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ABSTRACT The foreign exchange (forex) market is a dynamic and complex financial arena where the
exchange rates of various currency pairs fluctuate continuously. Among these currency pairs, EUR/TRY and
USD/TRY hold significant economic relevance due to their roles in international trade and finance. In this study,
we analyze the multifractality of hourly EUR/TRY and USD/TRY exchange rate data for the whole period, as
well as its time-varying individual and cross correlations, spanning from May 31, 2018, to March 21, 2022. We
employ multifractal detrended cross-correlation analysis (MF-DCCA) and multifractal detrended fluctuation
analysis (MF-DFA) methodologies. The aim of studying multifractality in exchange rates is to comprehend and
model the complex and intricate nature of price movements and dynamics of the EUR/TRY and USD/TRY
exchange rates. In the analysis of the whole period, multifractality is detected in individual exchange rates and
cross correlations. In the rolling window analysis, we demonstrated how multifractality and cross correlation
multifractality change over time. Additionally, contributions of the sources of the multifractality are investigated
in a time-varying framework. Multifractal nature of these exchange rates indicate that they exhibit complex and
scale-dependent behaviors, which go beyond the traditional linear models. The existence of multifractality in
EUR/TRY and USD/TRY exchange rates has significant implications for financial modeling, risk management,
and trading strategies. It implies that standard linear models may not capture the full complexity of these
markets, necessitating the development of more sophisticated models that account for multifractal properties.
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INTRODUCTION

Fractal theory is originated from (Mandelbrot 1982) and used to
provide an explanation for economic and financial data where
traditional efficient market hypothesis (EMH) failed. Fractal ge-
ometry is applied in the analysis of systems which are irregular
and self-similar at all scales. One of the key characteristics of these
systems are non-integer dimensions. Fractal systems can be cate-
gorized as monofractal or multifractal. Monofractal systems can
be defined by a single scaling exponent and different regions of
these systems have same scaling properties. However, multifractal
systems display varying scaling properties in different regions,
requiring multiple scaling exponents to describe the system.

Firstly, in the field of hydrology (Hurst 1951, 1957) suggested
rescaled range (R/S) methodology for studying systems exhibiting
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fractal properties. However, Lo (1991) demonstrated the shortcom-
ings of Hurst methodology such as sensitivity to short-term auto-
correlation. To address this deficiency (Peng et al. 1994) proposed
a methodology called Detrended Fluctuation Analysis (DFA). DFA
methodology is successfully applied to noisy and non-stationary
time series which exhibiting long-range correlations and fractal
scaling properties. Numerous data sets have been successfully ana-
lyzed using this method, including geological, economic, financial,
weather and earthquake data (Liu et al. 1999; Buldyrev et al. 1998;
Blesić et al. 1999; Bunde et al. 2000; Ashkenazy et al. 2001; Talkner
and Weber 2000). However, studies in this field have revealed
that some data from various fields such as medicine, geophysics,
economy and finance do not exhibit monofractal scaling behavior.
Consequently, a single scaling exponent cannot adequately repre-
sent these multifractal systems (Kantelhardt et al. 2001; Hu et al.
2001), and multiple scaling exponents are required.

To analyze multifractal systems (Kantelhardt et al. 2002) pur-
posed Multifractal Detrended Fluctuation Analysis (MF-DFA)
which is an extension of the DFA. MF-DFA methodology has been
successfully applied to many nonstationary time series datasets in
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the literature (Kantelhardt et al. 2003; Movahed et al. 2006; Telesca
et al. 2004). The literature demonstrates that many time series from
various fields exhibit multifractal properties, and a single scaling
exponent is not sufficient to describe these datasets (Matia et al.
2003; Chen and He 2010; He and Chen 2010b,a; Zunino et al. 2009).

Afterwards, by developing DFA methodology Podobnik and
Stanley (2008) introduced the detrended cross-correlation analysis
(DCCA) methodology for studying cross correlations between two
systems. Subsequently, Zhou (2008) combined MF-DFA and DCCA
to propose the multifractal detrended cross-correlation analysis
(MF-DCCA) methodology for investigating multifractal properties
of two correlated nonstationary time series. MF-DCCA method-
ology has been successfully applied to numerous economic and
financial datasets from foreign exchange market (Xie et al. 2017;
Li et al. 2016), the stock market (Ma et al. 2013a; Yue et al. 2017),
the crude oil market (Ma et al. 2013b, 2014; Wang et al. 2011b), car-
bon market (Zhuang et al. 2014, 2015) and the commodity market
(Wang et al. 2011a; Lu et al. 2017).

Furthermore foreign exchange market is of great importance
to global economy. This market connects economies around the
world without geographic and temporal boundaries. Exchange
rates are vital macroeconomic variables for policy makers, in-
vestors, researchers and economists. Instabilities of exchange
rates can have devastating effects on the economies. Therefore,
researchers and economists have attempted to model exchange
rates using various methodologies. These studies have revealed
that predicting and explaining fluctuations in exchange rates is
challenging. Efficient market hypothesis suggested by (Fama 1965)
indicated, share prices follow random walk and are unpredictable.
However, this hypothesis challenged by different authors subse-
quently (Yen and Lee 2008; Lim and Brooks 2011). An alternative
to EMH is fractal market hypothesis (FMH) which is suggested
by (Lim and Brooks 2011; Peters 1994). This hypothesis suggests
that markets exhibit the same structure on different scales (daily,
weekly, monthly, etc.). The EMH has led to investigations into the
fractal and multifractal properties of economic and financial time
series.

To the best of our knowledge, there is only one study in the
literature that investigates the multifractal properties of USD/TRY
exchange rates (Gülbaş and Gazanfer 2013). This study detected
multifractality in USD/TRY exchange rates but did not provide
a time varying analysis to investigate how multifractality and
sources of multifractality change over time. There are other studies
in the literature that examine the multifractal properties of various
exchange rates as well (Stošić et al. 2015; Schmitt et al. 1999; Caraiani
and Haven 2015; Han et al. 2019). While these studies have detected
multifractality in other exchange rates, they have not shed light on
how multifractality and its sources change over time.

