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In this study, we obtain a numerical solution for Fisher’s equation using a numerical

experiment with three different cases. The three cases correspond to different coefficients

for the reaction term. We use three numerical methods namely; Forward-Time Central

Space (FTCS) scheme, a Nonstandard Finite Difference (NSFD) scheme, and the Explicit

Exponential Finite Difference (EEFD) scheme.We first study the properties of the schemes

such as positivity, boundedness, and stability and obtain convergence estimates. We

then obtain values of L1 and L∞ errors in order to obtain an estimate of the optimal time

step size at a given value of spatial step size. We determine if the optimal time step size

is influenced by the choice of the numerical methods or the coefficient of reaction term

used. Finally, we compute the rate of convergence in time using L1 and L∞ errors for all

three methods for the three cases.

Keywords: Fisher’s equation, FTCS, NSFD, EEFD, optimal, convergence estimate, rate of convergence, coefficient

of reaction

1. INTRODUCTION

The most enthralling recent progress of nonlinear science in particular mathematical science of
partial differential equations, theoretical physics, chemistry, and engineering sciences has been a
growth of strategy or procedure to try to find exact solutions for nonlinear differential equations.
This is substantial due to the fact that countless mathematical models are described by nonlinear
differential equations. To mention few among others the inverse scattering transform [1], the
singular manifold method [2], the transformation method [3], the tanh-function method [4], and
the Weierstrass function method [5] are subservient in many applications and known as stunning
techniques to look for solutions of exactly solvable nonlinear partial differential equations.

In Kudryashov [6] developed a new numerical method for the solution of
nonlinear partial differential equations. Amajor novelty of that technique is the
utilization of finite Fourier series for the numerical approximation of the spatial
derivative terms of the equations. It was proved that the precision of this method
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is that the order of accuracy is greater than that found by
approximating the spatial derivative terms by finite-difference
methods [6]. The numerical performance of this method, which
was called the Accurate Space Derivatives (ASD) approach, can
be run accurately by the utilization of the Fast Fourier Transform
(FFT) algorithm [7]. In Kudryashov [6], the ASD approach was
used to obtain the solution of nonlinear hyperbolic equations
depicting convective fluid flows. Furthermore, the ASD approach
was used in Gazdag and Canosa [8] to solve Fisher’s equation, a
nonlinear diffusion equation portraying the rate of advance of a
new advantageous gene within a population of constant density
inhabiting a one dimensional habitat [9]. An outstanding and
compendious debate of Fisher’s equation in the framework of the
genetic problem can be found in Moran [10] and Kendall [11].
Kolmogorov [12] used the traveling waves with wave speed c
to solve the problem. They showed that by assuming that when
the initial condition belongs to the interval [0, 1], the speed of
propagation c of the waves is superior to two and the solution
is in the form u(x, t) = w(ξ ) where ξ = x − ct. They further
demonstrated that there are no solutions for c ∈ [0, 1).
Fisher’s equation has a limitless number of traveling wave
solutions and each wave propagates at a characteristic speed,
c > 2. This result appears to point out that the velocity of
gene advance is undefined. Gazdag and Canosa [8] studied
the problem of the indeterminacy of the diffusion speed of
Fisher’s equation which has not been plainly investigated in
Kolmogorov [12]. Furthermore, a modification was made by
Fisher [9] to his original model, he demonstrated that the rate
of gene advance became the minimum one when c = 2.
Kendall [11] investigated a linear model portraying a population
that undergoes a Brownian motion and spreads geometrically
at the same time. Canosa [13] demonstrated that all waves are
stable against local perturbations but are linearly unstable against
general perturbations of limitless magnitude. It is worthy to
emphasize that the traveling wave profiles of Fisher’s equation are
similar to some of the steady-state solutions of the Korteweg-de
Vries-Burgers equation which is a third-order nonlinear partial
differential equation integrating diffusive and dispersive effects
which have been found useful to represent blood flow through
an artery, shallow water waves and plasma shocks disseminating
perpendicularly to a magnetic field [13, 14].

Kudryashov [6] showed that a simple stability analysis enables
us to see the estimation which is unstable against the roundoff
errors growing up at the right tail of the waves. This is due to
the physical nature of the problem depicted by the equation,
not to the numerical method utilized and moreover entailed an
exponential growth of the solution when roundoff errors are
exponentially small. This simple issue makes it hard to do a strict
simulation of the solutions of Fisher’s equation. Kudryashov [6]
went on with the removal of the forward tail of the wave of
advance. This removal is necessary for the numerical stability of
the Accurate Space Derivatives (ASD) approach and is physically
conclusive because it is approximately equivalent to assuming
that the role of long-distance dissipation in the spread of the gene
is insignificant and probably effective for some species but not
for others. Other numerical computations present how fast the
asymptotic minimum speed wave is reached from an initial step

function and confirm the local stability analysis of Kudryashov
[6] which unveils that local perturbations are flattened very
rapidly, even from superspeed waves. Another amazing result of
the estimation is obtained for an initial dispensation localized in
space which further gives rise to two identical waves of minimum
speed evolution cases, one disseminating to the right and the
other to the left.

1.1. Some Generalized and Conserved
Fisher’s Equation
Fisher’s equation can be represented as generalized or conserved
forms. Fisher’s equation is the elementary model of spatial
dynamics, in which competitive interactions between individuals
happen locally. In Kudryashov and Zakharchenko [15], the
generalized form is written as

ut = ux(u
l ux)+ ua (1− ub) (1)

where t stands for time, x stands for spatial coordinate, u is a
population density, and a, b, and l are all positive parameters.
Fisher’s equation can also forecast circumstances where
population regulation happens globally due to the existence
of a secondary agent (the controller agent is itself dispersed
over a scale significantly greater than the dispersal distance of
the individuals themselves). It is, thus, of notice to envisage a
simple model of spatial population dynamics in which the total
population size is controlled via a nonlocal mechanism. In that
case in Newman et al. [16], the conserved equation is written as

ut = D∇2 u+ r(t) u(t)− K(t) u(t)2 (2)

where D stands for the mobility of the individuals, r stands
for the reproduction rate in the absence of competition. K is
a parameter representing the carrying capacity of the system
and regulating the population density through competition. The
auxiliary equation related to Equation (2) is

r(t) = K(t)

∫

dd x u(x, t) (3)

It is worth mentioning that Fisher’s equation belongs to the
class of partial differential equations called Reaction-Diffusion
equations. This class of equations has broad applications in
science and engineering for instance transport of air, adsorption
of pollutants in soil, food processing, and modeling of biological
and ecological systems [17, 18]. Several reaction-diffusion
equations involve traveling waves fronts yielding a fundamental
role in the understanding of physical, chemical, and biological
phenomena [19]. Reaction-diffusion systems clarify how the
condensation of one or more substances diffused in space varies
by the impact of two operations: first, it is local chemical reactions
in which the substances are modified into each other, and second,
it is the diffusion that sustains the substances to smear over a
surface in space [20]. Reaction-diffusion systems are regularly
used in chemistry. Nonetheless, the system can also portray the
dynamical processes of non-chemical nature. Reaction-diffusion
systems have mathematically the form of semi-linear parabolic
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partial differential equations. They are often written in the form
of

ut = D∇2 u+ R(u), (4)

where each component of vector u(x, t) stands for the
concentration of one substance, x is the space variable, and
t is the time. D is the diffusion coefficient and R represents
the reaction term. The solution of reaction-diffusion equations
shows an ample scale of behaviors, enclosing the formation
of traveling waves. These waves are like phenomena and self-
organized patterns which are e.g., stripes, hexagons, or more
complicated fabrics such as dissipative solutions [20]. Reaction-
diffusion equations are also grouped as one component, two
components, or more component diffusion equations counting
upon the component involved in the reaction. The basic reaction-
diffusion equation regarding the concentration u of a mere
substance in one spatial dimension is

ut = Duxx + R(u). (5)

If the reaction R(u) term goes away, then the equation gives a
pure diffusion process and if the thermal diffusivity term appears
instead of diffusion term D then the equation will turn into a
parabolic partial differential equation in one dimensional space
[20]. The choice R(u) = u (1− u) yields Fisher’s equation. Those
reaction-diffusion equations arise also in flame propagation, the
branching Brownian motion process, and nuclear reactor theory
[20]. Many methods such as Adomian Decomposition [21],
Variational Iteration [22], Factorization [23], Nonstandard Finite
Difference, and Exponential Finite Difference methods [24, 25]
are used to solve Fisher’s equation.
Anguelov et al. [26] investigated the same Fisher’s equation by the
means of a periodic initial data with θ-non standard approach
and found that the Nonstandard Finite Difference approach is
elementary stable in the limit case of space independent variable,
stable in regard to the boundedness and positivity property.
Finally also stable in regard to the conservation of energy in the
stationary case.

