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ABSTRACT 
Intrusion detection systems (IDSs) have received great interest in computer science, along with increased 

network productivity and security threats. The purpose of this study is to determine whether the incoming 

network traffic is normal or an attack based on 41 features in the NSL-KDD dataset. In this paper, the 

performance of a stacking technique for network intrusion detection was analysed. Stacking technique is an 

ensemble approach which is used for combining various classification methods to produce a preferable classifier. 
Stacking models were trained on the NSLKDD training dataset and evaluated on the NSLKDDTest+ and 

NSLKDDTest21 test datasets. In the stacking technique, four different algorithms were used as base learners and 

an algorithm was used as a stacking meta learner. Logistic Regression (LR), Decision Trees (DT), Artificial 

Neural Networks (ANN), and K Nearest Neighbor (KNN) are the base learner models and Support Vector 

Machine (SVM) model is the meta learner. The proposed models were evaluated using accuracy rate and other 

performance metrics of classification. Experimental results showed that stacking significantly improved the 

performance of intrusion detection systems. The ensemble classifier (DT-LR-ANN + SVM) model achieved the 

best accuracy results with 90.57% in the NSLKDDTest + dataset and 84.32% in the NSLKDDTest21 dataset. 
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Saldırı Tespit Sistemi İçin İstifleme Topluluk Öğrenme Yaklaşımı 
 

ÖZ 
Saldırı tespit sistemleri (STS'ler), artan ağ verimliliği ve güvenlik tehditlerinin yanı sıra bilgisayar bilimlerinde 

de büyük ilgi görmüştür. Bu çalışmanın amacı, NSL-KDD veri kümesindeki 41 özelliğe bağlı olarak gelen ağ 

trafiğinin, normal veya saldırı olup olmadığını belirlemektir. Bu yazıda, ağ izinsiz giriş tespiti için bir istifleme 

tekniğinin performansı analiz edilmiştir. İstifleme tekniği, tercih edilebilir bir sınıflandırıcı üretmek için çeşitli 
sınıflandırma yöntemlerini birleştirerek kullanılan bir topluluk yaklaşımıdır. İstifleme modelleri NSLKDD 

eğitim veri seti üzerinde eğitilmiş ve NSLKDDTest+ ve NSLKDDTest21 test veri setleri üzerinde test edilmiştir. 

İstifleme tekniğinde temel öğrenenler olarak dört farklı algoritma ve istifleme meta öğrenicisi olarak bir 

algoritma kullanılmıştır. Lojistik Regresyon (LR), Karar Ağaçları (KA), Yapay Sinir Ağları (YSA) ve K En 

Yakın Komşu (KEYK) temel öğrenici modelleridir ve Destek Vektör Makinesi (DVM) modeli meta öğrenicidir. 

Önerilen modeller,  doğruluk oranı ve sınıflandırmanın diğer performans metrikleri kullanılarak 

değerlendirilmiştir. Deney sonuçları istiflemenin saldırı tespit sisteminin performansını önemli ölçüde artırdığını 

göstermiştir. Topluluk sınıflandırıcısı (KA-LR-YSA + DVM) modeli, NSLKDDTest+ veri kümesinde %90.57 

ve NSLKDDTest21 veri kümesinde %84.32 ile en iyi sonuçlara ulaşmıştır. 
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I. INTRODUCTION 
 

Over the past decades, the Internet has become an indispensable part of our daily lives and day-to-day 

growth of the Internet has made it an impeccable space for attackers [1]. Because of the faintness of 

computer systems' security, many of the computer networks have been exposed to hackers’ attacks. 
According to the 2017 Cybercrime Report, cybercrime activity is one of the largest challenges over the 

next twenty years and Cybersecurity Ventures projected that cybercrime will cost the world $6 trillion 

yearly by 2021, up from $3 trillion in 2015 [2]. Although using firewalls and some access control 
mechanisms are the most preferred techniques for intrusion detection/prevention systems, they fail 

when the attacker is within the network or when using unknown attack types [3]. Therefore, providing 

network security is very important to ensure the confidentiality and integrity of data. 

