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Abstract 

Numerous manufacturing companies worldwide have widely adopted industrial robots due to their advantages, such as increased 

efficiency and profitability. Robots with numerous features and abilities are available for a wide variety of applications. They can handle 

numerous tasks in various industrial applications, including welding, assembly, material handling, loading, and painting. The selection 

of a robot for a particular application is a multifaceted task due to its complexity, advanced features, and facilities. The decision-maker 

needs to choose the most suitable robot, taking into account the various features, maximizing benefits, and minimizing costs. In this 

context, the main objective of this study is to present an integrated multiple criteria decision analysis (MCDA) approach for industrial 

robot selection. The selection of the optimal robot is conducted based on three weighting methods, namely standard deviation (SD), 

mean weight (MW), and Shannon entropy, and three MCDA methods, namely additive ratio assessment (ARAS), simple additive 

weighting (SAW), and weighted product method (WPM). The objective weighting methods, SD, MW, and Shannon entropy, are adopted 

to eliminate subjective evaluations while determining attribute weights. Using the output of each weighting method as the input of each 

MCDA method, nine different ranking models are developed. The correlation between all models is examined through Kendall’s 

correlation coefficients. The results of all method pairs are integrated through the Borda method to reach a final consensus ranking. The 

results indicate that the proposed hybrid approach can be utilized successfully for the purpose of the present study, and ARAS is the 

most robust method. 

Keywords: Industrial robots, Robot selection, Multi-attribute decision making, Borda, Additive ratio assessment.   

Endüstriyel Robot Seçiminde Hibrit Çok Kriterli Karar Yaklaşımı 

Öz 

Dünya çapında çok sayıda imalat şirketi, artan verimlilik ve karlılık gibi avantajları nedeniyle endüstriyel robotları yaygın olarak 

benimsemiştir. Çok çeşitli uygulamalar için çok sayıda özellik ve beceriye sahip robotlar mevcuttur. Bunlar kaynak, montaj, malzeme 

taşıma, yükleme ve boyama dahil olmak üzere çeşitli endüstriyel uygulamalarda çok sayıda görevi yerine getirebilirler. Belirli bir 

uygulama için robot seçimi, karmaşıklığı, gelişmiş özellikleri ve olanakları nedeniyle çok yönlü bir görevdir. Karar vericinin, çeşitli 

özellikleri dikkate alarak, faydaları en üst düzeye çıkararak ve maliyetleri en aza indirerek en uygun robotu seçmesi gerekir. Bu 

bağlamda, bu çalışmanın temel amacı, endüstriyel robot seçimi için bir hibrit çok kriterli karar analizi yaklaşımı sunmaktır. Optimal 

robot seçimi, standart sapma (SD), ortalama ağırlık (MW) ve Shannon entropisi olmak üzere üç ağırlıklandırma yöntemine ve üç çok 

kriterli karar verme yöntemine, yani ARAS (additive ratio assessment), SAW (simple additive weighting) ve WPM (weighted product 

method) dayalı olarak gerçekleştirilir. Kriter ağırlıklarını belirlerken öznel değerlendirmeleri ortadan kaldırmak için nesnel 

ağırlıklandırma yöntemleri, SD, MW ve Shannon entropisi benimsenmiştir. Her bir MCDA yönteminin girdisi olarak her 

ağırlıklandırma yönteminin çıktısını kullanarak, dokuz farklı sıralama modeli geliştirilmiştir. Tüm modeller arasındaki korelasyon, 

Kendall'ın korelasyon katsayıları ile incelenmektedir. Tüm yöntem çiftlerinin sonuçları, nihai bir fikir birliği sıralamasına ulaşmak için 

Borda yöntemiyle entegre edilir. Sonuçlar, önerilen hibrit yaklaşımın bu çalışmanın amacı için başarıyla kullanılabileceğini ve ARAS'ın 

en tutarlı yöntem olduğunu göstermektedir. 

Anahtar Kelimeler: Endüstriyel robotlar, Robot seçimi, Çok kriterli karar verme, Borda, ARAS.
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1. Introduction 

The advancement of technology and the developments in engineering have been the triggering sources of the increasing use of 

industrial robots in different advanced manufacturing processes. Industrial robots are defined as programmable in three or more axes, 

automatically controlled, multipurpose machine, and reprogrammable (International Organization for Standardization, 2012). These 

flexible features enable industrial robots to perform a variety of dangerous, complex, and repetitious tasks with high precision. 