MF-DFA and MF-DCCA methods are important methods in the
field of time series analysis, particularly for studying complex and
non-linear behaviors in financial data and other complex systems.
The importance of these methods is presented below:

a) Capturing Nonlinear Behavior: Financial and economic data
often exhibit nonlinear behaviors that cannot be adequately cap-
tured by traditional linear methods. MF-DFA and MF-DCCA are
designed to detect and quantify these nonlinear characteristics,
providing a more accurate representation of the underlying dy-
namics.

b) Multiscale Analysis: MF-DFA and MF-DCCA allow for the
analysis of data across multiple time scales. This is important be-
cause financial data often exhibit different patterns and behaviors
at different scales. By analyzing multiple scales, these methods

offer a more comprehensive view of the system’s complexity.
c) Multifractality: These methods are specifically designed to

identify and characterize multifractal behavior in time series data.
Multifractality refers to the property where different scales of ob-
servation exhibit different levels of self-similarity and irregularity.
This is a common feature in financial data and other complex
systems.

d) Cross-Correlation Analysis: MF-DCCA goes beyond tradi-
tional correlation analysis by accounting for cross-correlations that
exist at different time scales. This is crucial in understanding how
different variables interact and influence each other over different
horizons.

MF-DFA and MF-DCCA methods have some differences from
other methods. These differences are summarized as below:

a) Fractal vs. Multifractal Analysis: Traditional fractal analysis
focuses on self-similarity at a single fractal dimension. In contrast,
multifractal analysis considers multiple fractal dimensions, which
allows for a more nuanced understanding of complex systems.

b) Nonlinear vs. Linear Methods: While linear methods assume
a linear relationship between variables, MF-DFA and MF-DCCA
are designed to capture nonlinear and multifractal behaviors. This
is particularly important in financial markets where linearity often
fails to explain the full complexity.

c) Time Scale Consideration: MF-DFA and MF-DCCA analyze
data across multiple time scales, which provides insights into the
dynamics at different levels. Traditional methods might overlook
these multiscale interactions.

d) Cross-Correlation Consideration: MF-DCCA specifically ad-
dresses cross-correlations between multiple variables at different
time scales. This is a feature that many traditional methods lack.

e) Complexity: MF-DFA and MF-DCCA are more complex
and sophisticated methods compared to traditional linear analysis.
They require a deeper understanding of their underlying principles
and assumptions.

In recent years Turkey has become integrated into international
economic markets. According to the general trade system in
Turkey, in the January-April period of 2022, exports increased
by 21.6% compared to the previous year and reached 83.5 billion
dollars, while imports increased by 40.2% and reached 116 billion
85 million dollars. Therefore USD/TRY and EUR/TRY exchange
rates are of great importance to the Turkish economy and have
significant effects on other macroeconomic variables such as GDP,
current account deficit, inflation and unemployment. The selection
of the preferred dataset, specifically the USD/TRY and EUR/TRY
exchange rates, was based on careful consideration of several crite-
ria that these currency pairs satisfy, making them ideal candidates
for multifractality analysis. We chose to test the multifractality of
USD/TRY and EUR/TRY exchange rates because of the several
reasons. Firstly, USD/TRY and EUR/TRY are important currency
pairs involving major global currencies (US Dollar and Euro) and
the Turkish Lira.

These exchange rates reflect economic relationships between
Turkey and the United States or the Eurozone. Studying their
multifractality can provide insights into the dynamics of these
economic relationships. Secondly, these currency pairs are among
the most actively traded pairs in the foreign exchange market
due to Turkey’s significant economic activities and its geopolitical
positioning. High trading activity often results in complex and
multifractal price behaviors, making them interesting candidates
for analysis. Thirdly, the Turkish Lira has historically exhibited no-
table volatility in comparison to major currencies. Such volatility
often results in intricate, non-linear, and multifractal price move-
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ments. Studying these complex behaviors is vital for understand-
ing the underlying dynamics and interactions in the market. Given
the potential volatility of the Turkish Lira, individuals, businesses,
and investors involved in transactions or investments with Turkey
have a vested interest in understanding the multifractal nature of
these exchange rates for effective risk management. Fourthly, ex-
change rates have policy implications for governments and central
banks.

Understanding the multifractality of USD/TRY and EUR/TRY
can aid in policy decisions related to trade, investment, and mone-
tary policy. Finally, in the literature time-varying multifractality of
USD/TRY and EUR/TRY exchange rates are not investigated in
the literature. The selection of USD/TRY and EUR/TRY exchange
rates is motivated by their substantial economic importance. The
USD/TRY exchange rate is a key benchmark for Turkey’s foreign
exchange market, and the EUR/TRY exchange rate represents
another critical currency pair in the region. Both are integral to
international trade, investment, and financial stability within the
Turkish economy.

In this study time-varying multifractal properties of exchange
rates are analyzed using MFDFA and MF-DCCA methodologies.
In this context, two different types of analysis were conducted.
These are whole period analysis and rolling window analysis. In
the whole period analysis MFDFA and MF-DCCA methodologies
are applied to the entire dataset to investigate multifractality over
the entire period. In the rolling window analysis MFDFA and
MF-DCCA methodologies are applied to data windows and by
sliding the window changes in multifractality are examined. Our
study addresses seven research questions:

1. Whether USD/TRY and EUR/TRY exchange rates are multi-
fractal?

2. How the multifractality levels of USD/TRY and EUR/TRY
exchange rates change over time?

3. Whether cross-correlations between USD/TRY and
EUR/TRY exchange rates are multifractal?

4. How the multifractality level of cross correlation between
USD/TRY and EUR/TRY exchange rates changes over time?

5. How the fat-tailed distribution’s contribution to the level of
multifractality of USD/TRY and EUR/TRY exchange rates changes
over time?

6. How the long-range correlation’s contribution to the level of
multifractality of USD/TRY and EUR/TRY exchange rates changes
over time?

7. Which cause of multifractality of USD/TRY and EUR/TRY
exchange rates is more prevalent over time: long-range autocorre-
lation or fat-tailed distribution?

