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A B S T R A C T  

This study explores the application of Genetic Algorithms (GA) in optimizing 
shipbuilding production processes in the presence of uncertain environments. The 
research addresses two key aspects: firstly, the integration of GA RCPSP (Resource-
Constrained Project Scheduling Problem) with techniques for managing uncertainty in 
shipbuilding production; and secondly, the analysis of Pareto optimal solutions generated 
by GA to achieve optimal scheduling in the shipbuilding context. The proposed framework 
aims to minimize project completion time and maximize resource utilization by 
incorporating probabilistic models, scenario analysis to handle uncertainties. Furthermore, 
the study focuses on evaluating the trade-offs between project completion time, resource 
allocation, and cost through the analysis of Pareto optimal solutions, using visualization 
techniques and sensitivity analyses to support decision-making processes. The findings 
contribute to enhancing shipbuilding production by providing a comprehensive approach 
for effectively managing uncertainty, improving resource allocation, and reducing project 
duration through the integration of GA RCPSP and uncertainty management techniques. 
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Introduction 

The shipbuilding industry, which is estimated to reach a 
global shipbuilding market value of $145.67 billion in 2023 
(Statista, 2023), is one of the capital-intensive and heavy 
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industries that creates substantial employment opportunities 
and makes a significant contribution to the global economy. In 
recent years, the global supply of merchant ships has been 
dominated by China, the Republic of Korea and Japan, which 
together have a 94% market share in the shipbuilding industry 
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(UNCTAD, 2022). The shipbuilding industry is a highly 
complicated sector with a multifaceted value chain 
encompassing the design, construction, and installation of 
diverse vessels (Lee et al., 2020). The production process within 
a shipyard represents one of the most intricate manufacturing 
systems (Okubo & Mitsuyuki, 2022). In the shipbuilding 
industry, competitiveness is multifaceted, encompassing 
various dimensions, including shipbuilding expenses, delivery 
timelines, ship quality, after sales services, and financing terms 
(Ecorys, 2009; Jiang & Strandenes, 2012). Shipbuilding is 
characterized by a complex production system with intricate 
work and organizational structures, extended lead times, and 
diverse resource requirements (Liu et al., 2011). The modern 
shipbuilding industry continually faces new challenges and 
market demands, necessitating ongoing improvements in the 
shipbuilding process to enhance fabrication efficiency amidst 
numerous uncertainties on the factory floor. Consequently, 
shipyards are compelled to continuously develop and 
implement novel production technologies and methodologies 
to effectively schedule the complex shipbuilding process 
(Hadžić, 2019). 

The shipbuilding industry, which operates under an 
Engineering-to-Order (ETO) production mode, is a 
representative example of a project-based industry. 
Shipbuilding projects possess distinct characteristics such as 
complex product structures, multiple manufacturing stages, 
long production cycles, tight deadlines, jobbing work, 
concurrent execution of multiple projects, frequent 
modifications in engineering designs, and so on (Mao et al., 
2020). Effective production planning plays a crucial role as it 
directly impacts construction costs and project duration. 
Moreover, given the limited time available for comparing 
multiple plans, production resource constraints must be taken 
into account (Okubo & Mitsuyuki, 2022). The shipbuilding 
production is a complex and lengthy process, which demands 
careful planning and timely decision-making. Characteristic of 
an intermittent process like shipbuilding is a large number of 
working activities of different duration (Ljubenkov et al., 2008). 
With the rapid development of technology, it has been affecting 
in ship production process (Mao et al., 2020). The primary 
challenge in shipbuilding processes lies in enhancing 
productivity at shipyards by developing new production 
technologies and effectively managing them (Lee et al., 2020). 
Labor plays a critical role in shipbuilding industry productivity, 
making it difficult to estimate workloads and schedules while 
considering worker allocation. Given the characteristics of the 
ETO industry, design and scheduling changes frequently occur 