Therefore, they are preferred for numerous processes, such as welding, assembly, disassembly, machine loading, material handling, 

spray painting, and finishing (Kumar & Garg, 2010; Ravipudi Venkata Rao, 2007). 

 Choosing the most suitable for a particular application area from a wide variety of robots available on the market is a critical 

decision in the manufacturing environment (Boubekri, Sahoui, & Lakrib, 1991; Breaz, Bologa, & Racz, 2017). A poor selection decision 

can lead to various catastrophic consequences, such as high costs and low productivity. Therefore, the decision-maker needs to determine 

alternative robots and choose the most appropriate robot to avoid such consequences and achieve the expected output with minimum 

cost and high productivity. In this context, multiple criteria decision analysis (MCDA) methods, which have been proven to produce 

practical solutions to numerous problems in various areas and help decision-makers to make fast and correct decisions, can also be used 

in the solution of this problem. 

The MCDA methods have been successfully implemented for solving industrial robot selection problems. Chatterjee, Manikrao 

Athawale, and Chakraborty (2010) presented the multicriteria decision-making (MCDM) approach, which was based on the elimination 

and et choice translating reality (ELECTRE) and visekriterijumsko kompromisno rangiranje (VIKOR). Fu, Li, Luo, and Huang (2019) 

introduced a group decision-making approach that involved four weighting methods, namely CRITIC, distance-based, Shannon entropy, 

and ideal point, and two MCDA methods, namely ELECTRE II and VIKOR. Nasrollahi, Ramezani, and Sadraei (2020) applied a 

subjective weighting method, fuzzy Best-Worst Method (BWM), and an MCDA method, PROMETHEE. Ali and Rashid (2020) 

presented an approach that was based on the BWM and group best-worst method (GBWM) and compared the results with the analytic 

hierarchy process (AHP) and group analytic hierarchy process (GAHP) methods. Athawale and Chakraborty (2011) utilized ten MCDM 

methods, namely AHP, the technique for order preference by similarity to ideal solution (TOPSIS), WPM, SAW, VIKOR, ELECTRE 

II, graph theory and matrix approach, grey relational analysis, range of value method, and preference ranking organization method for 

enrichment evaluation (PROMETHEE) II to reveal a comparative analysis. Narayanamoorthy, Geetha, Rakkiyappan, and Joo (2019) 

integrated the fuzzy entropy method with fuzzy VIKOR. Keshavarz Ghorabaee (2016) proposed an extended version of the VIKOR 

technique for group decision-making.  

The literature review reveals that the decision problem of industrial robot selection has been an important issue studied for years. 

Due to the importance and criticality of the decision, MCDA methods have been extensively preferred. As can be seen, various MCDA 

methods have been utilized; however, most of the studies utilized one MCDA method. Relying on the result of one MCDA method can 

be misleading due to the fact that the result is mostly dependent on attribute weights. It can be inferred that there is still a need for a 

systematic, integrated approach that help decision-makers while making their decision. In this context, unlike other studies, in this study, 

three weighting methods and three MCDA methods are integrated. By pairing each weighting and MCDA methods, various models are 

obtained. Then, integrating the outcome of each model through the Borda method, a final consensus is obtained. Thus, it is believed that 

a more tangible and reliable selection is provided.  

The main contributions of the present study can be summarized as follows. First, the ARAS method is used for the industrial robot 

selection problem for the first time. Second, three weighting and three MCDA methods are used, and their results are analyzed. Thus, 

unlike most other studies conducted for the same problem, different model pairs are generated. Considering the fact that the results of 

the MCDA methods are dependent on the attribute weights, relying on one weighting and one MCDA method can be misleading. To 

avoid such problems and increase the accuracy of the result, it is essential to use more than one weighting and MCDA method, consider 

and integrate their results. Some models, such as SD-based SAW, WPM, and ARAS models, are implemented to the problem selected 

for the first time. Last, a novel hybrid approach, including SD, MW, Shannon entropy, ARAS, SAW, WPM, Kendall, and Borda methods, 

is presented for the industrial robot selection problem. This approach considers the results of different models and presents a final 

consensus of these models as the selection decision.  

The remainder of the study is structured as follows. The following section presents the algorithms of the methods used and the 

description and implementation of the proposed methodology. Section 3 then illustrates the results of the analyses and presents the 

discussion. In the last section, conclusions and recommendations for future studies are presented.   