Studying multifractality in exchange rates serves several pur-
poses:

a) Better Understanding of Market Behavior: Multifractal analy-
sis helps researchers and analysts delve deeper into the underlying
structure of exchange rate movements. It allows them to identify
complex patterns and irregularities that are not apparent through
traditional methods.

b) Risk Management: Exchange rate movements can have sig-
nificant implications for international trade, investment, and risk
management. Understanding multifractality can aid in developing
more accurate risk assessment models, which is crucial for busi-
nesses and financial institutions exposed to currency fluctuations.

c) Model Improvement: Traditional financial models often as-
sume certain levels of linearity and Gaussian (normal) distribution
of returns. However, exchange rates frequently exhibit fat tails, ex-
treme events, and time-varying volatility. Studying multifractality

can lead to the development of more accurate models that capture
these characteristics.

d) Algorithmic Trading: Many financial institutions use algo-
rithmic trading strategies to make investment decisions. Under-
standing multifractality can lead to the development of more so-
phisticated trading algorithms that adapt to the nonlinear and
irregular behavior of exchange rates.

e) Policy Formulation: Central banks and governments make
policy decisions based on economic conditions, including exchange
rates. Multifractal analysis can provide insights into the underly-
ing dynamics of exchange rates, which can inform more effective
policy decisions.

f) Academic Research: Academics study multifractality in ex-
change rates to contribute to the theoretical understanding of fi-
nancial markets and to advance the field of financial economics.

In conclusion our study makes several contributions to the lit-
erature. Firstly, as far as we know fractal properties of hourly
exchange rates are not investigated in the literature. We used
hourly data in our multifractal analysis because hourly data pro-
vides a higher frequency of observations compared to daily or
weekly data. This increased frequency allows for a more detailed
analysis of price movements and captures finer nuances in market
behavior. Also, financial markets exhibit distinct intraday patterns
and volatility changes and hourly data captures these patterns.
Additionally, multifractal analysis involves studying patterns at
various scales or time horizons. Hourly data allows for a broader
range of scales to be analyzed, from short-term fluctuations to
longer-term trends.

Usage of hourly data distinguish our study from other stud-
ies since hourly data offers a finer level of granularity, captures
intraday price movements, reveals higher-frequency fluctuations
and volatility changes, and enables researchers to study the imme-
diate market reactions. Secondly, in the literature fractal analysis
is usually applied to one or few time periods. However, we pre-
sented a time-varying analysis in a rolling window framework.
Thirdly, we also presented how the contributions of multifractality
sources have changed over time in a rolling window framework.
The following is how our study is set up. Section 2 presents the
MF-DFA and MF-DCCA techniques. Data is provided in Section 3.
In Section 4, empirical findings are given. And Section 5 provides
conclusions.

METHODOLOGY

Multifractal Detrended Fluctuation Analysis (MF-DFA)
Suppose xt denotes a time series where t = 1, 2, . . . , N The MF-
DFA method consist of five steps.

Step1: In the first step the profile is calculated as follows:

Xi =
i

∑
t=1

(xt − x̄) (1)

In the expression above x̄ is calculated as below:

x̄ =
1
N

N

∑
t=1

xt (2)

Step 2: In the next step the profile Xi is divided into Ns =
int(N/s) equal-length parts that don’t overlap. There might be a
little residue at the end of the profile since the length of the series
xt might not be multiple of the time scale s. The identical process
used at the end of the series was repeated in order to account for
this residue. As a result of this procedure 2Ns total segments are
obtained.

244 | Baki Unal CHAOS Theory and Applications



Step 3: The variance is calculated by following two formulas
for segments v = 1, 2, . . . , Ns and for segments v = Ns + 1, Ns +
2, . . . , 2Ns respectively:

F2
X(s, v) =

1
s

s

∑
j=1

(
X(v−1)s+j − X̂v

j

)2
(3)

F2
X(s, v) =

1
s

s

∑
j=1

(
XN−(v−Ns)s+j − X̂v

j

)2
(4)

In the above formulas X̂v
j denotes the fitting polynomial in

segment v with order m. In this study fitting polynomial order m
is selected as one.

Step 4: In the next step qth order fluctuation function Fq
X(s) is

computed by averaging all segments using following two formulas
for q ̸= 0 and q = 0 respectively:

Fq
X(s) =

(
1

2Ns

2Ns

∑
v=1

[
F2

X(s, v)
] q

2

) 1
q

(5)

Fq
X(s) = exp

(
1

4Ns

2Ns

∑
v=1

[
F2

X(s, v)
])

(6)

Step 5: By analyzing logarithm plots of Fq
X (s) versus logarithms

of s for each q value the scaling behavior of the fluctuation function
is determined. If long-range power-law correlation exists between
the series, there is a power-law relationship expressed as below:

Fq
X(s) ∼ sh(q) (7)

The generalized Hurst exponent, or h(q), in the expression
above reflects the correlation with power-law. The expression h(q)
represents the scaling behavior of segments with large fluctuations
for positive values of q, whereas for negative values of q, it repre-
sents the scaling behavior of segments with smaller variations. To
describe a multifractal series the singularity spectrum f (α) can be
used which is calculated as below:

α(q) = h(q) + qh′(q) (8)

f (α) = q[α(q)− h(q)] + 1 (9)

The derivative of h (q) with respect to q is denoted by h′(q) in
the expression above. The Hölder exponent, denoted by the sym-
bol α (q), measures the singularity’s power, while the singularity
spectrum, denoted by the symbol f (α), measures the Hausdorff
dimension of the subset of the series that is characterized by α (q).
Multifractal mass function can be calculated as below:

τ(q) = qh(q)− 1 (10)

The width of the multifractal spectrum (∆α), which is calculated
as follows, can be used to gauge the level of multifractality:

∆α = αmax − αmin (11)

Higher ∆α values indicate higher levels of multifractality and
lower ∆α values indicate lower levels of multifractality. The sin-
gularity spectrum possesses an α0 value which corresponds to
maximum f (α), i.e. f (α0) = 1. Skewness of the spectrum indicates
information on the dominant fluctuations. Right-skewed spectrum
suggests that minor variations will predominate, while left-skewed
spectrum suggests that huge fluctuations will.

Multifractal Detrended Cross-Correlation Analysis (MF-DCCA)
The MF-DCCA methodology combines two methods namely
DCCA and MF-DFA. The MF-DCCA methodology can be utilized
to demonstrate multifractal properties of two power-law corre-
lated time series. Suppose xt and yt represent two time series with
t = 1, 2, . . . , N. The MF-DCCA method consist of following five
steps:

Step1: In the first step the profiles are calculated as follows:

Xi =
i

∑
t=1

(xt − x̄) (12)

Yi =
i

∑
t=1

(yt − ȳ) (13)

In the expressions above x̄ and ȳ are the average values of the
series.