Let us consider simple Fisher’s equation given by

ut = uxx + R(u), (6)

where R(u) = u(1− u) and x ∈ R, t positive. The boundary and
initial conditions are as follows

lim
x→+|ǫ|∞

u(x, t) =











1 if ǫ = 1

0 if ǫ = −1,

(7)

u(x, 0) = u0(x). (8)

Hagstrom and Keller [27] revealed that when a positive function
is taken as an initial condition satisfying

u0(x) ∼ exp(−α) when x → ∞, (9)

then the solution u develops a traveling wave speed in function of
α which is

c(α) =

{

α + 1
α
, α ≤ 1,

2, α ≥ 1.
(10)

2. ORGANIZATION OF THE ARTICLE

The organization of this article is as follows. In Section 3, we
present the general form of the exact solution of Fisher’s equation
and in Section 4, we describe the numerical experiment [28].
In Section 5, we make use of Forward in Time Central Space
(FTCS) in order to discretize Fisher’s equation, study the stability
and consistency and we also obtain error estimates. Sections 6,
7 discuss stability, consistency, and error estimates for NSFD
and EEFD schemes. In Section 8, we conclude by presenting
the important highlights of this article. The computations are
performed by making use of MATLAB R2014a software on an
intel core2 as CPU.

3. EXACT SOLUTION

In this section, we present the exact solution of generalized
Fisher’s equations as described in Kudryashov and Zakharchenko
[15]. The nonlinear evolutional equation of that generalized
Fisher’s equation gives one dimensional diffusion models (for
insect, animal dispersal, and invasion) as

ut = ux(u
l ux)+ ua (1− ub), (11)

where t stands for time, x stands for spatial coordinate, u is
population density, and a, b, and l are positive parameters. The
first term, ux(ul ux) on the right-hand side of Equation (11)
stands for the growth of population. The term ul represents the
diffusion process depending on the population density.

Let us consider l 6= 0 and u(x, t) = v(ξ ) and ξ = s x − ct,
s 6= 0. Equation (11) gives the following nonlinear ordinary
differential equation

s2
d

dξ

(

vl
dv

dξ

)

+ va − va+b + c
dv

dξ
= 0. (12)

For l 6= 0, vl = w. Replacing v by w
1
l in Equation (12) gives

s2

l
w2

ξ + s2 wwξξ − l w
a+b+l−1

l + w
a+l−1

l + ξ wξ = 0. (13)

Using the Q function method as it is in Kudryashov [29], one has

w(ξ ) =
P
∑

j=0

Pj Q
j(ξ ), Q(ξ ) =

1

1+ eξ−ξ0
(14)

where P stands for the pole order and ξ0 stands as an arbitrary
constant. Q(ξ ) is the solution of

Qξ = Q− Q2. (15)
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Using Equation (15), we obtain wξ and wξξ by using polynomials
of Q. Replacing w ≃ QP into Equation (15), we have for b ≥ 0,
the following equality

a+ b+ l− 1

l
= 2+

2

P
. (16)

To have an integer value a+b+l−1
l

, P should be 1 or 2. In that case

w(ξ ) =

{

P0 + P1 Q(ξ )

P0 + P1 Q(ξ )+ P2 Q
2(ξ )

(17)

For P = 1, a = 3 l+ 1− b, Equation (13) becomes

s2

l
w2

ξ + s2 wwξξ − l w4 + w4− b
l + ξ wξ = 0. (18)

We have the following solutions

w(x, t) =



































No exact solutions, b = l and b = 3 l,

±1± 2Q(± 2 l√
2l+1

x± 2 l
2l+1 t), b = 2 l,

±1± 2Q(± 2 l√
2l+1

x± 4l (l+1)
2l+1 t), b = 4 l,

or

±i± 2 i Q(± 2 l√
2l+1

x± 4l (l+1)
2l+1 i t), b = 4 l.

(19)

We finally get as exact solution

u(x, t) =







































l

√

±1± 2Q
(

± 2 l√
2l+1

x± 2 l
2l+1 t

)

, V1 = ± 1√
2l+1

,

l

√

±1± 2Q
(

± 2 l√
2l+1

x± 4l (l+1)
2l+1 t

)

, V2 = ± 2 (l+1)√
2 l+1

,

or

l

√

±i± 2 i Q
(

± 2 l√
2l+1

x± 4l (l+1)
2l+1 i t

)

, V2 = ± 2 (l+1)√
2l+1

,

(20)

where V1 and V2 stand for velocity.
For P = 2, a = 2 l+ 1− b. With the same reasoning as above,

we have

u(x, t) =



















No exact solutions, b = 2 l and b = 3 l,

l

√

2(3 l+2)
l+1

(

Q
(

± l√
l+1

i x
)

− Q2
(

± l√
l+1

i x
))

, b = l.

(21)

The case of l = 0, a = 1 and b = 2, one obtains the Burgers-
Huxley equation and the case of l = 0, a = 1, b = 1, we have
Fisher’s equation. The exact solution of Equation (11) is described
in Li et al. [28] as a scaled Fisher’s equation in the form

ut = uxx + ρu(1− u), (22)

with x ∈ R, t positive, and ρ is a positive constant. The
Equations (7) and (8) stand for boundary and initial conditions,

respectively. The traveling exact solution to this problem as
presented in Polyanim and Zaitsev [30] is

u(x, t) =
[

1+ c exp

(
√

ρ

6
x−

5ρ

6
t

)]−2

, (23)

where c = 5
√

ρ/6 stands for the wave speed with the minimum
value, 2

√
ρ.

4. NUMERICAL EXPERIMENTS

We consider the following problem from Qiu and Sloan [31].

Solve

ut = uxx + ρ u(1− u),

for x ∈ [−0.2, 0.8] and t ∈ [0, Tmax] whereTmax = 2.5×10−3.
The initial data is given by

u(x, 0) =
[

1+ exp

(
√

ρ

6
x

)]−2

. (24)

The exact solution is given by

u(x, t) =
[

1+ exp

(
√

ρ

6
x−

5ρ

6
t

)]−2

. (25)

The boundary conditions are as follows

u(−0.2, t) =
[

1+ exp

(

−0.2

√

ρ

6
−

5ρ

6
t

)]−2

and

u(0.8, t) =
[

1+ exp

(

0.8

√

ρ

6
−

5ρ

6
t

)]−2

.

We consider three cases ρ namely; 1, 102, 104, and obtain a
solution at time, t = Tmax.

DEFINITION 1. Miyata and Sakai [32]. For a vector x ∈ R
N ,

‖ x ‖1=
∑N

i=1 |xi| and ‖ x ‖∞= max{|xi|, i = 1, · · ·,N}.

DEFINITION 2. Sutton [33]. Suppose {tn}N0 forms a partition of
[0,T],with tn = n1t for n = 0, · · ·,N,where1t = T/N. Suppose
a vector x ∈ R

N , defined by

‖ x ‖LP(0,tn)=

{

(

‖ x ‖LP(0,tn−1) +τ (xn)p
)
1
p for p ∈ [0,∞),

max{‖ x ‖LP(0,tn−1), x
n} for p = ∞.

(26)

The rate of convergence with respect to time is defined by

ratei(t) =
log(xi(t))− log(xi−1(t))

log(1ti)− log(1ti−1)
.
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5. FORWARD IN TIME CENTRAL SPACE

The discretization of Equation (22) using the FTCS method gives
[34].

un+1
m − unm

k
=

unm+1 − 2unm + unm−1

h2
+ ρunm(1− unm), (27)

which leads to

un+1
m = (1− 2R)unm + kρunm(1− unm)+ R(unm+1 + unm−1), (28)

or

un+1
m = (1− 2R+ k ρ) unm − k ρ (unm)

2 + Runm+1 + Runm−1,

(29)

where R = k
h2
.

5.1. Stability
The investigation regarding the stability of the scheme given by
Equation (28) was done in Agbavon et al. [35]. Nevertheless, we
highlight briefly some points. The stability of finite difference
methods discretizing nonlinear partial differential equations is
not straightforward. Subsequently, freezing the coefficients is
needed before using Von Neumann stability analysis [36].

THEOREM 1. Agbavon et al. [35]. The FTCS scheme given by
Equation (28) is conditionally stable, and the stability region is

k ≤
h2

2
(30)

for given spatial step size h > 0 and the time step size k > 0.
FTCS is first order and second order accurate in time and space,
respectively.

Proof. The stability region of the Zabusky and Kruskal scheme
using the Korteweg de Vries (KdV) equation was found by Taha
and Ablowitz [37] by using the freezing coefficients method
and Von Neumann Stability Analysis. The derived scheme by
Zabusky and Kruskal [38] for the KdV equation, ut + 6uux +
uxxx = 0 is

un+1
m − un−1

m

2k
+ 6

(

unm+1 + unm + unm−1

3

)(

unm+1 − unm−1

2h

)

+
1

2h3
(

unm+2 − 2unm+1 + 2unm−1 − unm−2

)

= 0.