 
Intrusion Detection Systems (IDS) are defined as tools, processes and applications that include 

monitoring and analyzing of network traffic for the detection of unauthorized attacks, violations and 

threats[4]. Basically, it is a service used to protect the network and traffic from malicious activity and 
to prevent the network from attackers' unauthorized access. Most of the Intrusion Detection Systems 

use one of two detection methods: signature based intrusion detection systems and anomaly detection 

based intrusion detection systems [5]. Basically, signature based detection is utilized to search harmful 
package strings in network traffic and compare them with previously identified attacks while anomaly 

detection is more appropriate to detect unknown attacks based on the profiles recognizing normal (and 

anomalous) behaviors. Obviously, the main purpose of these techniques is to detect the intrusions for 

better preparation against future attacks [6].  
 

Ensemble learning is the machine learning technique which combines a set of classifiers to improve 

accuracy performance in many classification problems. It is accepted that the ensemble classifier can 
perform better than a single classifier in terms of accuracy and robustness [7]. Therefore, in this study, 

a new stacking-based ensemble method approach, which provides both high accuracy and good 

interpretability, is proposed for network intrusion detection. 
 

This manuscript is arranged as follows. Section II gives an extensive review of ensemble learning 

approaches for intrusion detection. Section III explains the ensemble learning methods and assessment 

metrics in detail. Section IV explains the data and presents the experimental studies. Section V 
presents the stacking models' results and comparison analyzes. At last, the paper is concluded by 

Section VI. 

 

 

II. RELATED WORK 
 
Various ensemble learning models were suggested in the literature to improve the detection of 

anomaly in the computer network traffic. Gyanchandani et al. utilized the decision tree algorithm in 
boosting, bagging and stacking ensemble techniques. They used NSL-KDD dataset and compared 

their model for classification but did not test it on unseen attacks [8]. Bahri et al. used a hybrid model 

based upon a Greedy-Boost ensemble technique. They utilized KDD 99 dataset in their study and used 

the AdaBoost, C4.5, and Greedy-Boost algorithms. They measured the precision and recall metrics for 
the performance of models. Their findings stated that their strategy was great in identifying rare 

attacks, however was not tried on unknown attacks [9]. In another study, to solve the problem of 

intrusion detection, Syarif et al. utilized four different classification algorithms for boosting, bagging, 
and stacking ensemble methods. Their methodology accomplished more than 99% accuracy rate at 

known intrusions detection. But, the accuracy rate was just 60% at detecting new types of intrusions 

[10]. Shrivas et al. developed an ensemble technique for detecting intrusion. They utilized gain ratio 

for feature selection and a Bayesian network and artificial neural network algorithms as base learners 
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of classification [11]. In their study Gaikwad and Thool utilized a bagging ensemble method for 

intrusion detection problems. They used genetic algorithms for feature selection and used partial 
decision tree-based classifiers for the ensemble technique. Although the ensemble approach utilized in 

their study reduced the model-building time, the findings showed that the C4.5 algorithm had better 

results than the bagged PART ensemble technique [12]. Tama and Rhee studied an ensemble 
technique on the NSL-KDD dataset. For binary classification they used the majority voting method 

and the averaging of posterior probabilities. Their findings stated that the averaging of posterior 

probabilities method accomplished the highest performance. But they did not test the model on 

unknown attacks [13]. In the other study, Choudry and Bhowal developed an ensemble approach 
based on bagging, boosting and stacking. They utilized NSL-KDD dataset for the binary classification. 

They also compared machine learning algorithms with ensemble methods and the findings stated that 

the Boosting algorithm had the best performance [14]. Thaseen and Kumar utilized principal 
component analysis (PCA) and support vector machines (SVM) with RBF kernel for intrusion 

detection. They noted that the proposed model could better detect minor U2R and R2L attacks [15]. 