2. Material and Method 

The industrial robot selection problem is solved based on the integrated approach. In this context, three objective weighting 

methods, namely Shannon entropy, MW, and SD, three MCDA methods, namely ARAS, SAW, and WPM, and an integrating method, 

namely, Borda, are described in the following subsections. Then, the details of the proposed approach are presented.  

2.1. Shannon Entropy 

The concept of entropy, presented by Shannon (1948), is a measure of the uncertainty in information expressed by probability 

theory. Low entropy value indicates that the degree of disorder in the system is low, and the weight is high (Mohsen & Fereshteh, 2017). 

The procedure of this approach is explained in the following steps. 
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Step 1: The performance matrix is normalized using the following equations for benefit and cost attributes. 

 𝑟𝑖𝑗 =
𝑎𝑖𝑗

∑ 𝑎𝑖𝑗
𝑚
𝑖=1

     𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑚      (1) 

 

 
𝑟𝑖𝑗 =

1/𝑎𝑖𝑗

∑ (1/𝑎𝑖𝑗)𝑚
𝑖=1

     𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑚      
(2) 

 

Step 2: Entropy values are obtained using the following equation. 

 
𝑒𝑗 = −(ln 𝑚)−1 ∑ 𝑟𝑖𝑗 ln 𝑟𝑖𝑗

𝑚

𝑖=1

         𝑓𝑜𝑟 𝑗 = 1,2, … , 𝑛 
(3) 

Step 3: The attribute weights are determined using the following equation. 

 
𝑤𝑗 =

1 − 𝑒𝑗

(𝑛 − ∑ 𝑒𝑗)𝑛
𝑗=1

       𝑓𝑜𝑟 𝑗 = 1,2, … , 𝑛 
(4) 

2.2. Mean Weight (MW) 

MW is a simple weighting method in which all attributes are assumed to be equally important, so equal weights are assigned, as 

represented by the following equation. 

 
𝑤𝑗 =

1

𝑚
, 𝑗 = 1,2, … , 𝑚 

(5) 

2.3. Standard Deviation (SD) 

Attribute weights are determined based on their standard deviations through Eq. 6. 

 𝑤𝑗 =
𝜎𝑗

∑ 𝜎𝑘
𝑚
𝑘=1

, 𝑗 = 1,2, … , 𝑚 (6) 

2.4. Additive Ratio Assessment (ARAS) 

 Zavadskas and Turskis (2010) introduced ARAS as an MCDA method. The algorithm of the approach is described in the 

following steps. 

Step 1. The performance matrix is normalized through the following equations. Eq. 7 is implemented for beneficial and Eq. 8 is for 

non-beneficial attributes, respectively. 

 
𝑟𝑖𝑗

∗ =
𝑟𝑖𝑗

∑ 𝑟𝑖𝑗
𝑚
𝑖=0

         𝑓𝑜𝑟 𝑗 = 1,2, … , 𝑛 (7) 

 
𝑟𝑖𝑗 =

1

𝑟𝑖𝑗
∗∗ ; 𝑟𝑖𝑗

∗ =
𝑟𝑖𝑗

∑ 𝑟𝑖𝑗
𝑚
𝑖=0

 𝑓𝑜𝑟 𝑗 = 1,2, … , 𝑛 (8) 

Step 2. Eq. 9 is implemented to obtain the weighted normalized decision matrix. The weights of criteria (w1, w2, …, wn) are 

obtained through weighting methods (SD and Shannon entropy). 

 
𝑟𝑖�̂� = 𝑟𝑖𝑗

∗ ∗ 𝑤𝑗          𝑓𝑜𝑟 𝑖 = 0,1,2, … , 𝑚      𝑗 = 1,2, … , 𝑛 (9) 

 Step 3. The optimality function (𝑆𝑖) is obtained via Eq. 10.  

 
𝑆𝑖 = ∑ 𝑟𝑖�̂�

𝑛

𝑗=1

        𝑓𝑜𝑟 𝑖 = 0,1,2, … , 𝑚 (10) 
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Step 4. Finally, to rank alternatives, the utility degree is obtained. The utility degree (ki) for the ith alternative is determined based 

on Eq. 11. The industrial robot with the highest utility degree is chosen as optimal.  

 
𝑘𝑖 =

𝑆𝑖

𝑉0

        𝑓𝑜𝑟 𝑖 = 0,1,2, … , 𝑚 (11) 

where V0 is the optimality value of Si. 