(31)

Taha and Ablowitz [37] express u ux as umax ux and utilize the
ansatz
unm = ξneImw where w stands for the phase angle. They obtain

(

ξ − ξ−1) (2k)−1 + (h)−1 (6umax)I sin(w)+ (2h3)−1(e2Iw

−2eIw + 2e−Iw − e−2Iw) = 0,

which can be rewritten as

ξ = ξ−1 − (h)−1 (12kumax)I sin(w)− (h3)−1k(e2Iw

−2eIw + 2e−Iw − e−2Iw) (32)

where umax = max |u(x, t)|. The requirement for the linear
stability is

(h)−1k
∣

∣2umax − (h2)−1
∣

∣ ≤ 2(3
√
3)−1. (33)

For obtaining the stability region of the FTCS scheme discretizing
Equation (28), we rewrite Equation (28) using the same idea as

un+1
m =

(

1− (h2)−12k
)

unm + (h2)−1(k)(unm+1 + unm−1)

+k ρ unm − k ρ (unm)
2. (34)

Utilization of Fourier series analysis on Equation (34), gives the
amplification factor

ξ = 1− (h2)−1(2k)(1− cos(w))+ kρ(1− umax), (35)

where umax is frozen coefficient. For the numerical experiment
considered, we have umax = 1, and therefore,

ξ = 1− (h2)−1(4k) sin2
(w

2

)

. (36)

The stability is obtained by solving |ξ | ≤ 1 for w ∈ [−π ,π], and

we obtain k ≤ h2

2 .
Using Taylor series expansion about the point (n,m) of
Equation (28), we get

u+ kut +
k2

2
utt +

k3

6
uttt + O(k4)

=
(

1− (h2)−1(2k)+ kρ
)

u− kρu2

+(h2)−1(k)

(

u+ hux +
h2

2
uxx +

h3

6
uxxx +

h4

24
uxxxx + O(h5)

)

+(h2)−1(k)

(

u− hux +
h2

2
uxx −

h3

6
uxxx +

h4

24
uxxxx + O(h5)

)

,

(37)

which can be written as

ut − uxx − ρu(1− u) = −
k

2
utt −

k2

6
uttt

+
h2

12
uxxxx + O(k4)+ O(h5). (38)

Hence, FTCS is first order and second order accurate in time and
space, respectively.

5.2. Error Estimates
THEOREM 2. Let u ∈ C4,2(Q), Q defined by Q = {(x, t)/ a ≤
x ≤ b, 0 < t ≤ T, a, b ∈ R}. If spatial step size, h and time
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step size, k are such that the stability condition (30) holds, then the
error estimate, Enm for Equation (28) is given by

Enm ≤ (1+ 3 k ρ)n E0m +
1

9

Mh2

ρ k

[

(1+ 3 k ρ)n − 1
]

(39)

where M = max{(x,t)} ∈Q

{

|uxxxx(x, t)|, |utt(x, t)|
}

and 2 such
that 2(k, h)uttt = O(k, h) → 0, for k, h → 0.

Proof.
Forward in Time Central Space scheme is given by

un+1
m = (1− 2R+ k ρ) unm − k ρ (unm)

2 + Runm+1 + Runm−1.(40)

Taylor series expansion about (n, m) gives

7v+ kvt +
k2

2
vtt +

k3

6
vttt + O(k4)

=
(

1− (h2)−1(2k)+ kρ
)

v− kρv2

+(h2)−1(k)

(

v+ hvx +
h2

2
vxx +

h3

6
vxxx +

h4

24
vxxxx + O(h5)

)

+(h2)−1(k)

(

v− h vx +
h2

2
vxx −

h3

6
vxxx +

h4

24
vxxxx + O(h5)

)

,

(41)

which can be rewritten as

vt − vxx − ρ v (1− v) = −
k

2
vtt −

k2

6
vttt +

h2

12
vxxxx + ..., (42)

and let 2(k, h)vttt = O(k, h) = − k2

6 vttt → 0 for k, h → 0. The
exact discrete equation is

un+1
m = (1− 2R) unm + kρ unm(1− unm)+ R(unm+1 + unm−1)

+
k

2
utt(x, τn)−

h2

12
uxxxx(Xm, t) (43)

where xm < Xm < xm+1 and tn < τn < tn+1. We define

enm = unm − vnm H⇒ en+1
m = un+1

m − vn+1
m .

It follows that

en+1
m = (1− 2R) (unm − vnm)+ k ρ unm(1− unm)

−k ρ vnm(1− vnm)+ R (unm+1 + unm−1)

−R (vnm+1 + vnm−1)+
k

2
utt(x, τn)−

h2

12
uxxxx(Xm, t). (44)

We have

en+1
m = (1− 2R) (unm − vnm)+ k ρ unm − k ρ (unm)

2 − k ρ vnm

+k ρ (vnm)
2 + R (unm+1 − vnm+1)

−R (unm−1 − vnm−1)+
k

2
utt(x, τn)−

h2

12
uxxxx(Xm, t), (45)

which can be rewritten as

en+1
m = (1− 2R) (unm − vnm)+ k ρ (unm − vnm)

−k ρ (unm − vnm)(u
n
m + vnm)+ R (unm+1 − vnm+1)

−R (unm−1 − vnm−1)+
k

2
utt(x, τn)−

h2

12
uxxxx(Xm, t). (46)

Using the properties of absolute values |a + b| ≤ |a| + |b| for
a, b ∈ R, we have

|en+1
m | ≤ |1− 2R| |enm| + |k ρ| |enm| + |k ρ| |enm||u

n
m + vnm|

+R |enm+1|

+R |enm−1| +M

(

k

2
+

h2

12

)

, (47)

where M = max{(x,t)∈Q}
{

|uxxxx(x, t)|, |utt(x, t)|
}

. Since 0 ≤
unm ≤ 1 and 0 ≤ vnm ≤ 1, based on numerical experiment
chosen, we have

|en+1
m | ≤ |1− 2R| |enm|

+k ρ |enm| + 2 k ρ |enm| + R |enm+1|

+R |enm−1| +M

(

k

2
+

h2

12

)

. (48)

Let Enm = max0<m<N

{

|enm|)|
}

. We have

|en+1
m | ≤ (|1− 2R| + k ρ + 2 k ρ + 2R) |Enm|

+M

(

k

2
+

h2

12

)

, (49)

and for stability R ≤ 1/2, therefore, |1− 2R| = 1− 2R ≥ 0. We
finally obtain

|en+1
m | ≤ (1+ 3 k ρ)Enm

+ M

(

k

2
+

h2

12

)

. (50)

Let En+1
m = (1+ 3 k ρ)Enm +

(

k
2 +

h2

12

)

M. We have

For n = 0, E1m = (1+ 3 k ρ)E0m +
(

k
2 +

h2

12

)

M.

For n = 1, we have

E2m = (1+ 3 k ρ)E1m +
(

k

2
+

h2

12

)

M (51)

= (1+ 3 k ρ)2 E0m + (1+ 3 k ρ)1
(

k

2

+
h2

12
) M + (1+ 3 k ρ)0

(

k

2
+

h2

12

)

M (52)

= (1+ 3 k ρ)2 E0m +
[

(1+ 3 k ρ)1

+(1+ 3 k ρ)0 ]

(

k

2
+

h2

12

)

M (53)
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For n = 2, we have

E3m = (1+ 3 k ρ)3 E2m +
(

k

2
+

h2

12

)

M (54)

= (1+ 3 k ρ)3 E0m + (1+ 3 k ρ)2 (
k

2

+
h2

12

)

M + (1+ 3 k ρ)1
(

k

2
+

h2

12

)

M (55)

+ (1+ 3 k ρ)0
(

k

2
+

h2

12

)

M

= (1+ 3 k ρ)3 E0m + [ (1+ 3 k ρ)2

+ (1+ 3 k ρ)1 + (1+ 3 k ρ)0 ]

(

k

2
+

h2

12

)

M (56)

For n, we have

Enm = (1+ 3 k ρ)En−1
m +

(

k

2
+

h2

12

)

M

= (1+ 3 k ρ)n E0m +
[

(1+ 3 k ρ)n−1

+ (1+ 3 k ρ)n−2 + · · +(1+ 3 k ρ)1

+ (1+ 3 k ρ)0 ]

(

k

2
+

h2

12

)

M

= (1+ 3 k ρ)n E0m +

[

n−1
∑

i=0

(1+ 3 k ρ)i
]

(

k

2
+

h2

12

)

M

= (1+ 3 k ρ)n E0m +
[

1− (1+ 3 k ρ)n

1− (1+ 3 k ρ)

](

k

2
+

h2

12

)

M

= (1+ 3 k ρ)n E0m −
1

3 k ρ

[

1− (1+ 3 k ρ)n
]

(

k

2
+

h2

12

)

M

(57)

Hence, for k ≤ h2

2 , we can also write

Enm ≤ (1+ 3 k ρ)n E0m +
1

9

Mh2

ρ k

[

(1+ 3 k ρ)n − 1
]

(58)

6. NONSTANDARD FINITE DIFFERENCE
SCHEME (NSFD)

Over the past decade, the NSFD has been used extensively and
often abbreviated as NSFD. The method was introduced by
Mickens for the approximation of solutions of partial differential
equations and is largely based on the concept of dynamical
consistency [39] which plays a significant role in the construction
of discrete models whose numerical solution can be complicated
to compute. The dynamical consistency is bound to a precise
property of a physical system (and varies according to the
systems). To mention few among others these properties include
the preservation of positivity, boundedness, monotonicity of the
solutions, and stability of fixed-points [39]. The main advantage
of this method was the dismissal of the primary numerical
instabilities [40] caused by the use of standard methods. In order

to reduce numerical sensitivities appearing using the classical
finite difference methods, these NSFD were developed.
For practical use, the construction of NSFD methods is based on
the following basic rules [39]:

(1) The order of discrete derivatives should be equal to the order
of corresponding derivatives appearing in the differential
equation.