Step 2: In the second step each profile is divided into 2Ns seg-
ments as in MF-DFA.

Step 3: Next covariance is calculated by following two formulas
for segments v = 1, 2, . . . , N and for segments v = Ns + 1, Ns +
2, . . . , 2Ns respectively:

F2
XY(s, v) =

1
s

s

∑
j=1

∣∣∣X(v−1)s+j − Xv̂
j

∣∣∣ · ∣∣∣Y(v−1)s+j − Yv̂
j

∣∣∣ (14)

F2
XY(s, v) =

1
s

s

∑
j=1

∣∣∣XN−(v−Ns)s+j − Xv̂
j

∣∣∣ · ∣∣∣YN−(v−Ns)s+j − Yv̂
j

∣∣∣
(15)

In the above formulas X̂v
j and Ŷv

j denote the fitting polynomials
in segment v with order m. In this study fitting polynomial order
m is selected as one.

Step 4: In the next step fluctuation function with order q, Fq
XY(s),

is computed by averaging all segments using following two for-
mulas for q ̸= 0 and q = 0 respectively:

Fq
XY(s) =

(
1

2Ns

2Ns

∑
v=1

[
F2

XY(s, v)
]q/2

)1/q

(16)

Fq
XY(s) = exp

(
1

4Ns

2Ns

∑
v=1

[
F2

XY(s, v)
])

(17)

Step 5: By analyzing logarithm plots of Fq
XY (s) versus logarithm

s the scaling behavior of the fluctuation function is determined
for each value of q. If the considered series are power-law cross-
correlated, there is a power-law relationship expressed as below:

FXYq (s) s(hXY (q)) (18)

In the expression above hXY(q) represents generalized correla-
tion exponent which reflects the power-law relationship. If hXY(q)
depends on q then correlation between the two time series is mul-
tifractal. However, if hXY(q) is independent of q then correlation
is monofractal.

Similar to MF-DFA multifractal spectrum fXY(α) can be ob-
tained from following formulas:

αXY(q) = hXY(q) + qh′XY(q) (19)

fXY(α) = q[αXY(q)− hXY(q)] + 1 (20)
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The term h′XY(q) in the expression above refers to the deriva-
tive of hXY(q) with regard to q. The αXY (q) is called Hölder expo-
nent and reflects the power of the singularity. Also, width of the
multifractal spectrum (∆α) indicates strength of multifractality.

DATA AND PRELIMINARY ANALYSIS

In this study hourly data for EUR/TRY and USD/TRY exchange
rates are utilized. The dataset comprises 23600 observations and
spans period between 2018-05-31 13:01 and 2022.03.21 08:01:00.
The data is sourced from GCM Forex company. Two types of
data analyses were conducted in this study: whole-period analysis
and rolling window analysis. In the rolling window analysis, a
window size of 4,000 observations was selected, with a sliding step
of 400 observations. The changes in exchange rates in the whole
period are depicted in Figure 1 and Figure 2. Summary statistics
for exchange rates are also presented in Table 1. As shown in
Table 1 both exchange rates exhibit right-skewed distributions.
Additionally, both exchange rates are leptokurtic and possess fat
tailed distributions. Since one source of multifractality is fat tailed
distribution, we can anticipate multifractality in both exchange
rates. In Figure 3 and Figure 4 autocorrelations for exchange rates
are plotted.

As evident in these figures, significant autocorrelations are ob-
served in EUR/TRY and USD/TRY exchange rates up to lags 8,653
and 8,804, respectively. Therefore, there are long-range autocorre-
lations in both exchange rates. Since another source of multifrac-
tality is long-range autocorrelation, we can expect multifractality
in these exchange rates. Long-range autocorrelation can lead to
multifractality because it can create a heterogeneous distribution
of the values of the time series. This heterogeneous distribution
can lead to different scaling behaviors over different time intervals.
For example, if the values of a time series are clustered together
above the mean, then the time series will be more volatile over
short time intervals. This is because the values of the time series
are more likely to change rapidly when they are clustered together.

On the other hand, if the values of a time series are clustered
together below the mean, then the time series will be more volatile
over long time intervals. This is because the values of the time
series are more likely to change slowly when they are clustered
together. Therefore, long-range autocorrelation can lead to mul-
tifractality by creating a heterogeneous distribution of the values
of the time series. This heterogeneous distribution can lead to
different scaling behaviors over different time intervals (Jafari et al.
2007; Dashtian et al. 2011; Tanna and Pathak 2014). In our prelimi-
nary analysis we calculated fractal dimensions for USD/TRY and
EUR/TRY exchange rates using Box-count estimator, Hall-Wood
estimator, Wavelet estimator and DCT-II estimator (Gneiting et al.
2012) and presented the results in Table 2. To illustrate how these
fractal dimensions change over time, we applied a rolling window
analysis and displayed the findings in Figure 5 and Figure 6. As ev-
ident from Table 2 and Figures 5-6, both USD/TRY and EUR/TRY
exchange rates exhibit fractal (non-integer) dimensions.

EMPIRICAL RESULTS

In this study firstly MFDFA is applied to exchange rates individu-
ally. In individual analyzes firstly, multifractality is investigated
for the whole dataset. Secondly, a rolling window methodology is
used to investigate how multifractal properties change over time
and to assess the contributions of long-range autocorrelation and
fat-tailed distribution to multifractality. Afterwards, MF-DCCA is
applied to both EUR/TRY and USD/TRY exchange rates. In this

4

8

12

16

2
0
1
9

2
0
2
0

2
0
2
1

2
0
2
2

Date

U
S

D
/T

R
Y

Figure 1 USD/TRY Exchange rate

5

10

15

2
0

1
9

2
0

2
0

2
0

2
1

2
0

2
2

Date

E
U

R
/T

R
Y

Figure 2 EUR/TRY Exchange rate

0 2000 4000 6000 8000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

Autocorrelation for USD/TRY

Figure 3 Autocorrelation for USD/TRY exchange rate

Section firstly MF-DCCA is applied to whole dataset to examine
the multifractal properties of the complete dataset. Secondly, using
a rolling window methodology, changes in the cross-correlation
multifractality between the exchange rates over time are examined.
Additionally, the study explores how contributions of long-range
autocorrelation and fat-tailed distribution to cross-correlation mul-
tifractality change over time.