 
In addition, there were studies using deep learning algorithms to detect anomalies in computer 

network traffic in recent years. Naseer et al., have done a comprehensive study. They evolved different 

intrusion detection models including autoencoders, convolutional neural networks (CNN), and 

recurrent neural networks (RNN). They used the NSL-KDD training data set for training and the 
NSLKDDTest + and NSLKDDTest21 test datasets for evaluating the models. Experimental results of 

deep IDS models showed that Long Short Term Memory (LSTM) model achieved the best accuracy 

results with 89% in the NSLKDDTest+ dataset and 80% in the NSLKDDTest21 dataset [16]. Aygun 
and Yavuz used the deterministic autoencoders (AE) and the stochastic denoising auto encoders 

(DAE) models for IDS and compared the achievements of the models. Their results noted that the 

suggested AE and DAE models perform almost the same accuracy rate of 88.28% and 88.65% 

respectively [17]. Yin et al., developed a deep learning method for intrusion detection including RNN. 
They compared RNN model with traditional machine learning classification methods. The 

experimental results showed that RNN works with a good detection rate, 83.28% for NSLKDDTest+ 

dataset and 68.55% for the KDDTest21 dataset [18].Shone et al, proposed a new deep learning model 
based on nonsymmetric deep autocoder and tested the performance of this model using KDD Cup '99 

and NSL-KDD datasets. According to the test results obtained in the study, they reported that the 

proposed method achieved promising success when compared with the existing approaches [19].Tang 
et al, proposed a new deep learning model for network intrusion detection based on Software Defined 

Networking (SDN), which is called DeepIDS. They tested the performance of the proposed model on 

the NSL-KDD data set with two different deep learning algorithms as anomaly detector. The authors 

stated that the performance of the model was acceptable according to the results obtained in 
experimental studies [20]. 

 

The findings from the previous studies mentioned above show that many studies have been carried out 
on network intrusion detection, but there are still gaps for improvement with new studies. For this 

reason, we believe that the stacking ensemble learning approach proposed in this article will provide a 

valid contribution to the existing literature with the high accuracy rate it achieves. 
 

 

III. MATERIALS AND METHODS 
 

A. CLASSIFIER COMBINATION TECHNIQUE 
 
An ensemble of classifiers is a group of methods that combines individual determinations for 

classifying new instances. The aim of combining classifiers is to increase a single classifier's accuracy 

[21]. Stacking is the acronym for Stacked Generalization [22]. It utilizes various learning techniques to 

produce the ensemble of classifiers, unlike bagging and boosting. The primary theme of stacking is to 
compound classifiers from various learners like support vector machines, decision trees, instance-

based learners, etc. Stacking does not use a voting process when combining the classifier, because if 
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most of the classifiers make poor predictions, that will make a poor classification. To tackle this issue, 

stacking utilizes the notion of meta classifier. The meta learner (or level-1 model), attempts to learn, 
using a learning algorithm, how to combine the predictions of the base classifiers (or level-0 models) 

[21]. 

 
In this study five types of classifiers such as Logistic Regression, Artificial Neural Networks, Decision 

Trees, K Nearest Neighbors and Support Vector Machines were used. The details of these classifiers 

were as follows: 

 
Logistic regression (LR) is a generalized theory of linear regression. LR is principally utilized to 

predict binary or multi-class dependent variables. LR investigates the relationship between the input 

variables and the output by predicting probabilities. As shown in Equation (1), LR measures the 
probability of Y by given X. 

 

𝑃 (𝑌 = 1|𝑋 = 𝑥) (1) 

 
The main purpose of LR is to utilize the linear regression, where the equation P of linear regression is 

given in Equation (2). 
 