during production. Furthermore, managing long-term 
production plans poses challenges. Process managers oversee 
the control of each task according to predefined schedules, 
making it difficult to negotiate and coordinate with other 
processes and increasing the possibility of making inefficient 
decisions (Goo et al., 2019). In a multi-project environment, all 
construction tasks are consolidated into an overall shipyard-
level plan that analyzes available capabilities and resources over 
the planning horizon. Since all ships are built using shared 
resources in a competitive manner, it is necessary to plan the 
aggregate utilization of resources across all projects in order to 
create a reliable master schedule for each production stage and 
the entire project (Liu et al., 2011). In a distributed 
manufacturing environment, accomplishing such a complex 
shipbuilding project requires cross-enterprise cooperation. 
Multi-project parallelism and distributed manufacturing 
introduce numerous project coordination tasks. The 
complexity of shipbuilding projects and the extensive 
coordination required exponentially increase the difficulty of 
project control (Mao et al., 2020). For most shipbuilding 
enterprises, project execution is generally inefficient, as 
evidenced by poor coordination, underutilization of resources, 
cost overruns, and project delays, all of which have a significant 
impact on the enterprise’s reputation within the industry. The 
root cause of these performance issues is the lack of effective 
project scheduling methods that align with the characteristics 
of current shipbuilding projects involving distributed 
manufacturing, collaborative decision-making, and dynamic 
scheduling (Mao et al., 2020). To ensure competitiveness and 
sustainability, shipyards must continuously monitor and 
enhance productivity, efficiency, and quality while reducing 
overall production costs (Rubeša et al., 2023). 

Shipbuilding production is a complex process that requires 
careful planning and timely decision-making. It involves 
numerous working activities of varying durations, following an 
intermittent process. In a multi-project environment, all 
building tasks are consolidated into an overall shipyard-level 
plan. This plan analyzes available capabilities and resources 
over the planning horizon. However, coordinating multiple 
projects and managing distributed manufacturing poses 
significant challenges. It exponentially increases the difficulty 
of controlling the shipbuilding project due to its inherent 
complexity and extensive coordination requirements. Hence, it 
is imperative to employ efficient project planning and 
scheduling techniques in order to enhance the optimization of 
resource utilization, encompassing resource allocation and 
comprehensive resource utilization strategies. Given the finite 
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resources available to enterprises for their production 
endeavors, meticulous planning of both temporal and 
quantitative aspects of project resources becomes 
indispensable. Shipbuilding faces the RCPSP, which involves 
optimizing the allocation of limited resources within a project’s 
time constraints. This complex challenge requires efficient 
management of manpower, materials, and equipment to ensure 
timely completion of ship construction, addressing the 
industry’s unique operational requirements. Additionally, GAs, 
a metaheuristic inspired by natural evolution and used to solve 
complex optimization problems, are used for RCPSPs because 
they can handle multiple constraints simultaneously, explore 
and exploit the solution space, utilize a population-based 
approach, and iteratively improve solutions. These algorithms 
are well-suited for optimizing complex scheduling problems by 
considering task dependencies, resource availability, and limits. 
GAs generate and evaluate a population of potential solutions, 
selecting and combining individuals through genetic 
operations like crossover and mutation. This iterative process 
continues until a termination criterion is met, aiming to find an 
optimal or near-optimal solution in a large search space. By 
representing project schedules as chromosomes and using 
genetic operations, GAs explore various combinations to find 
efficient project schedules that balance resource allocation, task 
dependencies, and project objectives (Akan, 2017; Han et al., 
2017; Hu et al., 2019; Jeong et al., 2018; Mao et al., 2020). 
Furthermore, precisely estimating the duration of activities in 
terms of project management in the ship production process 
can be challenging due to the unique nature of each order. In 
such cases, fuzzy set theory effectively handles uncertainty and 
provides more accurate modeling of real-world problems 
compared to deterministic methods by addressing uncertainty 
and vagueness, using approximate knowledge (Kahraman & 
Kaya, 2010). Zadeh’s (1965) development of fuzzy set theory 
introduced membership functions, assigning degrees of 
membership within the interval [0,1] to elements therefore, 
thanks to the membership functions of fuzzy sets being defined 
for project duration in scheduling, it becomes possible to 
provide a wider range of feasible cluster solutions for projects 
operating in uncertain environments (Akan & Bayar, 2022). 
Therefore, effective project planning and scheduling, along 
with the utilization of artificial intelligence techniques such as 
GAs and fuzzy set theory, can significantly contribute to 
overcoming the challenges of shipbuilding production and 
optimizing resource allocation in this complex and resource-
intensive industry. Additionally, the aim of this study is to 
comprehensively explore the integration of genetic algorithm 