(2) Discrete representation for derivatives, in general, have non
trivial denominator functions, e.g.,

ut ≈
un+1
m − unm
φ(1t, λ)

(59)

where

φ(1t, λ) = 1t + O(1t2). (60)

6.1. Example of the Definition of the
Function φ
Consider the following decay equation and logistic growth
equation, respectively as in Anguelov et al. [26]











u′ = λ u, u(0) = u0, λ 6= 0,

u′ = λ u(1− u), u(0) = u0, λ > 0,

(61)

and the respective solutions at the time t = tn+1 are











u(tn+1) = u0 e
λ tn+1 ,

u(tn+1) = u0
e−λ tn+1+(1−e−λ tn+1 ) u0

.

(62)

Let u(tn) = un. We have















un+1−un

(eλ1t−1)λ−1 = λ un,

un+1−un

(eλ1t−1)λ−1 = λ un(1− un).

(63)

The Equation (63) is called the exact scheme. The function φ can
be then defined as

φ(1t, λ) =
eλ1t − 1

λ
or φ(1t, λ) =

1− e−λ 1t

λ

(3) Nonlocal discrete representations of nonlinear terms. For
instance

u2m ≈ um um+1, , u
2
m ≈

(

um−1 + um + um−1

3

)

um, (64)

and

u3 ≈ 2u3m − u2mum+1, u
3
m ≈ um−1umum+1. (65)
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In Agbavon et al. [35], followed by the rule of Mickens [39] a
NSFD

for Equation (22) is

un+1
m − unm
φ(1t)

=
unm+1 − 2unm + unm−1

(1x)2

+ ρunm − ρ

(

unm+1 + unm + unm−1

3

)

un+1
m , (66)

where

φ(1t) = φ(k) =
1− e−λ k

λ
; (1x)2 = h2. (67)

The Equation (66) gives the following single expression

un+1
m =

(

1− 2φ(k)
h2

+ ρ φ(k)
)

unm + φ(k)
h2

(

unm+1 + unm−1

)

1+ ρφ(k)
3

(

unm+1 + unm + unm−1

)

. (68)

6.2. Positivity and Boundedness
In this section, the dynamical consistency and some useful
relationship between time and space step-sizes of NSFD are
presented.

THEOREM 3. The dynamical consistency (positivity and
boundedness) of NSFD constructed in Equation (68) holds
for Equation (22) and for relevant time step k, spatial step h if the
following conditions hold

(a) φ(k) ≤ h2

2−ρ h2
[1− Ŵ] with Ŵ = 1− 2 (h2)−1φ(k)+ ρ φ(k),

(b) For uim ∈ [0, 1], ∀ i. Ŵ = (h2)−1(φ(k)) = 1
2

[

1

1− ρh2
2

]

and

Ŵ′ = σ Ŵ .

Proof.
We assume u(x, 0) = h(x) ∈ [0, 1]. We have, therefore, u(x, t) ∈
[0, 1] [24]. We assume also unm ≥ 0. The quantity un+1

m from
Equation (68) is positive (un+1

m ≥ 0) if only

Ŵ = 1− 2(h2)−1φ(k)+ ρ φ(k) ≥ 0, (69)

It follows that

0 ≤ 1− Ŵ = (2(h2)−1 − ρ)φ(k) ≤ 1. (70)

Hence, in Mickens [24], the condition required for positivity is

φ(k) ≤
h2

2− ρ h2
[1− Ŵ] and 0 ≤ Ŵ < 1, ρ h2 6= 2. (71)

We investigate next the boundedness by assuming unm ∈ [0, 1].
Equation (68) is rewritten as follows

un+1
m =

Ŵunm + R
(

unm+1 + unm−1

)

1+
(

ρφ(k)
3

)

(unm+1 + unm + unm−1)
. (72)

where Ŵ = 1− 2(h2)−1φ(k)+ ρ φ(k), R = φ(k)
h2

.
Following the idea of Mickens [24], Equation (72) takes the
symmetric form if Ŵ = R. Therefore, it follows that

Ŵ =
φ(k)

h2
=

1

3
+

ρ φ(k)

3
. (73)

We also have from Equation (71)

φ(k) ≤
h2

2− ρ h2
[1− Ŵ] H⇒

φ(k)

h2
≤

1

2

[

1

1− ρh2

2

]

(74)

Based on the symmetric condition, we can take

Ŵ =
φ(k)

h2
=

1

2

[

1

1− ρh2

2

]

(75)

With regard to the symmetric condition (Equations 73), Equation
(72) can be rewritten as

un+1
m =

Ŵ (unm + unm+1 + unm−1)

1+
(

ρ φ(k)
3

)

(unm+1 + unm + unm−1)
. (76)

We know by the assumption that unj ∈ [0, 1], ∀ j. We have

0 ≤
unm + unm+1 + unm−1

3
≤ 1. (77)

By multiplying Equation (77) by 1− ρh2

2 and dividing by 1− ρh2

2
and expanding, we have

unm + unm+1 + unm−1

3
[

1− ρh2

2

] −
[

ρh2

2

]

unm + unm+1 + unm−1

3
[

1− ρh2

2

] ≤ 1. (78)

From Equation (78), we have

unm + unm+1 + unm−1

3
[

1− ρh2

2

] ≤ 1+ ρ
h2

2

1

3

[

1

1− ρh2

2

]

(unm + unm+1

+unm−1). (79)

Let Ŵ
′ = σ Ŵ, σ 6= 0. Then

Ŵ
′
=

σ

2

[

1

1− ρh2

2

]

= σ
φ(k)

h2
(80)

If σ
2 = 1

3 , then σ = 2
3 and using Equation (79), we have

Ŵ
′
(unm + unm+1+unm−1) ≤ 1+

ρ φ(k)

3
(unm + unm+1 + unm−1). (81)
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Hence,

0 ≤ un+1
m =

Ŵ
′
(unm + unm+1 + unm−1)

1+
(

ρ φ(k)
3

)

(unm+1 + unm + unm−1)
≤ 1. (82)

Thus, the boundedness of un+1
m .

6.3. Error Estimate
THEOREM 4. Let u ∈ C4,2(Q) where Q is defined by

Q = {(x, t)/ a ≤ x ≤ b, 0 < t ≤ T, T > 0, a, b ∈ R}.

Assume h and k are such that the Theorem 3 is satisfied and
enm = unm − vnm, is the defined error of the scheme constructed.
NSFD is consistent, and the estimate error enm is defined by

|enm| ≤ Enm = (3Ŵ)n E0m +
(

1− (3Ŵ)n

1− 3Ŵ

)

[(

φ(k)

2
+ ρ

φ(k)2

2
+

h2

12
+ ρ

h4

36

)

M + ρ h4
φ(k)2

72
M2
]

(83)

where Ŵ defined in 3 M is defined by M =
max{(x,t)} ∈Q

{

|uxxxx(x, t)|, |utt(x, t)|
}

, and 2i, i = 1, 2, 3
such that

21(φ(k), h) = ρ
h2

3
u− ρ h2

φ(k)2

6
utt

22(φ(k), h) = −
φ(k)2

6
+ ρ

φ(k)

3
[

φ2(k)

2
u+ h2

φ2

6
uxx + h4

φ(k)2

72
uxxxx

]

23(φ(k), h) = −φ(k) v− ρ h2
φ(k)

3
− ρ h4

φ(k)

36
uxxxx (84)

and
21(φ(k), h) uxx + 22(φ(k), h) uttt + 23(φ(k), h) ut =

O
(

φ(k), h
)

→ 0 when φ(k) → 0 and h → 0.

Proof.

vn+1
m =

Ŵvnm + R
(

vnm+1 + vnm−1

)

1+
(

ρφ(k)
3

)

(vnm+1 + vnm + vnm−1)
, (85)

where Ŵ = 1− 2φ(k)
h2

+ ρφ(k), R = φ(k)
h2

. Taylor series expansion
of Equation (85) about (tn, xm) gives

(

v+ φ(k) vt +
(φ(k))2

2
vtt +

(φ(k))3

6
vttt + O

(

(φ(k))4
)

)

(

1+ ρ
φ(k)

3

{

v+ v+ h vx + h2

2 vxx + h3

6 vxxx + h4

24 vxxxx

+v− h vx + h2

2 vxx − h3

6 vxxx + h4

24 vxxxx

})

=
(

1−
2φ(k)

h2
+ ρ φ(k)

)

v

+
φ(k)

h2

{

v+ h vx + h2

2 vxx + h3

6 vxxx + h4

24 vxxxx

+v− h vx + h2

2 vxx − h3

6 vxxx + h4

24 vxxxx

}

This gives

v+ φ(k) vt +
(φ(k))2

2
vtt +

(φ(k))3

6
vttt

+ρ
φ(k)

3

(

v+ φ(k) vt +
(φ(k))2

2
vtt +

(φ(k))3

6
vttt

)

(

3 v+ h2 vxx +
h4

12
vxxxx

)

= v+
(

−
2φ(k)

h2
+ ρ φ(k)

)

v+
φ(k)

h2

(

2 v+ h2 vxx ++
h4

12
vxxxx

)

.