In order to apply MFDFA and MF-DCCA methods three pa-
rameter values must be determined: vector of scales, q-order of
the moment (q) and polynomial order for the detrending (m). In
both whole period analysis and rolling window analysis q-order
of the moment values are selected from -10 to +10 in steps of 1
including zero and polynomial order for the detrending is set to 1.
However, in whole period analysis scales values are selected from
100 to 5900 in steps of 10 and in rolling window analysis scales
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■ Table 1 Descriptive Statistics

Exchange
Rate

Min 1st Q. Median Mean 3st Q. Max Std. Dev. Skewness Kurtosis

USD/TRY 4.451 5.738 6.792 7.302 8.203 18.080 2.3026 1.72126 5.7037

EUR/TRY 5.253 6.387 7.532 8.392 9.747 18.413 2.6457 1.44015 4.6592

■ Table 2 Fractal Dimensions

Method USD/TRY EUR/TRY

Box-count estimator 1.328052 1.316235

Hall-Wood estimator 1.510337 1.480936

Wavelet estimator 1.518846 1.405108

DCT-II estimator 1.526528 1.435383
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values are selected from 10 to 400 in steps of 10. In our analysis
to measure the level of multifractality (∆α) values are utilized. To
illustrate how individual and cross correlated multifractality levels
of the exchange rates change over time we presented the changes
in (∆α) values within a rolling window framework.
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In the literature, not only the level of multifractality but also
the factors contributing to multifractality has been investigated.
Multifractality is primarily influenced by two factors. These are
fat-tailed distribution and long-range autocorrelation. To mea-
sure the contribution of these two causes to the multifractality,
surrogate and shuffled data are generated and utilized. In the
generation of shuffled data autocorrelations are destroyed but
the distribution is preserved. After generation of shuffled data,
(∆αShu f f led) Shuffled value is calculated from this shuffled data.
Eventually, when (∆αShu f f led) Shuffled is subtracted from orig-
inal (∆α) value, long-range autocorrelations’ contribution to the
multifractality are obtained.

Another factor that contributes to multifractality is the presence
of a fat-tailed distribution. To assess the multifractality’s contribu-
tion from the fat-tailed distribution, surrogate data is employed.
Surrogate data is generated by using a phase randomization pro-
cedure. In this procedure fat-tails in the distribution is eliminated
but linear properties of the distribution are preserved. To eval-
uate contribution of fat tails to the multifractality, (∆αSurrogate)
surrogate value is calculated from surrogate data. Subsequently,
(∆αSurrogate) Surrogate value is subtracted from original (∆α)
value to calculate contribution of fat tails to the multifractality.

In next sections to illustrate how the contributions of long-range
autocorrelation factor and fat-tailed distribution factor to multifrac-
tality change over time fifty shuffled time series and fifty surrogate
time series are generated for each time window and (∆α) values
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are calculated for each of the fifty series. Subsequently, mean and
standard deviation values of fifty (∆α) parameters for shuffled
and surrogate series are calculated in each time window. Since MF-
DCCA method requires two time series we generated fifty pairs of
surrogate and shuffled time series to explore the contributions of
fat-tailed distribution and long-range autocorrelation to multifrac-
tality of the cross-correlations. By utilizing the means and standard
deviations of (∆α) values calculated from surrogate and shuffled
time series, contributions of two factors to the multifractality are
examined. We generated multiple shuffled and surrogate series
because in each realization different series are obtained. There-
fore, multiple surrogate and shuffled series are required for robust
results.

MF-DFA of USD/TRY Exchange Rate

Firstly, we analyzed multifractality of USD/TRY exchange rate
by using whole period data. The results are presented in Figure
7. Upper left panel of Figure 7 indicates logarithm–logarithm
plots of fluctuation function Fq(s) versus time scale s for q values
equal to 10, 0 and -10. The linearity of points in this graph reveals
presence of power-law cross-correlations between time scale and
fluctuation function. The upper right panel of Figure 7 illustrates
how the Hurst exponent changes for various values of q. The
Hurst exponents do not remain constant across a range of q values,
leading us to the conclusion that the USD/TRY exchange rate
exhibits multifractality.

Additionally, for q = 2 Hurst exponent is computed as 0.5268
which is slightly higher than 0.5, indicating a very weakly persis-
tent time series. Lower left panel of Figure 7 shows how mass
exponent change for different values of q. Since mass exponent
nonlinearly depends on q, this provides further evidence of multi-
fractality of USD/TRY exchange rate. Lower right panel of Figure
7 presents multifractal spectrum of USD/TRY exchange rate. Here
width of the multifractal spectrum (∆α) reveals the level of mul-
tifractality and a positive (∆α) value indicates the existence of
multifractality. Also, since α0 value is higher than 0.5 there is
persistent long-range correlations in the USD/TRY exchange rate
series. Left-skewed spectrum implies that large fluctuations are
dominant in the time series.
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Figure 7 Change in fractal dimensions for USD/TRY exchange rate

To explore how the level of multifractality for USD/TRY ex-
change rate change over time we illustrated how multifractal spec-
trum (∆α) change over time in a rolling window framework. Re-
sults are depicted in Figure 8 and Figure 9 with black curves. In
these figures with dots on black curve fifty original (∆α) values

are presented and each of these corresponds to single time win-
dow. When the original (∆α) values are examined three different
regimes in terms of multifractality are distinguished. In period
between 2018-05-31 13:01 and 2020-06-24 13:01 and in period be-
tween 2020-07-17 06:01 and 2022-03-21 08:01 multifractality levels
of USD/TRY exchange are higher than the period between 2019-
11-22 19:01 and 2021-02-16 12:01. Also, there is a noticeable peak
in the multifractality in the period between 2018-08-09 13:01 and
2019-04-04 00:01. Moreover, there is a collapse in the multifractality
in the period between 2021-04-27 15:01 and 2021-12-16 10:01.