into shipbuilding production processes under uncertainty, 
providing actionable insights for efficient resource utilization 
and timely project completion. By addressing the two research 
questions, the article strives to bridge the gap between 
theoretical concepts and practical implementation, providing 
insights into the adaptation of GA to real-world shipbuilding 
scenarios. With the motivation to investigate and provide 
valuable insights into the following research questions: 

(RQ1) How can the application of GA RCPSP be applied to 
the shipbuilding production process in the presence of 
an uncertain environment? 

(RQ2) How can the analysis of Pareto optimal solutions be 
performed using the set generated by the Genetic 
Algorithm for the GA RCPSP in the context of the 
shipbuilding production process? 

Furthermore, a shipbuilding process consists respectively of 
the stages of shipowner’s decision, design and contracting, 
engineering and approval, material procurement, fabrication 
and assembly, outfitting and installation, testing and trials, 
certification and documentation, delivery and commissioning, 
and post-delivery support (Kim et al., 2005; Özyiğit, 2006). The 
manufacturing phase is prone to minor variations, primarily 
characterized by pivotal procedures such as block erection, 
prioritized block assembly, exterior assembly, and painting 
(Park et al., 2002) nevertheless, the manufacturing phase may 
vary due to different production arrangements adopted by 
shipyards based on ship type and outsourcing decisions 
(Stopford, 2009). Therefore, the application of this study 
focuses on the following stages of ship production process such 
as plate cutting and assembly of components, surface cleaning 
and grinding operations of plates, preparation of profiles, 
preparation of cut single-piece plates, surface preparation, and 
bending operations, assembly of small groups and pre-
fabrication, panel manufacturing, component panel 
manufacturing, grouped panel production, block production, 
block assembly on the slipway, and launching the steel ship into 
the sea. 

Additionally, the rest of the research is structured as follows: 
Section 2 provides a comprehensive literature review. In 
Section 3, the methodology is presented in detail. Section 4 
demonstrates the application of the study method to perform. 
The final section encompasses the discussion of the findings, 
drawing conclusions based on the results obtained, and 
providing suggestions for future research endeavors. 
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Literature Review 

This section considers the application of the GA RCPSP 
within fuzzy environment in the context of the shipbuilding 
industry. 