(86)

It follows after division by φ(k) and simplification, we have

vt +
(φ(k))

2
vtt +

(φ(k))2

6
vttt

+
ρ

3

(

φ(k) vt +
(φ(k))2

2
vtt +

(φ(k))3

6
vttt

)

(

3 v+ h2 vxx + h4

12 vxxxx

)

+
ρ

3
v(3 v)+

ρ

3
v
(

h2 vxx + h4

12 vxxxx

)

= vxx + ρ v+
h2

12
vxxxx. (87)

It follows that

vt − vxx + ρ v2 − ρ v

=



























(

h2

12 − ρ h4

36 v
)

vxxxx −
(

φ(k)
2 + ρ h4 φ(k)2

72 vxxxx + ρ
φ2(k)
2 v

)

vtt

+
(

ρ h2

3 v− ρ h2 φ(k)2

6 vtt

)

vxx

+
(

− φ(k)2

6 + ρ
φ(k)
3

[

φ(k)2

2 v+ h2 φ2(k)
6 vxx + h4 φ(k)2

72 vxxxx

])

vttt

+
(

−φ(k) v− ρ h2 φ(k)
3 − ρ h4 φ(k)

36 vxxxx

)

vt



























(88)

If φ(k) → 0 and h → 0, Equation (88) reduces to vt − vxx +
ρ v2 − ρ v → 0. Hence, the consistency.
For the simplicity of the proof, we consider the function 2i,
i = 1, 2, 3 such that

21(φ(k), h) = ρ
h2

3
v− ρ h2

φ(k)2

6
vtt

22(φ(k), h) = −
φ(k)2

6
+ ρ

φ(k)

3
[

φ2(k)

2
v+ h2

φ2

6
vxx + h4

φ(k)2

72
vxxxx

]

23(φ(k), h) = −φ(k) v− ρ h2
φ(k)

3
− ρ h4

φ(k)

36
vxxxx (89)

and 21(φ(k), h) vxx + 22(φ(k), h) vttt + 23(φ(k), h) vt =
O
(

φ(k), h
)

→ 0 when φ(k) → 0 and h → 0.
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The exact discrete equation is

un+1
m =

Ŵunm + R
(

unm+1 + unm−1

)

1+ ρφ(k)
3 (unm+1 + unm + unm−1)

+
(

φ(k)

2
+ ρ h4

φ(k)2

72
uxxxx(εm, t)+ ρ

φ2(k)

2
u

)

utt(x, τn)

−
(

h2

12
− ρ

h4

36
u

)

uxxxx(εm, t) (90)

where Ŵ = 1− 2φ(k)
h2

+ ρφ(k), R = φ(k)
h2

, and xm < εm < xm+1

and tn < τn < tn+1.

We define enm = unm − vnm ≡ en+1
m = un+1

m − vn+1
m . It

follows by considering symmetry condition Ŵ = R

un+1
m − vn+1

m

=































Ŵ
(

unm+1+unm+unm−1

)

1+ ρφ(k)
3 (unm+1+unm+unm−1)

−
Ŵ
(

vnm+1+vnm+vnm−1

)

1+ ρφ(k)
3 (vnm+1+vnm+vnm−1)

+
(

φ(k)
2 + ρ h4 φ(k)2

72 uxxxx(εm, t)+ ρ
φ2(k)
2 u

)

utt(x, τn)

−
(

h2

12 − ρ h4

36 u
)

uxxxx(εm, t)































. (91)

It follows

en+1
m

=
Ŵ
(

enm+1 + enm + enm−1

)

(

1+ ρφ(k)
3 (unm+1 + unm + unm−1)

) (

1+ ρφ(k)
3 (vnm+1 + vnm + vnm−1)

)

+
(

φ(k)

2
+ ρ h4

φ(k)2

72
uxxxx(εm, t)+ ρ

φ(k)2

2
u

)

utt(x, τn)

−
(

h2

12
− ρ

h4

36
u

)

uxxxx(εm, t) (92)

Let M = max{(x,t)} ∈Q

{

|uxxxx(x, t)|, |utt(x, t)|
}

and Enm =
max0<m<N{|enm|}. We have

(

1+
ρφ(k)

3
(unm+1 + unm + unm−1)

)

(

1+
ρφ(k)

3
(vnm+1 + vnm + vnm−1)

)

> 1,

∀ uni , v
n
i ∈ [0, 1], i = m− 1, m, m+ 1

and by using Theorem 3, we have

|en+1
m | ≤ |Ŵ|(|enm+1| + |enm| + |enm−1|)

+
∣

∣

∣

∣

(

φ(k)

2
+ ρ h4

φ(k)2

72
uxxxx(εm, t)+ ρ

φ(k)2

2
u

)∣

∣

∣

∣

|utt(x, τn)| +
∣

∣

∣

∣

−
(

h2

12
− ρ

h4

36
u

)∣

∣

∣

∣

|uxxxx(εm, t)|

≤ 3Ŵ Enm +
(

φ(k)

2
+ ρ

φ(k)2

2
+

h2

12
+ ρ

h4

36

)

M

+ρ h4
φ(k)2

72
M2 (93)

Let

En+1
m = 3Ŵ Enm +

(

φ(k)

2
+ ρ

φ(k)2

2
+

h2

12
+ ρ

h4

36

)

M

+ρ h4
φ(k)2

72
M2.

We have

|en+1
m | ≤ En+1

m = 3Ŵ Enm +
(

φ(k)

2

+ρ
φ(k)2

2
+

h2

12
+ ρ

h4

36
) M + ρ h4

φ(k)2

72
M2 (94)

For n = 0, E1m = 3Ŵ E0m +
(

φ(k)
2 + ρ

φ(k)2

2 + h2

12 + ρ h4

36

)

M +

ρ h4 φ(k)2

72 M2

For n = 1, we have

E2m = 3Ŵ E1m +
(

φ(k)

2
+ ρ

φ(k)2

2
+

h2

12
+ ρ

h4

36

)

M

+ρ h4
φ(k)2

72
M2

= 3Ŵ ( 3Ŵ E0m +
(

φ(k)

2
+ ρ

φ(k)2

2
+

h2

12
+ ρ

h4

36

)

M

+ρ h4
φ(k)2

72
M2 )

+
(

φ(k)

2
+ ρ

φ(k)2

2
+

h2

12
+ ρ

h4

36

)

M + ρ h4
φ(k)2

72
M2

= (3Ŵ)2 E0m + (1+ 3Ŵ)
[(

φ(k)

2
+ ρ

φ(k)2

2
+

h2

12
+ ρ

h4

36

)

M + ρ h4
φ(k)2

72
M2
]

(95)

For n = 2, we have

E3m = 3Ŵ E2m +
(

φ(k)

2
+ ρ

φ(k)2

2
+

h2

12
+ ρ

h4

36

)

M + ρ h4
φ(k)2

72
M2

= 3Ŵ

(

32 Ŵ2 + (1+ 3Ŵ)

[(

φ(k)

2
+ ρ

φ(k)2

2
+

h2

12
+ ρ

h4

36

)

M

+ρ h4
φ(k)2

72
M2 ])

+
(

φ(k)

2
+ ρ

φ(k)2

2
+

h2

12
+ ρ

h4

36

)

M + ρ h4
φ(k)2

72
M2

= (3Ŵ)3 E0m + (1+ 3Ŵ + (3Ŵ)2)

[(

φ(k)

2
+ ρ

φ(k)2

2
+

h2

12
+ ρ

h4

36

)

M

+ρ h4
φ(k)2

72
M2] (96)
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By recurrence for n, we have

En+1
m = (3Ŵ)n E0m +

(

i−1
∑

i=0

(3Ŵ)i
)

[(

φ(k)

2
+ ρ

φ(k)2

2
+

h2

12
+ ρ

h4

36

)

M + ρ h4
φ(k)2

72
M2
]

= (3Ŵ)n E0m +
(

1− (3Ŵ)n

1− 3Ŵ

)

[(

φ(k)

2
+ ρ

φ(k)2

2
+

h2

12
+ ρ

h4

36

)

M + ρ h4
φ(k)2

72
M2
]

(97)

7. EXPLICIT EXPONENTIAL FINITE
DIFFERENCE SCHEME

The EFFD method was developed by Bhattacharya [41]
(primarily called the Bhattacharya method) for the numerical
solution of the heat equation. The Exponential Finite
Difference method was utilized to solve Burgers’ equation
and generalized Huxley and Burgers-Huxley equations [42–44].
Later, Macías-Díaz and Ĩnan [45] used modified exponential
methods to obtain the solution of the Burgers’ equation.
Furthermore, Inan et al. [46] utilized the EEFD method
for numerical solutions for the Newell-Whitehead-Segel
type equations which are very useful in biomathematics.
They showed convergence, consistency, and stability of the
method.