2.5. Simple Additive Weighting (SAW) 

SAW is one of the simplest and most commonly used MCDM methods. It is also frequently preferred in comparison with other 

methods. In this method, the best alternative is determined based on Eq. 12. In the equation, the numbers of attributes and alternatives 

are denoted by n and m. Also, Ai indicates the score of the ith alternative, rij represents the value of the ith alternative based on the jth 

decision attribute, and wj denotes the weight of the jth attribute. Once the scores for all alternatives are obtained, the alternative with the 

maximum total value is determined as the best.  

 

𝐴𝑖 = ∑ 𝑟𝑖𝑗𝑤𝑗         for 𝑖 = 1,2,3, … , 𝑚

𝑛

𝑗=1

 (12) 

2.6. Weighted Product Method (WPM) 

 The WPM is similar to the SAW method. The main difference is that the main mathematical operation is now multiplication instead 

of addition, as follows. 𝑤𝑗 and rij were explained in the previous subsection.   

 

𝑊𝑃𝑀 = ∏(𝑟𝑖𝑗)𝑤𝑗

𝑛

𝐽=1

 (13) 

2.7. Application of the Proposed Approach 

 The proposed hybrid approach is summarized in Figure 1.  

 

Figure 1. The steps of the proposed hybrid approach 

The proposed integrated approach is implemented to solve the problem of industrial robot selection. First, the problem of the 

selection of the industrial robot is defined. Then, alternatives and attributes are identified. In this context, the evaluation of the industrial 

robot alternatives is made based on load capacity (kg), manipulator reach (mm), maximum tip speed (mm/sec), memory capacity (points 

or steps), and repeatability (mm). Load capacity (C1) refers to the maximum load that can be carried. Manipulator reach (C2) refers to 

the maximum distance traveled by the robotic manipulator to grip the object for a given pick and place operation. The maximum tip 

speed (C3) is the speed at which a robot can move in an inertial reference frame. The memory capacity (C4) of a robot is expressed in 

terms of the number of points or steps it can store in its memory as it moves along a predefined path. Repeatability (C5) is a measure 

of a robot's ability to return to the same position and orientation repeatedly. To be noted that load capacity, manipulator reach, memory 

capacity, and maximum tip speed are beneficial attributes, whereas repeatability is the cost attribute. Then, the data is collected to form 

1
• Identify the decision problem

2
•Determine alternatives and attributes

3
•Collect data to form the decision matrix

4
•Apply the weighting methods (SD, MW, and Shannon entropy)

5
•Utilize the output of each weighting method as the input of MCDA methods (SAW, WPM, and ARAS) 
and apply each MCDA method

6
•Analyze the ranking results of each model based on Kendall test

7
• Integrate the ranking results through the Borda method

8
•Determine optimal alternative
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the decision matrix. In this study, the data drawn from the literature (Bhangale, Agrawal, & Saha, 2004) is included in implementing 

the proposed study (Table 1).  

Table 1. The decision matrix data for the industrial robot selection problem (Bhangale et al., 2004) 

Industrial Robot (IR) Load capacity 

(C1) 

Manipulator 

reach (C2) 

Maximum tip 

speed (C3) 

Memory 

capacity (C4) 

Repeatability 

(C5) 

ASEA-IRB 60/2 (IR1) 60 990 2540 500 0.4 

Cincinnati Milacrone T3-726 

(IR2) 

6.35 1041 1016 3000 0.15 

Cybotech V15 Electric Robot 

(IR3) 

6.8 1676 1727.2 1500 0.1 

Hitachi America Process 

Robot (IR4) 

10 965 1000 2000 0.2 

Unimation PUMA 500/600 

(IR5) 

2.5 915 560 500 0.1 

United States Robots Maker 

110 (IR6) 

4.5 508 1016 350 0.08 

Yaskawa Electric Motoman 

L3C (IR7) 

3 920 1778 1000 0.1 

The data is normalized, considering beneficial and cost attributes, as given in Table 2. The data in this table is an example of the 

normalization of the data since each method may require a different normalization method. Then, each weighting method is applied to 

determine the weights of the attributes. Using the weights provided by each method, each MCDA method is implemented. The ranking 

results of all models are examined through Kendall correlation coefficients. Then, the rankings provided by nine different models are 

integrated through the Borda method (Borda, 1784) to determine the final consensus ranking. In the Borda method, all models are 

considered to obtain Borda scores. In this context, to score an alternative, for all other alternatives that rank below the chosen alternative, 

a value of one is given; otherwise, a zero value is given to the corresponding matrix value (Şahin, 2020). Thus, the final consensus 

ranking reveals the optimal industrial robot. 