The studies in regard to the use of RCPSP: Kolisch (1995) 
introduced ProGen, an algorithm for solving RCPSP. The 
algorithm was utilized to solve the problem using the priority 
rule method. To enable comparison with other researchers, 
Kolisch & Spracher (1996) developed the PSPLib Project 
Scheduling Library. Özdamar & Ulusoy (1996) proposed an 
iterative scheduling algorithm that improved project duration 
through forward/backward planning transitions obtained from 
Local Constraint-Based Analysis. This algorithm demonstrated 
an average project duration deviation of 1%. Boctor (1996) 
explored the multi-mode RCPSP, generating 21 heuristic 
methods to solve it. Sprecher & Drexl (1998) devised a branch 
and bound algorithm and a parallel scheduling algorithm for 
solving the multi-mode RCPSP. Reyck & Herroelen (1998) 
developed a branch and bound algorithm for the RCPSP, 
incorporating minimum and maximum delays between 
activities as activity precedence constraints. Schirmer (1998) 
evaluated a case-based approach for the RCPSP by comparing 
it with other algorithms using PSPLib data. Hartmann & 
Kolisch (2000) proposed a simulated annealing-based method 
within the X-Pass approach for solving RCPSP. Brucker & 
Knust (2000) introduced a new lower bound for the RCPSP, 
minimizing workforce utilization in the RCPSP through 
constraint propagation and linear programming. Abbasi et al. 
(2006) presented a simulated annealing algorithm based on 
time maximization to minimize workforce utilization and 
enhance scheduling reliability in the RCPSP. Shadrokh & 
Kianfar (2007) aimed to minimize the cost of resource capacity 
and project completion time by addressing the resource 
investment problem within the RCPSP category. Homberger 
(2007) proposed a multi-agent approach and a restart evolution 
method for the Resource-Constrained Multi-Project 
Scheduling problem. Adhau et al. (2012) developed a 
negotiation-based multi-agent method utilizing an auction 
approach to prevent resource intersections and generate 
optimal solution sets. Adhau et al. (2013) excluded resource 
transportation cost and time from their solution to facilitate 
comparison with previous methods. Furthermore, recent 
studies provide novel methods and algorithms, RCPSP. Etgar et 
al. (2018) achieved near-optimal solutions for multi-release 
work plans using clustering-based techniques. Chand et al. 
(2018) proposed genetic programming-based hyper-heuristics, 

while Muñoz et al. (2018) showcased the effectiveness of the 
Bienstock-Zuckerberg algorithm for project scheduling 
problems. Zhu et al. (2019) introduced a discrete oppositional 
multi-verse optimization algorithm for the multi-skill RCPSP, 
demonstrating superior performance. Servranckx & 
Vanhoucke (2019) focused on RCPSP with alternative 
subgraphs, highlighting the benefits of using a set of schedules. 
Vanhoucke & Coelho (2019) presented a solution algorithm for 
RCPSP with activity splitting and setup times. Tesch (2020) 
proposed event-based mixed-integer programming 
formulations for RCPSP, while Shariatmadari & Nahavandi 
(2020) enhanced schedule robustness using resource buffers. 
Wang et al. (2020) integrated information and data flow for 
RCPSP in construction scheduling. Guo et al. (2021) 
introduced a decision tree approach leveraging project 
indicators and predictions to identify the best priority rule. 
Asadujjaman et al. (2021) proposed a hybrid immune genetic 
algorithm for net present value-based RCPSP, outperforming 
existing methods. Saad et al. (2021) presented a quantum-
inspired genetic algorithm that surpassed other evolutionary 
algorithms for RCPSP. Van Eynde & Vanhoucke (2022) 
developed a theoretical framework for assessing instance 
complexity, while Zhou et al. (2022) introduced a hybrid 
approach for multi-objective scheduling problems. Akhbari 
(2022) proposed a mathematical model integrating multiple 
modes. Xu & Bai (2023) presented an algorithm using a hybrid 
genetic algorithm and sensitivity analysis to analyze the impact 
of dynamic resource disruptions on project makespan. Zhang 
et al. (2023) developed a specific RCPSP model for water 
conservancy project scheduling, combining priority rule-based 
heuristics and hybrid genetic algorithms. Issa et al. (2023) 
proposed a heuristic method for reassessing scheduling 
interruption categories in RCPSP, providing decision choices to 
optimize project makespan. Akan (2023) analyzed the maritime 
logistics operation process by applying RCPSP approach in the 
“to-be” process stage in terms of business process management 
perspective. 