𝑤1𝑥1 + 𝑤2𝑥2 + ⋯ =  ∑ 𝑤𝑖𝑥𝑖     (2) 

 

In equation (3) logit transformation is used to transform linear regression to LR and equation (4) gives 

the solving of P [23]. 
 

log
𝑃(𝑥)

1 − 𝑃(𝑥)
 (3) 

𝑃 =  
𝑒∑ 𝑤𝑖𝑥𝑖

1 + 𝑒∑ 𝑤𝑖𝑥𝑖
=  

1

1 + 𝑒− ∑ 𝑤𝑖𝑥𝑖
 

(4) 

 

Artificial neural networks (ANNs) are mathematical methods that can model highly complicated non-

linear functions inspired by biological systems [24]. Artificial neural networks suggest that the 
nonlinear relationship between dependent variable and independent variables is entirely based upon 

data without statistical hypothesis. The ANN model is composed of layers with interconnected 

neurons.The multi-layer perceptron model has an input layer, one or more hidden layers, and an output 

layer. Neurons in the input layer distribute the input signal to the neurons in the hidden layer. In the 
hidden layer, the information from the input layer is processed and transmitted to the output layer. In 

the output layer, the information coming from the hidden layer is processed and the output produced 

by the network for the input provided to the network from the input layer is presented to the outside 
world. [25]. 

 

Decision tree (DT) is a type of supervised learning algorithm that is mostly used in classification 
problems. Basically a DT consists of a set of nodes and each node involves a rule for each attribute. 

An instance that is to be classified is tested according to the node rules by moving down the tree 

branch, beginning from the root node. The process is reiterated until the leaf nodes for all subtrees. 

Then each leaf is marked as the best class or it could involve the probability of the target class [26]. In 
order to obtain the highest possible estimation accuracy, decision tree algorithm separates observations 

in branches recursively for constructing a tree. To do this, various algorithms such as information gain, 

Gini index, Chi-square statistics, etc. are used to define the threshold value to divide the observation 
pool into two or more subgroups. 

 

The k-nearest neighbor (k-NN) is a straightforward and efficient method for classifying objects based 
on the nearest instances of training in the feature space [27]. For classification, k-NN algorithm 

evaluates the class of the nearest neighbor according to the given K value. In this algorithm, the 
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classification of a vector is found by using known vectors. When a sample is selected for the test, to 

determine the class of this sample k samples are selected that are closest to the sample. Which class 
has the most examples in the selected set of samples, the tested sample is included in this class. In k-

NN, the Euclidean distance is often utilized to measure the distances of two samples: 

 

𝑑2(𝑥𝑖 , 𝑥𝑗) =  ‖𝑥𝑖 −  𝑥𝑗‖
2

=  ∑(𝑥𝑖𝑘 − 𝑥𝑗𝑘)2

𝑑

𝑘=1

 (5) 

 

where (𝑥𝑖 , 𝑥𝑗) ∈ Rd,𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2,…, 𝑥𝑖𝑑).In this study the k value was determined by an iterative 

experimentation process.  

 

Support vector machines (SVMs)are a member of the generalized linear models' family and they aim to 

obtain an estimation with a linear combination of variable features [28]. SVM uses nonlinear kernel 
functions to convert input data into a high-dimensional property field that becomes more manageable 

than the original input field [29]. Basically, the objective of SVM is to discover a formulation of a 

hyperplane which distinguishesthe training data. It tries to find the optimal hyperplane by maximizing 
the distance between the two closest samples in two-class problems to leave data points of the same 

class on the same side of the hyperplane. While this hyperplane is called optimal hyperplane, the 

closest vectors on both sides of this hyperplane are called support vectors. After the formulation is 

determined for the optimal hyperplane, this formulation can be used as a model for assigning new data 
into a class. 

 

B. PERFORMANCE METRICS 
 

The performances of stacking model discussed in this study were measured using different metrics 

such as Overall Accuracy (ACC), True Positive Rate (TPR), True Negative Rate (TNR), False 
Positive Rate (FPR), and False Negative Rate (FNR). Overall Accuracy estimates the ratio of the 

correctly recognized records to the whole test dataset. The performance metrics were calculated using 

following formulas: 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑟𝑎𝑡𝑒 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(6) 

 

𝑇𝑃𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(7) 

 

𝑇𝑁𝑅 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

(8) 

 

𝐹𝑃𝑅 =  
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

(9) 

 

𝐹𝑁𝑅 =  
𝐹𝑁

𝐹𝑁 + 𝑇𝑃
 

(10) 