Table 2. Normalized decision matrix data 

IR C1 C2 C3 C4 C5 

IR1 0.644 0.141 0.264 0.056 0.044 

IR2 0.068 0.148 0.105 0.339 0.118 

IR3 0.073 0.239 0.179 0.169 0.176 

IR4 0.107 0.138 0.104 0.226 0.088 

IR5 0.027 0.130 0.058 0.056 0.176 

IR6 0.048 0.072 0.105 0.040 0.221 

IR7 0.032 0.131 0.184 0.113 0.176 

3. Results and Discussion 

The attribute weights obtained from Shannon entropy and SD methods are presented in Table 3. According to the results of both 

methods, load capacity is the most important attribute, followed by memory capacity, maximum tip speed, repeatability, and manipulator 

reach. Also, the weights of all attributes are equal according to the MW method, as seen in Table 3. All weights provided by these 

weighting methods are illustrated in Figure 1 for better observation and comparison. 

Table 3. Attribute weights obtained from Shannon entropy and SD methods 

Weighting Method C1 C2 C3 C4 C5 

Shannon entropy 0.5899 0.0419 0.0847 0.2067 0.0769 

SD 0.4339 0.0959 0.1358 0.2143 0.1201 

MW 0.2000 0.2000 0.2000 0.2000 0.2000 

The importance given by Shannon entropy and the SD method to load capacity is seen in Figure 1. It is also seen that the SD method 

allocates more weight to attributes other than the load capacity compared to Shannon entropy. 
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Figure 2. The comparison of attribute weights provided by MW, SD, and Shannon entropy 

The weights provided by each weighting method are used as the input of each MCDA method. The utility values provided by each 

method pair (model) are presented in Table 4. The utility values determine the rank of alternatives. Based on the utility values, the 

ranking of each model is determined, as presented in Table 5. 

 

Table 4. The utility values of models 
 

Utility Value 
 

SD-

WPM 

Entropy-WPM MW-WPM SD-SAW Entropy-SAW MW-SAW SD-ARAS Entropy-ARAS MW-

ARAS 

IR1 0.2122 0.2758 0.1430 0.6214 0.7035 0.4939 0.9247 0.9154 0.9771 

IR2 0.1173 0.1062 0.1336 0.4122 0.3449 0.5070 0.3941 0.3131 0.5589 

IR3 0.1231 0.1054 0.1564 0.4140 0.2977 0.6071 0.3372 0.2507 0.5288 

IR4 0.1254 0.1243 0.1250 0.3328 0.2889 0.3983 0.3805 0.3109 0.5326 

IR5 0.0510 0.0413 0.0727 0.1581 0.0984 0.2685 0.1519 0.1050 0.2629 

IR6 0.0642 0.0566 0.0797 0.1665 0.1169 0.2530 0.1575 0.1210 0.2399 

IR7 0.0750 0.0585 0.1092 0.2863 0.1948 0.4319 0.2383 0.1659 0.3942 

 

Table 5. The ranks of alternative robots provided by each method pair 

Model Ranking of Alternative Industrial Robot 

IR1 IR2 IR3 IR4 IR5 IR6 IR7 

SD-WPM 1 4 3 2 7 6 5 

Entropy-WPM 1 3 4 2 7 6 5 

MW-WPM 2 3 1 4 7 6 5 

SD-SAW 1 3 2 4 7 6 5 

Entropy-SAW 1 2 3 4 7 6 5 

MW-SAW 3 2 1 5 6 7 4 

SD-ARAS 1 2 4 3 7 6 5 

Entropy-ARAS 1 2 4 3 7 6 5 

MW-ARAS 1 2 4 3 6 7 5 

According to the results, IR1 is the best alternative robot according to SD-based WPM, Shannon entropy-based WPM, SD-based 

SAW, Shannon entropy-based SAW, SD-based ARAS, Shannon entropy-based ARAS, and MW-based ARAS. Besides, IR3 is an optimal 

option based on the results of MW-based WPM and MW-based SAW. The results also indicate that the rankings of SD-based ARAS 

and Shannon entropy-based ARAS are identical, in which IR1 is the best alternative, followed by IR2, IR4, IR3, IR7, IR6, and IR5. 