The studies in regard to the use of GA-RCPSP: Sprecher et 
al. (1995) addressed semi-active, active, and non-delay 
scheduling without precedence relations. Hartmann (1998) 
incorporated problem-specific knowledge through 
permutation-based encoding, priority-based assignment, and 
rule-based priority scheme. Hartmann (2001) extended the 
concept of problem representation importance by 
incorporating two local searches. Alcaraz & Maroto (2001) 
utilized crossover techniques and a two-point passage. 
Hartmann (2002) aimed to minimize resource imbalances and 
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achieve optimal results quickly. Toklu (2002) directly operated 
on the scheduling problem for the RCPSP. Kim et al. (2003) 
developed a hybrid GA with a fuzzy logic controller. Hindi et 
al. (2002) incorporated a crossover strategy related to the 
maintenance of order. Coelho & Tavares (2003) introduced a 
new crossover operator and activity representation. Valls et al. 
(2004) developed a hybrid GA with a peak passage operator. 
Tseng & Chen (2006) proposed a hybrid metaheuristic model 
combining Ant Colony Optimization, GA, and Local Search 
strategies. Ranjbar & Kianfar (2007) incorporated a resource 
utilization ratio and a local search method. Franco et al. (2007) 
minimized resource consumption using object-oriented 
programming and two-point crossover. Valls et al. (2008) 
introduced a hybrid GA with a local improvement operator. 
Goncalves et al. (2008) addressed the multi-project RCPSP. 
Chang et al. (2008) enhanced the decision support capability of 
the GA. Van Peteghem & Vanhoucke (2008, 2010) used two 
populations to minimize activity completion time and improve 
mode selection. Montoya-Torres et al. (2009) suggested a 
multi-string object-oriented GA model. Tseng & Chen (2009) 
proposed a two-phase genetic local search algorithm. 
Magalhaes-Mendes (2011) introduced a two-level GA. 
Khanzadi et al. (2011) presented a GA for large-scale projects. 
Palencia & Delgadillo (2012) applied a GA approach to a bus 
assembly line. Ponz-Tienda et al. (2012) demonstrated the 
effectiveness of an adaptive GA. Afshar-Nadjafi et al. (2013) 
integrated intelligent local search into the GA and organized 
sub-activities based on resource usage, employing a unified 
approach within each set. Devikamalam & Jane (2013) 
optimized resource allocation and reduced costs. Kim (2013) 
utilized an elitist GA. Tasan & Gen (2013) employed a fuzzy 
logic control-based automatic adjustment strategy. Huang et al. 
(2013) developed formulas to estimate completion time and 
minimize cost in project scheduling with fuzzy activity 
durations, along with constructing different fuzzy models and 
analyzing GAs. Aziz (2013) focused on minimizing project 
duration and maximizing net present value. Cheng et al. (2014) 
used a fuzzy clustering method and Differential Evolution 
algorithm. Sawant (2016) developed a GA to minimize resource 
usage. Zhang et al. (2008) also addressed resource usage 
minimization. Furthermore, in recent years, the GA RCPSP 
method has been widely used in many fields (e.g., García‐
Nieves et al., 2018; Muritiba et al., 2018; Chand et al. 2019; 
Zamani, 2019; Chaleshtarti et al., 2020; Liu et al., 2020; 
Snauwaert & Vanhoucke, 2021; Zaman et al., 2021; Aramesh et 
al., 2022; Hua et al., 2022; Myszkowski & Laszczyk, 2022; 
Coelho & Vanhoucke, 2023; Xu & Bai, 2023; Zhang et al., 2023). 

The studies in regard to the use of fuzzy sets in project 
scheduling: Hapke & Slowinski (1996) proposed a fuzzy 
scheduling procedure for RCPSPs using fuzzy duration 
parameters and generating prioritized fuzzy orders. Bhaskar et 
al. (2011) introduced a parallel scheduling scheme based on 
priority rules for fuzzy activity durations in RCPSP. Long & 
Ohsato (2008) presented the fuzzy critical chain method for 
project scheduling. Çebi & Otay (2015) suggested a multi-
objective linear programming model for minimizing project 
duration and cost in fuzzy project scheduling. Knyazeva et al. 
(2015) proposed a fuzzy heuristic priority algorithm for the 
fuzzy-constrained project scheduling problem in RCPSP. 
Birjandi et al. (2019) presented a hybrid fuzzy approach, FPND, 
combining PSO, BPSO, and GA, to minimize project end cost 
in the fuzzy RCPSP-MR problem, showcasing its effectiveness 
through comparisons and numerical examples. 