In this section, we obtain numerical solutions of the equation
by EEFD method. The solution domain are discretized into cells
as (xm, tn) in which xm = mh, (m = 0, 1, 2, ...,N) and tn =
nk, (n = 0, 1, 2, ...), h = 1x = b−a

N is the spatial mesh size and
k = 1t is the time step, unm denotes the EEFD approximation
and u(x, t) denotes the exact solution.

Dividing Equation (6) by u gives

∂ ln u

∂t
=

1

u

(

u (1− u) +
∂2u

∂x2

)

. (98)

Using the finite difference approximations for derivatives,
Equation (98) gives

un+1
m = unm exp

{

k
(

1− unm
)

+ R

(

unm+1 − 2unm + unm−1

unm

)}

(99)

where R = k
h2
. Equation (99) gives the expression for the EEFD

method for Fisher’s equation.

7.1. Convergence and Estimate Error
For stability analysis, we require non-iterative exponential
time-linearization and iterative exponential quasilinearization
techniques for Equation (6) which are found in the discretization
of the time derivative, the freezing of the coefficients of the
resulting linear ordinary differential equations, and the piecewise
analytical solution of these ordinary differential equations. These

techniques give three-point finite difference expressions that
depend in an exponential manner on either the diffusion,
reaction, and transient terms or the diffusion and reaction terms.
Following the idea of Ramos [25], we transform (Equations 6,
99) into a linear ordinary differential equation by discretizing
the time derivative by means of θ-method [25] and linearizing
the nonlinear source term, u(1 − u), with respect to either the
previous time level or the previous iteration with Jacobian, J =
d(u(1−u))

du
= 1− 2 u:

a) If the linearization is performed with respect to the previous
time level, one obtains

un+1
m − unm

k
= θ

un+1
m−1 − 2 un+1

m + un+1
m+1

h2

+(1− θ)
unm−1 − 2 unm + unm+1

h2

+unm(1− unm)

+θ Jnm (un+1
m − unm) (100)

which yields a non-iterative time linearization method.
b) If the linearization is performed with respect to the previous

iteration, one obtains

ui+1
m − unm

k
= θ

ui+1
m−1 − 2 ui+1

m + ui+1
m+1

h2

+(1− θ)
unm−1 − 2 unm + unm+1

h2

+(1− θ) unm(1− unm)+ θ un+1
m (1− ui+1

m )

+θ Ji+1
m (ui+1

m − unm) (101)

which corresponds to an iterative quasilinear technique and
i = 1, 2, · · · , n.

Equations (100) and (101) can be solved in closed form in
(xm−1, xm+1) subject to the following conditions:

u(xm−1) = um−1, u(xm) = um, u(xm+1) = um+1 (102)

and yield exponential solutions in (xm−1, xm+1) which are
analytical in that interval and continuous everywhere. Since
Equations (100) and (101) are very similar, we will only present
in detail exponential methods for Equation (100) in the following
subsections.

7.1.1. Time-Linearized Full Exponential Techniques

The piecewise analytical solution of Equation (100) can be
rewritten as

(

θ Jnm −
1

k

)

un+1
m + θ

un+1
m−1 − 2 un+1

m + un+1
m+1

h2

=
(

θ Jnm −
1

k

)

unm − (1− θ)
unm−1 − 2 unm + unm+1

h2

−unm(1− unm). (103)
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TABLE 1 | L1 and L∞ errors at some different values of time-step size, k with ρ = 1 at time, Tmax = 2.5× 10−3 with spatial mesh size, h = 0.01 using three methods.

Values of k
FTCS NSFD EEFD

L1 error L∞ error L1 error L∞ error L1 error L∞ error

Tmax/52 5.4192 × 10−9 6.3334 × 10−9 3.2264 × 10−8 3.7216 × 10−8 4.1091 × 10−9 5.1492 × 10−9

Tmax/100 2.8854 × 10−9 3.3694 × 10−9 1.7026 × 10−8 1.9624 × 10−8 2.0683 × 10−9 2.6091 × 10−9

Tmax/200 1.5135 × 10−9 1.7645 × 10−9 8.7757 × 10−9 1.0098 × 10−8 9.6251 × 10−10 1.2354 × 10−9

Tmax/300 1.0563 × 10−9 1.7645 × 10−9 6.0260 × 10−9 6.0260 × 10−9 5.9431 × 10−10 7.7761 × 10−10

Tmax/400 8.2780 × 10−10 9.6234 × 10−10 4.6512 × 10−9 5.3361 × 10−9 4.1024 × 10−10 5.4763 × 10−10

Tmax/500 6.9066 × 10−10 8.0194 × 10−10 3.8264 × 10−9 4.3837 × 10−9 2.9973 × 10−10 4.1032 × 10−10

Tmax/600 5.9924 × 10−10 6.9502 × 10−10 3.2766 × 10−9 3.7488 × 10−9 2.2612 × 10−10 3.1904 × 10−10

Tmax/700 5.3392 × 10−10 6.1863 × 10−10 2.8838 × 10−9 3.2954 × 10−9 1.7352 × 10−10 2.5366 × 10−10

Tmax/800 4.8495 × 10−10 5.6136 × 10−10 2.5894 × 10−9 2.9554 × 10−9 1.3402 × 10−10 2.0476 × 10−10

Tmax/900 4.4686 × 10−10 5.1681 × 10−10 2.3602 × 10−9 2.6910 × 10−9 1.0334 × 10−10 1.6694 × 10−10

Tmax/1,000 4.1639 × 10−10 4.8117 × 10−10 2.1769 × 10−9 2.4795 × 10−9 7.8784 × 10−11 1.3668 × 10−10

Tmax/1,100 3.9144 × 10−10 4.5199 × 10−10 2.0269 × 10−9 2.3064 × 10−9 5.8705 × 10−11 1.1192 × 10−10

Tmax/1,200 3.7066 × 10−10 4.2769 × 10−10 1.9019 × 10−9 2.1622 × 10−9 4.1956 × 10−11 9.1419 × 10−11

Tmax/1,300 3.5308 × 10−10 4.0714 × 10−10 1.7962 × 10−9 2.0402 × 10−9 3.0241 × 10−11 7.4118 × 10−11

Tmax/1,400 3.3801 × 10−10 3.8953 × 10−10 1.7056 × 10−9 1.9356 × 10−9 2.3908 × 10−11 5.9401 × 10−11

Tmax/1,500 3.2496 × 10−10 3.7427 × 10−10 1.6270 × 10−9 1.8449 × 10−9 2.1174 × 10−11 4.6738 × 10−11

Tmax/1,600 3.1353 × 10−10 3.6091 × 10−10 1.5583 × 10−9 1.7656 × 10−9 2.0904 × 10−11 3.5802 × 10−11

Tmax/1,700 3.0345 × 10−10 3.4913 × 10−10 1.4976 × 10−9 1.6956 × 10−9 2.2344 × 10−11 4.2194 × 10−11

Tmax/1,800 2.9449 × 10−10 3.3866 × 10−10 1.4438 × 10−9 1.6335 × 10−10 2.4984 × 10−11 4.8536 × 10−11

Tmax/2,000 2.9449 × 10−10 3.3866 × 10−10 1.3521 × 10−9 1.5279 × 10−10 3.2504 × 10−11 5.9412 × 10−11

Bold values indicate the lowest errors.

TABLE 2 | L1 and L∞ errors at some different values of time-step size, k with ρ = 102 at time, Tmax = 2.5× 10−3 with spatial mesh size, h = 0.01 using three methods.