In our analysis we generated 50 shuffled and 50 surrogate series
for each time window to illustrate how the contribution of long-
range autocorrelation and fat-tailed distribution to multifractality
change over time. Mean (∆αSurrogate) values of surrogate series
computed in each time window are shown with a blue curve in
Figure 8 and mean (∆αShu f f led) values of shuffled series com-
puted in each time window are shown with a blue curve in Figure
9. Red error bars represent ±1 standard deviations of generated
surrogate and shuffled series in each time window.
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Figure 8 Change in (∆α) calculated from original data and change
in (∆α) calculated from surrogate data
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Figure 9 Change in (∆α) calculated from original data and change
in (∆α) calculated from shuffled data

To assess the change in the contribution of fat-tailed distribu-
tion to multifractality we subtracted mean values of (∆αSurrogate)
obtained from surrogate data from original (∆α) values and pre-
sented this in Figure 10. In this figure, high values indicate a strong
fat-tailed distribution’s contribution to the multifractality, while
low values indicate a low fat-tailed distribution’s contribution
to the multifractality. As seen from Figure 10 fat-tailed distribu-
tion’s contribution to the multifractality is weakened in the period
between 2019-11-22 19:01 and 2021-02-16 12:01.

Furthermore, to assess the change in long-range correlation’s
contribution to multifractality mean (∆αShu f f led) values obtained
from shuffled data are subtracted from original (∆α) values. The
results are illustrated in Figure 11. In this figure each value rep-
resents contribution level of long-range autocorrelation to multi-
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■ Table 3 Multifractality regimes in USD/TRY exchange rate

(∆α) 1. Regime 2. Regime 3. Regime

Mean 0.8966261 0.4876900 0.9534882

Variance 0.016327789 0.002052737 0.007530036
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Figure 10 Change in the fat-tailed distribution’s multifractality contri-
bution
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Figure 11 Change in the multifractality’s long-range autocorrelation
contribution
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Figure 12 Examining the impacts of fat-tailed distribution and long-
range autocorrelation on multifractality
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Figure 13 Change points in multifractality of USD/TRY exchange
rate

fractality. This figure reveals that the long-range autocorrelation’s
contribution to multifractality is once again weakened between
2019-11-22 19:01 and 2021-02-16 12:01. Additionally, the contri-
bution of long-range autocorrelation to multifractality shows a
striking decline between 2021-04-27 15:01 and 2021-12-16 10:01.

Figure 12 is presented to compare the contributions of the fat-
tailed distribution and long-range autocorrelation to the multi-
fractality. This figure illustrates the difference between mean
(∆αSurrogate) value obtained from surrogate data and mean
(∆αShu f f led) value obtained from shuffled data. Positive val-
ues in Figure 12 indicate that the long-range autocorrelation has a
greater contribution to the multifractality than the fat-tailed dis-
tribution. Figure 12 reveals that, except for the time period from
2021-04-02 23:01 to 2022-01-10 06:01, long-range autocorrelation
contributes more to multifractality than the fat-tailed distribution.

To detect change points and regimes in the level of multifractal-
ity in USD/TRY exchange rate binary segmentation algorithm is
applied (Scott and Knott 1974; Sen and Srivastava 1975). We iden-
tified two change points in the 23rd and 33rd windows, resulting
in three regimes. Results are presented in Table 3 and Figure 13.

MF-DFA of EUR/TRY Exchange Rate

Multifractal analysis results for EUR/TRY exchange rate covering
whole period data are presented in Figure 14. Upper left panel of
Figure 14 displays power-law cross-correlations between time scale
s and fluctuation function Fq(s) for q values equal to 10, 0 and -10.
Upper right panel of Figure 14 reveals a varying Hurst exponent
according to value of q, providing evidence for multifractality.
Additionally, Hurst exponent for q = 2 is computed as 0.5637,
slightly higher than 0.5, indicating a weakly persistent time series.
Notably, this Hurst exponent value of 0.5637 is greater than the
Hurst exponent value of 0.5268 for the USD/TRY exchange rate,
indicating that the EUR/TRY exchange rate is more persistent
than the USD/TRY exchange rate. As observed in the lower left
panel of Figure 14 mass exponents are nonlinear, providing further
evidence of multifractality. The lower right panel of Figure 14
displays the multifractal spectrum of the EUR/TRY exchange rate.
Here positive value for (∆α) indicates evidence for multifractality.
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Additionally, since α0 value is higher than 0.5 there is persistent
long-range correlations in the EUR/TRY exchange rate series. The
left-skewed spectrum suggests that large fluctuations dominate
the time series.

Similar to the USD/TRY exchange rate, to illustrate how multi-
fractality level for the EUR/TRY exchange rate change over time
Figure 15 and Figure 16 presented. In these figures black curves
represents (∆α) values calculated from original data. As observed
in these figures level of multifractality is maximum in the period
between 2018-05-31 13:01 and 2019-01-23 22:01. After 2018-05-31
13:01 there is steady decline in multifractality until 2019-07-30
08:01. In the period between 2018-12-29 00:01 and 2019-10-31 01:01
slightly higher values and a horizontal trend are observed for mul-
tifractality. In the period between 2019-04-04 01:01 and 2020-09-02
13:01 multifractality remains relatively flat and low. After 2020-
02-05 11:01 an upward trend is observed until 2021-10-30 01:00.
However, in the period between 2021-04-27 15:01 and 2021-12-16
10:01 a collapse in the multifractality is observed.

To reveal contributions of long-range autocorrelation and fat-
tailed distribution to multifractality 50 shuffled time series and 50
surrogate time series are generated in each time window. Mean val-
ues of (∆αSurrogate) calculated from surrogate series in each time
window is presented in Figure 15 with blue curve and mean values
of (∆αShu f f led) calculated from shuffled series in each time win-
dow is also presented in Figure 16 with blue curve. In these figures
error bars represent ±1 standard deviations of (∆αSurrogate) and
(∆αShu f f led) values obtained from surrogate and shuffled series.

To demonstrate how contribution of fat-tailed distribution to
multifractality is change over time Figure 17 is plotted. To obtain
this figure mean (∆αSurrogate) values obtained from surrogate
series are subtracted from original (∆α) values. As observed in
Figure 17 contribution of fat-tailed distribution to multifractality is
highest in period between 2018-05-31 13:01 and 2019-01-23 22:01.
Following this period, the fat-tailed distribution’s contribution to
multifractality decreased. After 2020-02-05 11:01 a steady increase
in the fat-tailed distribution’s contribution to multifractality is ob-
served. However, between 2021-04-27 15:01 and 2021-12-16 10:01,
there appears to have been a decline in the fat-tailed distribution’s
contribution to multifractality.

