p, q)-concepts, Duran et al. [1] considered (p, q)-Genocchi
polynomials and numbers, (p, q)-Bernoulli polynomials and numbers and (p, q)-Euler poly-
nomials and numbers and provided many properties and formulas for these polynomials.
Inspired and motivated by this consideration, many authors have introduced (p, q)-special
numbers and polynomials and have described their several identities and properties. In this
paper, using the (p, q)-cosine polynomials and (p, q)-sine polynomials, we have introduced
novel kinds of (p, q)-extensions of geometric polynomials and have acquired multifarious
properties and identities by making use of some series manipulation methods. Furthermore,
we have computed the (p, q)-integral representations and (p, q)-derivative operator rules
for these polynomials. Moreover, we have determined the approximate root movements
of the new mentioned polynomials in a complex plane, utilizing the Newton method and
illustrating them in figures. The structure of the approximate roots will come out in various
ways, depending on the condition of the variables, and new methods and theorems related
to this topic need to be created and proven.

Finally, we consider more general problems. How many roots do F
(C)
n (x, y; z : p, q) = 0

and F
(S)
n (x, y; z : p, q) = 0 have? We are not able to decide whether F(C)

n (x, y; z : p, q) = 0
and F

(S)
n (x, y; z : p, q) = 0 have n distinct solutions. Here we leave a question: “Prove or

disprove that F(C)
n (x, y; z : p, q) = 0 and F

(S)
n (x, y; z : p, q) = 0 have n distinct solutions”.

This question is an unsolved problem for all variables n (see Tables 1 and 2). If we can
theoretically prove the above problem by drawing new ideas from various numerical results,
we look forward to contributing to research related to the roots of our new polynomials in
applied mathematics, mathematical physics and engineering.

Not only can the ideas presented in this paper be utilized for similar polynomials, but
these polynomials may also have possible applications in other scientific areas besides the
applications described at the end of the paper. We would like to continue to study this line
of research in the future.
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