The studies in regard to the production planning in 
shipbuilding: Cho & Chung (1996) introduced the part 
assembly chart, a semantic network representation system that 
utilized case-based and rule-based logic for ship block assembly 
planning. This system incorporated structural and geometric 
information, as well as cutting, bending, and welding 
operations. Lee et al. (1997) conducted research on ship 
production planning and scheduling, incorporating various 
disciplines such as operations management, artificial 
intelligence, and information technology. Their work focused 
on reducing scheduling time, selecting optimal schedules 
through simulation, and transferring technology from 
academia to industry. Kim et al. (2002) proposed a Constraint 
Satisfaction Problem-based algorithm to minimize unplanned 
blocks and balance workload in block assembly scheduling. 
Hiekata et al. (2010) introduced a method to improve design 
quality in ship production processes using statistical analysis 
and process ontology. Park & Seo (2010) developed GA-based 
approaches to solve storage location assignment problems in 
shipbuilding. Cha & Roh (2010) focused on process planning 
simulation models, particularly the simulation core. Soong et al. 
(2011) investigated ship production management strategies 
using various business tools and key performance indicators. 
Formentini & Romano (2011) proposed an information 
transfer model based on Value Analysis for multi-project 
environments. Yuguang et al. (2016) developed a real-time 
shipment and block assembly system for effective production 
control. Hwang et al. (2014) developed an intelligent simulation 
model for shipbuilding production planning and decision-
making. In Joo & Kim (2014) presented a GA-based scheduling 
model for timely delivery of ship blocks. Park et al. (2014) 
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integrated process mining and data envelopment analysis for 
performance evaluation in ship block production processes. 
Kwon & Lee (2015) formulated a spatial scheduling problem for 
large assembly blocks in shipyard assembly lines. Back et al. 
(2016) defined a shipyard production simulation data model 
using an iterative procedure. Yuguang et al. (2016) developed a 
discrete particle swarm optimization algorithm for ship 
production assembly lines. Wang et al. (2016) proposed an 
integer programming model for ship block production 
considering uncertain factors. Dong et al. (2016) developed a 
flexible two-stage queue model for optimal cost-effectiveness in 
ship maintenance and construction. Mei et al. (2016) created an 
impact factor system for evaluating production processes in 
flexible intermediate product manufacturing. Furthermore, Hu 
et al. (2019) developed a guided local search algorithm for the 
2D-RCPSP, Yang & Liu (2018) introduced a hybrid algorithm 
for fuzzy blocking flow shop scheduling, and Zhong (2017) 
proposed an improved genetic algorithm for multi-objective 
hull assembly line balancing. Li et al. (2021) integrated job 
scheduling, workshop layout, and transportation tasks for 
green manufacturing in marine crankshaft production using a 
genetic algorithm. Mao et al. (2020) presented an agent-based 
framework for collaborative planning and scheduling in 
shipbuilding projects. Other studies focused on improving time 
estimation precision (Li et al., 2019), shipbuilding block 
assembly line scheduling (Cho et al., 2022), and large-scale 
shipyard scheduling problems (Han et al., 2017). Jeong et al. 
(2018) proposed efficient spatial arrangement planning for 
shipyards, while Ge & Wang (2021) addressed block spatial 
scheduling optimization and scheduling strategies for irregular 
curved blocks. These studies collectively advance optimization 
techniques in shipbuilding, covering scheduling, resource 
utilization, spatial arrangement, and time estimation. 