 

 

True Positive (TP), if the model classifies an attack as an attack, the result is recognized as TP.False 
Negative (FN), if the model classifies an attack as a normal instance, the result is recognized as 

FN.False Positive (FP), if the model classifies a normal instance is as an attack, the result is 

recognized as FP. True Negative (TN), if the model classifies a normal instance as a normal instance, 
the result is recognized as TN.The values of correctly or incorrectly predicted samples such as TP, FN, 

FP, and TN were presented in Table 1 in the form of a confusion matrix. 
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Table 1. Confusion matrix 

 

 Predicted Class 

Actual 
Class 

 Attack Normal 

Attack TP FN 

Normal FP TN 

 

IV. EXPERIMENTS 
 

A. DATASET 

 
KDDCUP’99 dataset is the most widely used dataset to test the models developed for detecting 

abnormalities in computer network traffic. However, in the studies carried out on this dataset, 
researchers have determined that some conditions negatively affect the success of the models. In order 

to solve these problems, some records in the KDDCUP’99 dataset were eliminated and a new dataset 

called NSL-KDD was created for testing the proposed systems [30]. For this reason, the NSL-KDD 

dataset was used to evaluate the accuracy performances of proposed ensemble methods. The NSL-
KDDtrain dataset contains a total of 125973 records of different attack types and normal data traffic 

[31].  Each record of the network traffic is represented by 41 features [30]. Details of training and 

testing records of the NSL-KDD dataset and feature descriptions are indicated in Table2 and Table3, 
respectively [32]. 

 
Table 2. Training and testing records of the NSL-KDD dataset 

 
 Description NSLKDDTrain+ NSLKDDTest+ NSLKDDTest21 

Normal Connections are normal 67343 9711 2152 

Attack DoS, Probe, R2L, U2R 58630 12833 9698 

Total  125973 22544 11850 

 
Table 3. Features of NSL-KDD dataset 

 
Number Features Types Number Features Types 

1 Duration Numeric 22 is_guest_login Binary 

2 Protocol_type Nominal 23 count Numeric 

3 Service Nominal 24 srv_count Numeric 

4 Flag Nominal 25 serror_rate Numeric 

5 src_bytes  26 srv_serror_rate Numeric 

6 dst_bytes Numeric 27 rerror_rate Numeric 

7 Land Binary 28 srv_rerror_rate Numeric 

8 wrong_fragment Numeric 29 same_srv_rate Numeric 

9 urgent Numeric 30 diff_srv_rate Numeric 

10 hot Numeric 31 srv_diff_host_rate Numeric 

11 num_failed_logins Numeric 32 dst_host_count Numeric 

12 logged_in Binary 33 dst_host_srv_count Numeric 

13 num_compromised Numeric 34 dst_host_same_srv_rate Numeric 

14 root_shell Binary 35 dst_host_diff_srv_rate Numeric 

15 su_attempted Binary 36 dst_host_same_src_port_rate Numeric 

16 num_root Numeric 37 dst_host_srv_diff_host_rate Numeric 

17 num_file_creations Numeric 38 dst_host_serror_rate Numeric 



1335 

 

18 num_shells Numeric 39 dst_host_srv_serror_rate Numeric 

19 num_access_files Numeric 40 dst_host_rerror_rate Numeric 

20 num_outbound_cmds Numeric 41 dst_host_srv_rerror_rate Numeric 

21 is_host_login Binary    

 

 

B. TRAINING 

 
In this stacking model, which is proposed using the supervised learning approach,first the base 
learners were trained from the initial (base-level) training sets. Then the predictions by the learned 

classifiers were generated on a distinct validation dataset. And then a meta-level training set was 

composed from the validation set and the predictions produced by the classifiers on the validation set. 
Finally, the meta classifier was trained from the meta-level training set. The stacking architecture used 

to detect anomalies in this study is presented in Fig. 1. 

 

 
 

Figure 1.The stacking architecture used to detect anomalies 

 

In the stacking technique, four different algorithms were used as base learners and an algorithm was 
used as a stacking meta learner. Different combinations of LR, DT, ANN, and KNN models were 

applied. Table 4 presents the stacking model combinations. 