The change in the contribution of long-range autocorrelation to
multifractality over time is presented in Figure 18. In this figure,
it can be observed that the long-range correlation’s contribution
to multifractality is highest in the early period and gradually de-
creases untill 2019-05-21 8:01. After this date two relatively hor-
izontal trend periods are distinguished. First horizontal trend
period is between 2019-04-04 01:01 and 2021-03-11 04:01. Second
horizontal trend period is between 2020-08-10 22:01 and 2021-10-30
01:00. Additionally, between 2021-04-27 15:01 and 2021-12-16 10:01,
there is a collapse in the long-range correlation’s contribution to
multifractality. This period also corresponds to a decline in the
contribution of long-range autocorrelation to multifractality.

Comparison between contributions of long-range autocorrela-
tion and fat-tailed distribution to multifractality is presented in
Figure 19. Positive values in this figure indicate that the long-range
autocorrelation has a greater contribution to the multifractality
than the fat-tailed distribution. Figure 19 remains relatively flat
and have positive values until the date 2021-11-23 18:01. This
indicates that long-range autocorrelation has been the primary
source of multifractality up to this point. However negative values
are observed in this figure during the period between 2021-04-27
15:01 and 2022-01-10 06:01. These negative values indicate that the
fat-tailed distribution now contributes more to multifractality than

long-range autocorrelation does.
To detect change points and regimes in the level of multifractal-

ity in EUR/TRY exchange rate, a binary segmentation algorithm
is applied (Scott and Knott 1974; Sen and Srivastava 1975). We
detected three change points in 4th, 13th and 34th windows, result-
ing in four regimes. Results are presented in Table 4 and Figure
20.

Fluctuation function Fq

scale

lo
g

2
(F

q
)

−
9

−
7

−
5

100 810 1540 2990 5900

Hurst exponent

q

h
q

−10 −5 0 5 10

0
.3

0
.5

0
.7

Mass exponent

q

τ
q

−10 −5 0 5 10

−
8

−
4

0

 α

f 
( 

α
 )

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0
.0

0
.4

0
.8

Figure 14 Whole period multifractality of EUR/TRY exchange rate
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Figure 15 Change in (∆α) calculated from original data and change
in (∆α) calculated from surrogate data
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Figure 16 Change in (∆α) calculated from original data and change
in (∆α) calculated from shuffled data

MF-DCCA of USD/TRY and EUR/TRY Exchange Rates
In this stage, the EUR/TRY and USD/TRY exchange rates are
studied using multifractal detrended cross-correlation analysis.
Firstly, results from whole dataset are presented.
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■ Table 4 Multifractality regimes in EUR/TRY exchange rate

(∆α) 1. Regime 2. Regime 3. Regime 4. Regime

Mean 1.3802250 0.7392889 0.5069429 0.7771875

Variance 0.027409312 0.011176401 0.005778175 0.019095466
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Figure 17 Change in the fat-tailed distribution’s multifractality contri-
bution
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Figure 18 Change in the multifractality’s long-range autocorrelation
contribution
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Figure 19 Examining the impacts of fat-tailed distribution and long-
range autocorrelation on multifractality
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Figure 20 Change points in multifractality of EUR/TRY exchange
rate

In Figure 21 relationships between time scale s and fluctuation
function for q values equal to 10, 0 and -10 are plotted. The linearity
of these points indicates that there is a power-law relationship be-
tween these two values. In Figure 22 generalized cross-correlation
exponent between the two exchange rates are presented. In this
figure, since generalized cross-correlation exponents are depen-
dent on q values, it suggests that the cross-correlation between
the exchange rates is multifractal. Additionally, for logarithm
difference data, generalized cross-correlation exponent for q=2 is
computed as 0.5393, slightly higher than 0.5, indicating that the
cross-correlated series has a weak persistent structure. The mul-
tifractal spectrum for cross-correlation between USD/TRY and
EUR/TRY exchange rates is shown in Figure 23. In this figure
it can be observed that width of the multifractal spectrum (∆α)
is positive, providing further evidence for multifractality in the
cross-correlation. Moreover, since α0 value is greater than 0.5, it
indicates the presence of persistent long-range correlations.

In MF-DCCA level of correlation multifractality between two
exchange rate series can be measured with the multifractal spec-
trum’s width (∆α). In this part we demonstrated how multifrac-
tality level of cross correlation between the two exchange rates
and source of multifractality change over time in a rolling window
framework.

Long-range autocorrelation and fat-tailed distribution are the
two sources of multifractality for cross correlation. To measure the
contribution of these two sources shuffled time series and surro-
gate time series are utilized. However, in MF-DCCA, since there
must be two series, 50 pairs of surrogate series and 50 pairs of shuf-
fled series are generated for each time window. The (∆αSurrogate)
values obtained from pairs of surrogate series are presented in Fig-
ure 24 and (∆αShu f f led) values obtained from pairs of shuffled
series are presented in Figure 25 with blue curves. In these figures
red error bars represent ±1 standard deviation.
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When Figure 24 and Figure 25 are examined, a downward
trend in multifractality for original series is observed in the period
between 2018-05-31 13:01 and 2021-01-22 20:01. In the period
between 2020-06-01 22:01 and 2021-04-02 22:01 there is a rapid
rise in multifractality. Also, in the period between 2020-08-10
22:01 and 2021-10-30 01:01 a gradual increase in multifractality is
observed. However, there is a collapse in multifractality during
the period between 2021-04-27 15:01 and 2021-12-16 10:01.

Figure 26 is presented to examine how the fat-tailed distribu-
tion’s contribution to the multifractality changes over time. Addi-
tionally, Figure 27 is presented to reveal how the contribution of
long-range correlation to multifractality changes over time. These
two figures display similar pattern. In both Figure 26 and Figure
27 there are significant collapse in contributions to multifractality
during the period between 2021-04-27 15:01 and 2021-12-16 10:01.

To compare fat-tailed distribution’s and long-range autocor-
relation’s contributions to multifractality Figure 28 is presented.
Positive values in this figure indicate that the long-range auto-
correlation has a greater contribution to the multifractality than
the fat-tailed distribution. When examining this figure, a nega-
tive value is observed for the period between 2021-04-27 15:01
and 2021-12-16 10:01. This negative value suggests that the fat-
tailed distribution’s contribution to multifractality has surpassed
the long-range correlation’s contribution. Apart from this period,
dominant source of multifractality is long-range correlation.