Accordingly, the contribution of this study is that the 
utilization of a GA approach to address the RCPSP in the 
context of shipbuilding, considering a fuzzy environment has 
not been studied in the existing academic literature. 

Methodology 

Resource Constraint Project Scheduling Problem 

The RCPSP is a method that evaluates the activities of a 
project using limited resources without violating precedence 
relationships, aiming for the most suitable or optimal solution 
among mathematical methods. The RCPSP is a type of problem 
that is frequently studied in the literature and generates 
solutions using different methods. Due to the presence of two 

different constraints, activity priorities and resource 
constraints, it is considered more challenging than other 
problems. The RCPSP falls into the problem class classified as 
NP (Non-Polynomial) - Hard in the Strong Sense (Blazewicz et 
al., 1983) in the literature. Resources are the elements used for 
the realization of a project. The types of resources expressed in 
projects are as follows: Renewable resources have limited 
availability but do not deplete with usage. They can be reused 
after an activity. Non-renewable resources are limited and 
deplete with usage. When project duration and resource usage 
are constrained, they are doubly constrained. Non-renewable 
resources can be discrete if divisible into units, or continuous if 
indivisible. During the execution of activities that constitute 
projects, there is a relationship between the resources assigned 
and used for these activities. Usually, it is expressed as a Time-
Cost Trade-Off, where it is expected that increasing the use of a 
resource in an activity will lead to a decrease in the activity 
duration. Due to the continuous and discrete nature of resource 
utilization, it is referred to as a continuous and discrete function 
of cost-time. In the case of discreteness, it is expressed as a mode 
corresponding to the cost-time pair. Project scheduling 
problems with multiple modes are also referred to as multi-
modal problems. Another type of interaction is when the 
activity duration is fixed, but the resources can have different 
usages, which is called Resource-Resource Trade-Off. RCPSP 
models are examined in two categories as the Single-Mode 
RCPSP assumes fixed and unchanged project activity durations 
and assigned resource quantities, while the Multi-Mode RCPSP 
allows for variable and not fixed activity durations and assigned 
resource quantities. The RCPSP with multiple projects can be 
formulated in Eq. (1-5) as follows (Kolisch & Spracher, 1996; 
Ulusoy, 2002; Satıç, 2014; Akan, 2017). 

𝑚𝑚𝑚𝑚𝑚𝑚 𝑍𝑍 =
∑ 𝑡𝑡𝑋𝑋𝑞𝑞𝑞𝑞𝑞𝑞
𝐿𝐿𝐿𝐿𝑇𝑇𝑞𝑞𝑞𝑞
𝑞𝑞=𝐸𝐸𝐿𝐿𝑇𝑇𝑞𝑞𝑞𝑞

𝑄𝑄
(1) 

∑ 𝑋𝑋𝑗𝑗𝑡𝑡
𝐿𝐿𝐿𝐿𝑇𝑇𝑞𝑞
𝑡𝑡=𝐸𝐸𝐿𝐿𝑇𝑇𝑞𝑞

= 1,𝑗𝑗 = 0, 1, . . . ,𝑚𝑚 + 1 (2) 

∑ 𝑡𝑡𝑋𝑋𝑖𝑖𝑖𝑖𝑡𝑡
𝐿𝐿𝐿𝐿𝑇𝑇𝑖𝑖
𝑡𝑡=𝐸𝐸𝐿𝐿𝑇𝑇𝑖𝑖 ≤ ∑ (𝑡𝑡 − 𝑑𝑑𝑗𝑗)𝑋𝑋𝑗𝑗𝑡𝑡

𝐿𝐿𝐿𝐿𝑇𝑇𝑞𝑞
𝑡𝑡=𝐸𝐸𝐿𝐿𝑇𝑇𝑞𝑞

, 𝑗𝑗 = 1, . . . ,𝑚𝑚 + 1 and 𝑚𝑚 ∈ 𝑃𝑃𝑗𝑗  (3) 