 
Table4.Stacking model combinations 

 

MODEL BASE LEARNERS STACKING MODEL LEARNER 

Stacking Model 1 

Decision Tree 

Support Vector Machines K-Nearest Neighbor 

Logistic Regression 

Stacking Model 2 

Decision Tree 

Support Vector Machines Artificial Neural Network 

Logistic Regression 

Stacking Model 3 

K-Nearest Neighbor 

Support Vector Machines Logistic Regression 

Artificial Neural Network 

Stacking Model 4 

Decision Tree 

Support Vector Machines Artificial Neural Network 

K-Nearest Neighbor 
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As a result of the experiments, the ANN architecture consists of one input layer, two hidden layers and 

one output layer. The neuron numbers of the input layer relies on the type and amount of variables in 
the dataset (41 for this research). The neuron numbers of the output layer relies on the count of class 

labels connected with the researched classification case (2 for this research). To find the optimum 

number of neurons for each hidden layer, different numbers of neurons were tested. The best results 
were obtained when 50 neurons were used in the first hidden layer and 20 in the second one.ReLU 

activation function was used in hidden layers.Adam was used as an optimizer and Keras binary cross-

entropy used as a loss function.Learning rate value was set to 0.001.The output layer activation 
function was softmax.To prevent overfitting, a dropout layer was added after each hidden layer and the 

dropout value was set to 0.3. Batch size was set to 32 and the training was completed in 14 epochs.In 

applying the DT method, the Gini index algorithm was used to measure the quality of a division, and 

the maximum tree depth was not limited. In applying the KNN method, it was found that the best 
result was obtained when the k value was selected as 12.Polynomial kernel was used in SVM and it 

was set as degree 15. 

 
 

V. RESULTS AND EVALUATIONS 
 

In this study, a stacking-based approach was presented to determine whether the incoming network 

traffic is normal or an attack. The focus of the study was to demonstrate the performance of stacking 

technique for network intrusion detection. All the codes prepared for the proposed approach were 
implemented with Scikit-learn library [33] written in Python language. All experimental studies were 

performed on both NSLKDDTest + and NSLKDDTest21 data sets in order to measure the 

performance of stacking models. In this context, the general accuracy, TPR, TNR, FPR and FNR 
values obtained from all models in the test data set for the NSLKDDTest + and NSLKDDTest21 

dataset were given in Table 5 and Table 6, respectively. Then the performance of the proposed 

approach was compared with other studies in this field. 

 
Table 5.Prediction Results of Stacking Models 

 

 NSLKDDTest+ NSLKDDTest21 

 
Overall 

Accuracy 
TNR TPR FNR FPR 

Overall 

Accuracy 
TNR TPR FNR FPR 

Stacking 

Model 1 

(DT-KNN-

LR + SVM) 

0,8334 0,9609 0,7369 0,2630 0,0390 0,6845 0,8317 0,6518 0,3481 0,1682 

Stacking 

Model 2 

(DT-ANN-

LR + SVM) 

0,9057 0,9049 0,9063 0,0936 0,0950 0,8432 0,6951 0,8760 0,1239 0,3048 

Stacking 

Model 3 

(ANN-

KNN-LR + 

SVM) 

0,8871 0,9048 0,8737 0,1262 0,0951 0,8082 0,6970 0,8329 0,1670 0,3029 

Stacking 

Model 4 

(DT-ANN-

KNN + 

SVM) 

0,8399 0,9596 0,7493 0,2506 0,0403 0,6968 0,8257 0,6682 0,3317 0,1742 
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Table 6.Predicted Evaluation Metrics of Stacking Models 

 

STACKING MODEL 1 (DT-KNN-LR + SVM) 

NSLKDDTest+ NSLKDDTest21 

 Attack Normal  Attack Normal 

Attack 9457 3376 Attack 6322 3376 

Normal 379 9332 Normal 362 1790 

STACKING MODEL 2 (DT-ANN-LR + SVM) 