Values of k
FTCS NSFD EEFD

L1 error L∞ error L1 error L∞ error L1 error L∞ error

Tmax/52 3.2613 × 10−5 6.9142 × 10−5 6.3178 × 10−5 1.3471 × 10−4 2.2654 × 10−5 7.2263 × 10−5

Tmax/100 1.7120 × 10−5 3.6652 × 10−5 3.3705 × 10−5 7.2133 × 10−5 1.1628 × 10−5 3.7401 × 10−5

Tmax/200 8.7183 × 10−6 1.9060 × 10−5 1.7709 × 10−5 3.8414 × 10−5 5.6602 × 10−6 1.8584 × 10−5

Tmax/300 5.9159 × 10−6 1.3196 × 10−5 1.2371 × 10−5 2.7303 × 10−5 3.6732 × 10−6 1.2324 × 10−5

Tmax/400 4.5154 × 10−6 1.0268 × 10−5 9.7020× 10−6 2.1809× 10−5 2.6794 × 10−6 9.1874 × 10−6

Tmax/500 3.6749 × 10−6 8.5169 × 10−6 8.1001 × 10−6 1.8545 × 10−5 2.0833 × 10−6 7.3251 × 10−6

Tmax/600 3.1146 × 10−6 7.3489 × 10−6 7.0319 × 10−6 1.6379 × 10−5 1.6864 × 10−6 6.0864 × 10−6

Tmax/700 2.7143 × 10−6 6.5146 × 10−6 6.2689 × 10−6 1.4842 × 10−5 1.4024 × 10−6 5.2014 × 10−6

Tmax/800 2.4141 × 10−6 5.8925 × 10−6 5.6966 × 10−6 1.3689 × 10−5 1.1903 × 10−6 4.5376 × 10−6

Tmax/900 2.1806 × 10−6 5.4093 × 10−6 5.2515 × 10−6 1.2802 × 10−5 1.0244 × 10−6 4.0219 × 10−6

Tmax/1,000 1.9941 × 10−6 5.0227 × 10−6 4.8954 × 10−6 1.2093 × 10−5 8.9174 × 10−7 3.6143 × 10−6

Tmax/1,100 1.8416 × 10−6 4.7064 × 10−6 4.6040 × 10−6 1.1513 × 10−5 7.8356 × 10−7 3.2846 × 10−6

Tmax/1,200 1.7144 × 10−6 4.4428 × 10−6 4.3612 × 10−6 1.1030 × 10−5 7.0876 × 10−7 3.0099 × 10−6

Tmax/1,300 1.6068 × 10−6 4.2197 × 10−6 4.1557 × 10−6 1.0621 × 10−5 6.5558 × 10−7 2.7774 × 10−6

Tmax/1,400 1.5153 × 10−6 4.0298 × 10−6 3.9797 × 10−6 1.0274 × 10−5 6.1557 × 10−7 2.5767 × 10−6

Tmax/1,500 1.4371 × 10−6 3.8658 × 10−6 3.8279 × 10−6 9.9737 × 10−6 5.8466 × 10−7 2.4043 × 10−6

Tmax/1,600 1.3698 × 10−6 3.7222 × 10−6 3.6960 × 10−6 9.7113 × 10−6 5.6048 × 10−7 2.2528 × 10−6

Tmax/1,700 1.3113 × 10−6 3.5956 × 10−6 3.5803 × 10−6 9.4798 × 10−6 5.4168 × 10−7 2.1186 × 10−6

Tmax/1,800 1.2601 × 10−6 3.4830 × 10−6 3.4781 × 10−6 9.2740 × 10−6 5.2654 × 10−7 2.0034 × 10−6

Tmax/2,000 1.1748 × 10−6 3.2916 × 10−6 3.3055 × 10−6 8.9242 × 10−6 5.0458 × 10−7 1.807 × 10−6

Bold values indicate the lowest errors.
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TABLE 3 | L1 and L∞ errors at some different values of time-step size, k with ρ = 104 at time, Tmax = 2.5× 10−3 with spatial mesh size, h = 0.01 using three methods.

Values of k
FTCS NSFD EEFD

L1 error L∞ error L1 error L∞ error L1 error L∞ error

Tmax/52 3.6440 × 10−1 1.6012 1.1960 × 10−1 9.1526 × 10−1 over flow over flow

Tmax/100 6.5143 × 10−2 6.9877 × 10−1 7.0119 × 10−2 7.1253 × 10−1 1.3594 × 10−2 1.5978 × 10−1

Tmax/200 3.2980 × 10−2 3.9927 × 10−1 3.6170 × 10−2 4.1776 × 10−1 1.0084 × 10−2 1.1786 × 10−1

Tmax/300 2.0726 × 10−2 2.5613 × 10−1 2.3034 × 10−2 2.7854 × 10−1 8.9264 × 10−3 1.0476 × 10−1

Tmax/400 1.4262 × 10−2 1.7830 × 10−1 1.6098× 10−2 1.9602× 10−1 8.3519 × 10−3 9.8394 × 10−2

Tmax/500 1.0268 × 10−2 1.2943 × 10−1 1.1810 × 10−2 1.4691 × 10−1 8.0087 × 10−3 9.4591 × 10−2

Tmax/600 7.5556 × 10−3 9.5604 × 10−2 8.8965 × 10−3 1.1270 × 10−1 7.7810 × 10−3 9.2071 × 10−2

Tmax/700 5.5928 × 10−3 7.1037 × 10−2 6.7882 × 10−3 8.7558 × 10−2 7.6182 × 10−3 9.0294 × 10−2

Tmax/800 4.1067 × 10−3 5.2473 × 10−2 5.1924 × 10−3 6.8387 × 10−2 7.4974 × 10−3 8.8949 × 10−2

Tmax/900 2.9425 × 10−3 3.7988 × 10−2 3.9442 × 10−3 5.3326 × 10−2 7.4020 × 10−3 8.7921 × 10−2

Tmax/1, 000 2.0059 × 10−3 2.6389 × 10−2 2.9442 × 10−3 4.1202 × 10−2 7.3264 × 10−3 8.7094 × 10−2

Tmax/1,100 1.2403 × 10−3 1.6901 × 10−2 2.1334 × 10−3 3.1242 × 10−2 7.2643 × 10−3 8.6421 × 10−2

Tmax/1,200 6.2582 × 10−4 9.0012 × 10−3 1.4824 × 10−3 2.2920 × 10−2 7.2120 × 10−3 8.5864 × 10−2

Tmax/1,300 1.9347× 10−4 2.3239× 10−3 9.7801 × 10−4 1.5866 × 10−2 7.1694 × 10−3 8.5384 × 10−2

Tmax/1,400 4.2509 × 10−4 4.3457 × 10−3 6.3252 × 10−4 9.8126 × 10−3 7.1310 × 10−3 8.4982 × 10−2

Tmax/1,500 8.3336 × 10−4 8.7691 × 10−3 4.5235× 10−4 4.5623× 10−3 7.0992 × 10−3 8.4631 × 10−2

Tmax/1,600 1.1913 × 10−3 1.3138 × 10−2 5.0611 × 10−4 5.3708 × 10−3 7.0703 × 10−3 8.4321 × 10−2

Tmax/1,700 1.5077 × 10−3 1.7003 × 10−2 8.4385 × 10−4 7.6874 × 10−3 7.0451 × 10−3 8.4052 × 10−2

Tmax/1,800 1.7895 × 10−3 2.0446 × 10−2 1.1467 × 10−3 1.0154 × 10−2 7.0231 × 10−3 8.3812 × 10−2

Tmax/2,000 1.5538 × 10−2 1.8402 × 10−1 1.6628 × 10−3 1.5383 × 10−2 6.9852× 10−3 8.3399× 10−2

Bold values indicate the lowest errors.

Let
(

θ Jnm − 1
k

)

un+1
m + θ

un+1
m−1−2 un+1

m +un+1
m+1

h2
= zn+1

m .
Equation (103) becomes

zn+1
m =

(

θ Jnm −
1

k

)

unm − (1− θ)
unm−1 − 2 unm + unm+1

h2

−unm(1− unm) (104)

which accounts for diffusion, reaction, and transient effects in
the differential operator [25]. The solution of Equation (104)
depends on the sign of Dn

m ≡ θ Jnm − 1
k
. We have the following

three cases:

a) If Dn
m = 0, the solution of Equation (104) subject to the

condition (102) gives the finite difference expression

zn+1
m =

unm−1 − 2 unm + unm+1

h2
. (105)

b) If Dn
m = −θ (λm)2 < 0,the solution of Equation (104) subject

to the condition (102) gives the three-point finite difference
expression

zn+1
m =

Dn
m

2

(

unm−1 − 2 cosh(λm h) unm + unm+1

1− cosh(λm h)

)

. (106)

c) If Dn
m = θ (λm)2 > 0, the solution of Equation (104) subject

to the condition (102) gives the three-point finite difference
expression

zn+1
m =

Dn
m

2

(

unm−1 − 2 cos(λm h) unm + unm+1

1− cos(λm h)

)

. (107)

REMARK 1. We can make the following remarks

a) The values θ = 1
2 , 1, corresponding to the time linearization

methods.
b) The quasilinear full exponential corresponds to the iterative

solution of

zi+1
m = −(1− θ)

unm−1 − 2 unm + unm+1

h2

−(1− θ) unm(1− unm)− θ uim(1− uim)+ θ Jim uim −
unm
k
(108)

for i = 1, 2 , ·· , n − 1, have analogous solutions to those
reported in time-linearized full exponential techniques section
and the cases θ = 1

2 and 1, corresponding to the quasilinear
methods.

7.1.2. Time-Linearized Exponential Techniques

The time-linearized exponential techniques presented in this
section consider the following differential operator.

θ Jnm un+1
m + θ

un+1
m−1 − 2 un+1

m + un+1
m+1

h2
= θ Jnm unm

−(1− θ)
unm−1 − 2 unm + unm+1

h2
+

um − unm
k

−unm(1− unm) (109)
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A

B

C

FIGURE 1 | Plot of initial solution, numerical solution of (FTCS), NSFD, and EEFD respectively in (A–C) and exact solution against x at time, Tmax = 2.5× 10−3 using

h = 0.01 and optimal value of time step size of k for three different values of ρ namely 1, 102, and 104.