To identify change points and regimes in the level of cross
correlation multifractality between exchange rates a binary seg-
mentation algorithm is applied (Scott and Knott 1974; Sen and
Srivastava 1975). We detected seven change points in 5th, 13th,
16th, 23th, 34th, 42th, and 47th windows, resulting in eight regimes.
Results are presented in Table 5 and Figure 29.
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■ Table 5 Multifractality regimes in EUR/TRY exchange rate

(∆α) 1. Regime 2. Regime 3. Regime 4. Regime 5. Regime 6. Regime 7. Regime 8. Regime

Mean 0.9991 0.8620 0.5493 0.7182 0.4773 0.8532 0.7763 0.8518

Variance 3.22e-02 1.11e-03 1.00e-03 1.86e-03 1.13e-02 1.68e-03 4.50e-02 9.31e-05
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Figure 25 Change in (∆α) calculated from original data and change
in (∆α) calculated from shuffled data
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Figure 26 Change in the fat-tailed distribution’s multifractality contri-
bution
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Figure 27 Change in the multifractality’s long-range autocorrelation
contribution
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Figure 28 Examining the impacts of fat-tailed distribution and long-
range autocorrelation on multifractality

Changepoints for Cross

Time

∆
α

0 10 20 30 40 50

0
.4

0
.6

0
.8

1
.0

1
.2

Figure 29 Change points in cross-correlation multifractality

CONCLUSION

A multifractal system is a general type of fractal system in which
the system cannot be adequately described by a single exponent.
In the literature, it has been demonstrated that many systems from
different fields exhibit multifractality. In this study individual
and cross correlation multifractality of EUR/TRY and USD/TRY
exchange rates are explored with MF-DFA and MF-DCCA method-
ologies. In the analysis both whole period data and rolling window
data are utilized. Whole period analyses reveal that the two ex-
change rates as well as correlation between the exchange rates are
multifractal.

Multifractality in these exchange rates implies presence of inef-
ficiencies which can be exploited by investors. These inefficiencies
can be exploited by investors who are able to identify them and
trade accordingly. For example, investors who believe that the
volatility of a particular exchange rate is about to increase may
choose to sell that currency, while investors who believe that the
volatility is about to decrease may choose to buy that currency.
Advanced trading algorithms can be designed to detect and act
upon multifractal patterns in exchange rates. Multifractality can
create arbitrage opportunities where an asset’s price differs on
different time scales or in different markets.

Arbitrageurs can profit from these price differentials by buying
low and selling high. By using rolling window method, we illus-
trated how multifractal properties of the exchange rates change
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over time. As indicated by (∆α) values multifractality levels of the
exchange rates change over time and higher multifractal levels im-
plies higher complexity, higher risks and more violent fluctuations.
Additionally, we examined how contributions of long-range au-
tocorrelation and fat-tailed distribution to multifractality change
over time. Shape of the singularity spectra for exchange rates
suggests that large fluctuations are more dominant in EUR/TRY
exchange rate than USD/TRY exchange rate.

Our results suggest that long-range autocorrelation’s contribu-
tion to multifractality is higher than the fat-tailed distribution’s
contribution except during the period between 2021-04-27 15:01
and 2021-12-16 10:01. Therefore, dominant source of multifractality
is the long-range autocorrelation. However, when the multifractal-
ity of the two exchange rates are examined a collapse in the multi-
fractality is observed during in the period between 2021-04-27 15:01
and 2021-12-16 10:01. Moreover, in this period, contribution of fat-
tailed distribution to multifractality become dominant. As evident
from Figure 1 and Figure 2, during this period, both USD/TRY and
EUR/TRY exchange rates exhibit significant instability, and there
is substantial government intervention in the foreign exchange
market. Since USD/TRY and EUR/TRY exchange rates are mul-
tifractal and characterized by autocorrelation, non-linearity, and
long memory (persistence), traditional efficient markets hypothesis
which assumes normal distribution and linearity is not appropriate
for these exchange rates.

The implications of multifractality of USD/TRY and EUR/TRY
exchange rates are significant and can impact various areas within
finance, economics, and decision-making. Multifractal behavior
suggests that exchange rate movements are not only random but
also characterized by irregular patterns and fluctuations across
different time scales. This complexity can lead to unexpected and
extreme price movements, which are important considerations
for risk assessment and management. Multifractality for these
exchange rates implies that the volatility of these exchange rates
can vary depending on the time scale being considered. This
makes it difficult to predict the future volatility of these exchange
rates, and it can also make it difficult to trade these exchange
rates profitably. Also, the multifractality of these exchange rates
suggests that they are not efficient markets. This means that there
are opportunities to make profits by exploiting the inefficiencies in
these markets.

However, these opportunities are often difficult to find and ex-
ploit, and they can also be risky. Multifractal analysis can provide
insights for traders and algorithmic trading systems. By under-
standing the non-linear dynamics of exchange rates, traders can
develop strategies that adapt to the multifractal nature of the mar-
ket, potentially improving trading outcomes. Traditional linear
models may not fully capture the complexities of multifractal be-
havior. The findings from multifractal analysis can lead to the
development of more sophisticated models that better reflect the
true nature of exchange rate movements. Multifractal behavior
can affect portfolio diversification strategies. Investors need to
consider how different assets, including USD/TRY and EUR/TRY
exchange rates, interact and exhibit multifractal patterns to ef-
fectively manage risk and optimize returns. Multifractality in
exchange rates can have policy implications for central banks and
governments. Understanding the intricate and non-linear behav-
iors of currencies can inform decisions related to monetary policy,
trade agreements, and economic interventions. The recognition
of multifractal behavior can influence how financial markets are
regulated. Regulators might need to consider the implications of
non-linear and complex behaviors for market stability and investor

protection.
In the future studies how multifractality and its sources evolve

over longer time periods can be investigated. Comparative analy-
sis with other currency pairs or financial assets can be conducted
to identify commonalities and differences in multifractal behav-
ior. The impact of external factors, such as geopolitical events,
economic policies, or global financial crises, on the multifractality
of exchange rates can be explored. Machine learning techniques
to enhance the prediction and forecasting capabilities based on
multifractal properties can be incorporated.
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