NSLKDDTest+ NSLKDDTest21 

 Attack Normal  Attack Normal 

Attack 11631 1202 Attack 8496 1202 

Normal 923 8788 Normal 656 1496 

STACKING MODEL 3 (ANN-KNN-LR + SVM) 

NSLKDDTest+ NSLKDDTest21 

 Attack Normal  Attack Normal 

Attack 11213 1620 Attack 8078 1620 

Normal 924 8787 Normal 652 1500 

STACKING MODEL 4 (DT-ANN-KNN + SVM) 

NSLKDDTest+ NSLKDDTest21 

 Attack Normal  Attack Normal 

Attack 9616 3217 Attack 6481 3217 

Normal 392 9319 Normal 375 1777 

 

Accuracy results of stacking models were given in Figure 2. 

 

 
Figure 2.Comparison of stacking model accuracies applied on NSLKDDTest+ and NSLKDDTest21 datasets. 

 
There were research papers in the literature using the same training and testing strategy with our 

proposed study. In Table 7, we compared obtained results of our model with the results of these 
papers. 
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Table 7.Predicted Evaluation Metrics of Stacking Models 

 

COMPARISON  MODEL ACCURACY (%) 

 NSLKDDTest+ NSLKDDTest21 

NBTree[30] 82.02 66.16 

Decision Tree[34] 80.14 80.14 

Fuzzy Classifier[35] 82.74 - 

Random Tree+ NBTree[36] 89.24 80.0 

Long Short Term Memory LSTM[16] 89.0 83.0 

Denoising Autoencoder[17] 88.65 - 

Recurrent Neural Networks[18] 83.28 68.55 

StackingModel2 (Our approach) 90.57 84.32 

 
As can be seen in Table 7, some researchers used traditional methods for network intrusion detection 

[30, 34-36], some used deep learning methods [16-18].Tavallaee et al., introduced a new data set, 

called NSL-KDD. This data set is composed of selected records of the KDD data set and is not 
affected by any deficiencies [30]. They employed various classifiers for intrusion detection. They 

reported that NBTree classifier achieved the best accuracy results with 82.02% in the NSLKDDTest+ 

dataset and 66.16%in the NSLKDDTest21 dataset. Mohammadi et al., used three different classifiers 
such as neural network-based, distance-based and DT based for detecting network 

intrusion.Interestingly, they reported the same overall accuracy for both test sets. In addition, no clear 

information was given about values of the parameters they used in the decision tree classifier proposed 

in the study [34].Krömer et al., proposed a genetic programming (GP) to evolve fuzzy classifier. They 
used NSLKDDTrain+ training dataset for training the fuzzy classifier and NSLKDDTest+ data set for 

testing the classifier. They reported that their approach had an 82.74% accuracy score. In this study, it 

was not clearly stated whether the parameters used in the proposed model were default or not 
[35].Kevric et al., evolved a combined classifier model based on tree algorithms. Their combining 

classifier (Random Tree+ NBTree) achieved the best accuracy results with 89.24% in the 

NSLKDDTest+ dataset and 80% in the NSLKDDTest21 dataset [36].On the other hand, in some 
studies [35,17], it was seen that the performance of the proposed models was tested only on the 

NSLKDDTest + data set. These models were not tested on the NSLKDDTest21 dataset with unknown 

attacks.Considering the performance of the models in terms of overall accuracy, it is seen that the 

proposed solution approach in this study has achieved the best results on both test data sets. 
 

 

VI. CONCLUSIONS 
 

In this paper a stacking ensemble technique was used to develop a network intrusion detection system 

using the NSL-KDD dataset. To evaluate the effectiveness of proposed approach accuracy results and 
performance metrics of test datasets were used. The experimental results showed that the stacking 

method is very useful for detecting intrusions. The ensemble classifier (DT-LR-ANN + SVM) model 

achieved the best accuracy results with 90.57% in the NSLKDDTest+ dataset and 84.32% in the 
NSLKDDTest21 dataset. 
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