Let θ Jnm un+1
m + θ

un+1
m−1−2 un+1

m +un+1
m+1

h2
= zn+1

m . The Equation (109)
becomes

zn+1
m = θ Jnm unm − (1− θ)

unm−1 − 2 unm + unm+1

h2

+
um − unm

k
− unm(1− unm) (110)

which only accounts for reaction and diffusion processes
and whose solutions depend on the sign of Jnm. We
have therefore the solution of Equation (110) subject
to the condition (Equation 102) gives the solution in
form of:

a) If Jnm = 0

um−1 −
(

2+
h2

k

)

um + um+1

= −
h2

k
(unm + k unm (1− unm)), tn < t < tn+1. (111)

b) If Jnm = −(λm)2 < 0

um−1 −
2+ (k Jnm − 1)(e−λm h + eλm h)

k Jnm
um

+um+1

=
2− (e−λm h + eλm h)

k Jnm
[−um + k (Jnm um − unm (1− unm))],

tn < t < tn+1. (112)
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c) If Jnm = (λm)2 > 0

um−1 − 2
1+ (k Jnm − 1)cos(λm h)

k Jnm
um + um+1

= 2
1− (cos(λm h)

k Jnm
[−um + k (Jnm um − unm (1− unm))],

tn < t < tn+1. (113)

REMARK 2. The quasilinear full exponential corresponds to the
iterative solution of

θ Jim un+1
m + θ

un+1
m−1 − 2 un+1

m + un+1
m+1

h2
= θ Jnm unm

−(1− θ)
unm−1 − 2 unm + unm+1

h2
+

um − unm
k

−(1− θ) unm(1− unm)− θ uim (1− uim) (114)

for i = 1, 2 · · · n− 1, have analogous solutions to those reported
in time-linearized exponential techniques Section 7.1.2.

REMARK 3. The principal primacy of the full exponential
techniques is that they reckon for the reaction, diffusion,
and transient terms in finding the homogeneous solution of
Equation (103). Notwithstanding, this technique also has the
disadvantage that the time step cannot be chosen carelessly
because, if k ≪ 1

θ Jni
then the reaction terms do not influence the

values of λm despite the fact that they do influence the particular
solution of Equation (103) through zn+1

m . On top of that, the
portion of the transient term influences the ordinary differential
operator and, therefore, the homogeneous solution, though the
other part influences the particular solution. These obstacles are
fully suppressed with the exponential techniques displayed in the
time-linearized exponential techniques and the quasilinear full
exponential in Section 7.1.2.

THEOREM 5. Ramos [25]. The schemes displayed in
Equations (100) and (101) are convergent and convergence
is reached when

(enm)
2 =

1

N

N
∑

j=1

(ui+1
j − uij)

2 ≤ 10−|α| (115)

where i = 1, 2 · · ·n and |α| is an integer obtained from numerical
computation, N denotes the number of grid points, and enm is the
error which is defined by enm = unm − vnm.

Proof. The full proof of this theorem is detailed in Ramos [25].

8. NUMERICAL RESULTS

The stability region of FTCS is k ≤ h2

2 . For h = 0.01, we
obtain k ≤ 5 × 10−5. In the case of NSFD, the condition for

TABLE 4 | Rate of convergence in time for FTCS using different values of ρ at

time, Tmax = 2.5 × 10−3 with h = 0.01.

Values

of ρ

Values of k Rate of convergence

in time using L1

Rate of convergence

in time using L∞

error

1 Tmax/100

Tmax/200 0.9309 0.9332

Tmax/400 0.8705 0.8746

Tmax/800 0.7714 0.7776

102 Tmax/100

Tmax/200 0.9736 0.9433

Tmax/400 0.9492 0.8924

Tmax/800 0.9034 0.8012

104 Tmax/100

Tmax/200 0.9820 0.8075

Tmax/400 1.2094 1.1631

TABLE 5 | Rate of convergence in time for NSFD using different values of ρ at

time, Tmax = 2.5 × 10−3 with h = 0.01.

Values

of ρ

Values of k Rate of convergence

in time using L1

Rate of convergence

in time using L∞

error

1 Tmax/100

Tmax/200 0.9561 0.9585

Tmax/400 0.9159 0.9202

102 Tmax/100

Tmax/200 0.9284 0.9090

Tmax/400 0.8681 0.8167

104 Tmax/100

Tmax/200 0.9769 0.7702

TABLE 6 | Rate of convergence in time for EEFD using different values of ρ at

time, Tmax = 2.5 × 10−3 with h = 0.01.

Values

of ρ

Values of k Rate of convergence

in time using L1

Rate of convergence

in time using L∞

error

1 Tmax/100

Tmax/200 1.1030 1.0795

Tmax/400 1.2306 1.1727

102 Tmax/100

Tmax/200 1.0384 1.0091

Tmax/400 1.0789 1.0162

Tmax/800 1.1714 1.0176

104 Tmax/100

Tmax/200 0.4317 0.4388

positivity gives φ(k) ≤ h2

2 where φ(k) = 1−eλ k

λ
. We tabulate

L1 and L∞ errors at certain values of k using ρ = 1, h = 0.01,
at time, Tmax = 2.5 × 10−3 using FTCS, NSFD, and EEFD
schemes at certain various values of time-step size as chosen from
Tmax/52, Tmax/100, Tmax/200, · · · , Tmax/1,800, Tmax/1,900 and
Tmax/2,000. The errors are shown in Table 1.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 15 July 2022 | Volume 8 | Article 921170

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Agbavon et al. Convergence Analysis

In the case of FTCS, NSFD, minimum L1, and L∞ errors occur
at k = Tmax/2,000 while in the case of EEFD, the errors are least
k = Tmax/1,600. The least error is of order 10−9 and 10−10 in
the case of NSFD and FTCS respectively while the least error is
of order 10−11 in the case of EEFD. EEFD is a better scheme than
FTCS at all values of k used.

We obtain values for L1 and L∞ errors at certain values of k
using ρ = 102, h = 0.01, at time, Tmax = 2.5 × 10−3 using the
three methods in Table 2. The schemes behave differently. In all
the three methods FTCS, NSFD, and EEFD, the L1 and L∞ errors
keep on decreasing as the values of k are decreased gradually from
k = Tmax/52 to k = Tmax/2,000.

L1 and L∞ errors for the third case using ρ = 104,
h = 0.01 are displayed in Table 3. Again, the schemes behave
differently from each other. Optimal k using FTCS occurs when
k ≅ Tmax/1,300. The optimal k using NSFD and EEFD
are k ≅ Tmax/1,500 and k ≅ Tmax/2,000, respectively.
Once that optimal is reached the error starts increasing again.
The least L1 and L∞ errors using NSFD are 4.5235 × 10−4

and 4.5623 × 10−3. The corresponding errors are 1.9347 ×
10−4 and 2.3239 × 10−3 when FTCS is used. In the case of
EEFD, least L1 is 6.9852 × 10−3 and least L∞ is 8.3399 ×
10−2.

We obtain plots of numerical solution vs. x at time, Tmax =
2.5 × 10−3 using three methods FTCS, NSFD, and EEFD in
Figure 1.

9. CONCLUSION

We have investigated in this paper the spectral analysis and
optimal step sizes for some finite difference methods discretising
Fisher’s equation. We used three methods namely; FTCS, NSFD,
and EEFD in order to solve Fisher’s equation with a coefficient
of reaction being 10, 102, and 104. We studied the properties of
the methods such stability, positivity, and boundedness. This is
the one of rare article which includes the estimate errors for the
methods studied. Numerical results are displayed at optimal time
step size with h = 0.01 for the three cases for the three methods
used. We also obtained numerically the rate of convergence as
shown in Tables 4–6. We have shown from Tables 1–3 that all
the three methods (FTCS, NSFD, and EEFD) perform well for the
small coefficient of reaction. It is worthymentioning that freezing
coefficient technique with Von Neumann Stability Analysis only
present an approximate stability region for standard methods
discretising non linear partial differential equations which might

give reason to the standard method in Table 1 to perform
better than the NSFD. Furthermore the NSFD in regard to
the discrete representation derivative in Mickens [39] rule has
nontrivial denominator function and make use of positivity and
boundedness conditions. Finally the results are dependent on
initial conditions used. For ρ = 1, the difference in L1 and
L∞ errors from the three methods is very small which lead to
conclude that the best methods are FTCS and NSFD. Also for
ρ = 102 and ρ = 104, the best method are EEFD and NSFD,
respectively. Our results matched with the one found in Lubuma
and Roux [47] for numerical experiment for small reaction
term. Moreover, Lubuma and Roux [47] proved that NSFD is
elementary stable. As NSFDmethods, the EEFD displayed in this
article do not require any knowledge of the exact solution of the
differential equation. Contrast to that, the best finite difference
scheme is stable for large grid sizes but costly in inaccuracies at
the propagation front.
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