These results reveal that the ranking provided by an MCDA method varies depending on the attribute weights. In other words, these 

0 0,1 0,2 0,3 0,4 0,5 0,6

Load capacity

Manipulator reach

Maximum tip speed

Memory capacity

Repeatability

MW SD Shannon entropy
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results prove that the outcome of MCDA methods is dependent on the attribute weights. Therefore, the choice of weighting method is 

very important. Also, these results prove that relying on the ranking of an MCDA method may be misleading. As seen from Table 5, the 

small changes in the attribute weights alter the rank of the MCDA. In addition, the ARAS method is observed as the most robust MCDA 

method for the problem chosen in the present study. The ranking provided by this method is less susceptible to the attribute weights. 

The rank of all robots remains the same except IR5 and IR6, according to the result of the MW-ARAS model. 

To illustrate the results, Figure 3 is presented for better observation and comparison of the rankings. The figure demonstrates that 

seven models recommend the IR1 alternative as the best out of nine models. In addition, the impact of attribute weights on the ranking 

result can be observed well in this figure. For instance, the ranking of IR3 varies depending on the attribute weights. Although the same 

MCDA method is applied, the use of SD weights allows IR3 to be placed in the third place, the use of Shannon entropy weights to move 

it to the fourth place, and the use of equal weights provided by the MW method makes it the best alternative. However, the ranking of 

IR1 (first) provided by the ARAS method is not affected by the attribute weights. The ARAS method recommends the IR1 as the best 

alternative for the attribute weights provided by three different weighting methods. This situation provides some insight into the 

robustness of the method. 

 

 

Figure 3. The comparison of rankings provided by the models 

To see the correlation between the models, Kendall correlation coefficients are obtained, as given in Table 6. Kendall rank 

correlation coefficients are used to assess the correlations between the models. In other words, the Kendall rank correlation coefficient 

(Kendall, 1948) assesses the degree of similarity between two rank sets given to the same set of alternatives. The Kendall coefficients 

prove the perfect correlation between SD-based ARAS and Shannon entropy-based ARAS. In addition, there is a strong correlation 

between SD-based WPM and Shannon entropy-based WPM, Shannon entropy-based-WPM and SD-based ARAS, Shannon entropy-

based WPM and Shannon entropy-based ARAS, MW-based WPM and SD-based SAW, SD-based SAW and Shannon entropy-based 

SAW, Shannon entropy-based SAW and SD-based ARAS, Shannon entropy-based SAW and Shannon entropy-based ARAS, SD-based 

ARAS, and MW-based ARAS, and Shannon entropy-based ARAS and MW-based ARAS. To sum up, the ranking of these models is 

similar to each other.  

Table 6. Kendall rank correlation coefficients of models 

  SD-

WPM 

Entropy-

WPM 

MW-

WPM 

SD-

SAW 

Entropy-

SAW 

MW-

SAW 

SD-

ARAS 

Entropy-

ARAS 

MW-

ARAS 

SD-WPM 1 0.905** 0.714* 0.810* 0.714* 0.429 0.810* 0.810* 0.714* 

Entropy-WPM 
 

1 0.619 0.714* 0.810* 0.333 0.905** 0.905** 0.810* 

MW-WPM 
  

1 0.905** 0.810* 0.714* 0.714* 0.714* 0.619 

SD-SAW 
   

1 0.905** 0.619 0.810* 0.810* 0.714* 

Entropy-SAW 
    

1 0.524 0.905** 0.905** 0.810* 

MW-SAW 
     

1 0.429 0.429 0.524 

SD-ARAS 
      

1 1.000** 0.905** 

Entropy-ARAS 
       

1 0.905** 

MW-ARAS 
        

1 

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 
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To integrate the results of all models, the Borda method is implemented. The final calculations of the method and final ranking 

based on Borda scores are presented in Table 7.  

Table 7. The calculations for the Borda method and final ranking based on Borda scores 

Alternatives IR1 IR2 IR3 IR4 IR5 IR6 IR7 Row Sum Final ranks based on Borda 

IR1 0 1 1 1 1 1 1 6 1 

IR2 0 0 1 1 1 1 1 5 2 

IR3 0 0 0 0 1 1 1 3 4 

IR4 0 0 1 0 1 1 1 4 3 

IR5 0 0 0 0 0 0 0 0 7 

IR6 0 0 0 0 1 0 0 1 6 

IR7 0 0 0 0 1 1 0 2 5 

Based on the results provided by the Borda method, the final consensus ranking reveals that IR1 is the best alternative industrial 

robot, followed by IR2, IR4, IR3, IR7, IR6, and IR5. Based on this result, it can be inferred that adopting MW-based WPM or MW-

based SAW would determine IR2 or IR3 as the best option that could be misleading. In addition, the other models, except SD-based 

ARAS and Shannon entropy-based ARAS, would provide different rankings that could also be misleading. However, SD-based ARAS 

and Shannon entropy-based ARAS provided the same ranking as the final consensus ranking. It can be inferred that either SD-based 

ARAS or Shannon entropy-based ARAS can be used for the problem considered in this study. However, it is difficult to say that these 

models will provide a guaranteed solution to such problems. Instead, a hybrid approach will increase the dependability of the solution. 

Therefore, the hybrid approach forms the basis of this study.  

The final consensus ranking of the nine models is compared to previous studies. In the study conducted by Bhangale et al. (2004), 

IR4, IR1, and IR3 were recommended as the best industrial robots by three different models. In addition, some other studies used the 

same data, except the corresponding data of IR7 for maximum tip speed. This data was taken as 1778 by Bhangale et al. (2004) as in 

this study; however, it was taken as 177 in the following studies. Chatterjee et al. (2010) implemented VIKOR and ELECTRE II, and 

the results of both methods suggested IR3 as the best alternative. R. V. Rao, Patel, and Parnichkun (2011) found IR1 and IR3 as the best 

alternatives in different situations in their analysis. Fu et al. (2019) implemented VIKOR, ELECTRE II, and group decision making 

(GDM) methodology, and IR3 was the best alternative based on the results of VIKOR and ELECTRE II and IR1 was the best option 

based on the result of the GDM methodology. As can be seen, the rankings vary depending on the weights and the type of the MCDA 

method. In general, one weighting method and one, two, or three MCDA methods were adopted, and the results of the models were 

compared. This study differs from others in terms of integrating the ranking results of nine models. Hence, it is believed that the 

reliability of the model is increased compared to dependence on the result of one model.   

To summarize, the results indicated that two models out of nine models provided the same ranking. Therefore, relying on one 

MCDA method may be deceptive. Also, the results revealed that the MCDA methods were highly dependent on the outcome of the 

weighting methods. Therefore, utilizing multiple weighting and MCDA methods helps to achieve a more reliable ranking. Besides, 

ARAS was the most robust method compared to the WPM and SAW. It provided the same ranking for SD and Shannon entropy weights. 

Also, for ARAS models, the ranking based on the weights provided by the MW was correlated with the rankings based on weights 

provided by SD and Shannon entropy. Last, the outcomes of SD and Shannon entropy were parallel. In other words, the order of 

importance of the attributes was the same. 

4. Conclusions and Recommendations 

The most suitable industrial robots must be carefully selected as incorrect selection can result in loss of productivity, time, and 

product quality, which means a significant negative impact on the overall performance of the manufacturing system. The availability of 

multiple alternatives and various evaluation criteria makes industrial robot selection a typical MCDA problem. In this context, 

considering the importance of the subject and the fact that it can be misleading to rely on the result of an MCDA method, a hybrid 

MCDA approach is presented in this study, unlike other studies. Three subjective weighting and three MCDA methods were adopted. 

The results of each method pair were integrated through the Borda method to reveal the final consensus for industrial robot selection. 

According to the results obtained, IR1 was the best alternative, followed by IR2, IR4, IR3, IR7, IR6, and IR5. Also, ARAS was found 

as the most robust MCDA method compared to SAW and the WPM. Last, the weights provided by SD and Shannon entropy methods 

were parallel.  

Although the hybrid MCDA approach presented provides meaningful guidance for selecting the optimum industrial robots, it 

includes some limitations such as a limited number of evaluation attributes and a limited number of MCDA and weighting methods. In 

this context, future studies can concentrate on expanding the number of attributes. Also, more MCDA methods, such as VIKOR, 

ELECTRE, and PROMETHEE, can be included in the approach. Last, the subjective weighting methods, such as AHP and BWM, may 

extend the scope of analysis as they provide subjective evaluations of experts. 
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