∑ 𝑘𝑘𝑗𝑗𝑗𝑗
𝑗𝑗
𝑗𝑗=1 ∑ 𝑋𝑋𝑗𝑗𝑡𝑡 ≤

𝑡𝑡+𝑑𝑑𝑞𝑞−1
𝑗𝑗=𝑡𝑡  𝐾𝐾𝑗𝑗, 𝑟𝑟 ∈ 𝑅𝑅, 𝑡𝑡 = 1, . . . , 𝑟𝑟 (4) 

𝑋𝑋𝑗𝑗𝑡𝑡 = �1,  𝑚𝑚𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑎𝑎𝑎𝑎𝑡𝑡𝑚𝑚𝑎𝑎𝑚𝑚𝑡𝑡𝑎𝑎 𝑗𝑗 𝑚𝑚𝑖𝑖 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖ℎ𝑒𝑒𝑑𝑑 𝑎𝑎𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑒𝑒𝑚𝑚𝑑𝑑 𝑜𝑜𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑝𝑝𝑒𝑒𝑟𝑟𝑚𝑚𝑜𝑜𝑑𝑑 𝑡𝑡
0,   𝑖𝑖𝑜𝑜𝑟𝑟 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑟𝑟 𝑖𝑖𝑚𝑚𝑡𝑡𝑠𝑠𝑎𝑎𝑡𝑡𝑚𝑚𝑜𝑜𝑚𝑚𝑖𝑖, (5) 

where; 

𝑡𝑡 the time index 𝑡𝑡 = 1, . . . ,𝑇𝑇 
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𝑗𝑗 the activity index 𝑗𝑗 = 1, . . . , 𝐽𝐽 

𝑅𝑅 the set of renewable resources 

𝑑𝑑𝑗𝑗  the duration of activity 𝑗𝑗𝑡𝑡ℎ  

𝑃𝑃𝑗𝑗  the set of the predecessors of the activity 𝑗𝑗𝑡𝑡ℎ  

𝐸𝐸𝐸𝐸𝑇𝑇𝑗𝑗  the earliest finish time of activity 𝑗𝑗𝑡𝑡ℎ  

𝐿𝐿𝐸𝐸𝑇𝑇𝑗𝑗  the latest finish time of activity 𝑗𝑗𝑡𝑡ℎ 

𝑘𝑘𝑗𝑗𝑗𝑗 the amount of resource usage per unit time from 
resource 𝑟𝑟 for activity𝑗𝑗𝑡𝑡ℎ  

𝐾𝐾𝑗𝑗  the unit time upper limit of resource utilization for 
renewable resource 𝑟𝑟 

𝑀𝑀𝑗𝑗  the mode number of the activity 𝑗𝑗𝑡𝑡ℎ  

𝑞𝑞 the project index 𝑞𝑞 = 1, . . . ,𝑄𝑄 

Eq. (1) aims to minimize the objective function and project 
delays. Eq. (2) requires the scheduling of each activity 𝑗𝑗𝑡𝑡ℎ . Eq. 
(3) represents the constraint that activity 𝑗𝑗𝑡𝑡ℎ  can start only
when its dependent activities, 𝑋𝑋𝑖𝑖𝑡𝑡, 𝑚𝑚 and 𝑃𝑃𝑗𝑗  are completed. Eq.
(4) represents the constraint that ensures the precedence
relationship between activity 𝑗𝑗𝑡𝑡ℎand its predecessor activity 𝑚𝑚𝑡𝑡ℎ

is satisfied. Eq. (5) defines the resource constraint per unit of
time for each activity, where the variable 𝑋𝑋𝑗𝑗𝑡𝑡 is defined within
the time interval �𝐸𝐸𝐸𝐸𝑇𝑇𝑗𝑗 , 𝐿𝐿𝐸𝐸𝑇𝑇𝑗𝑗�.

In essence, the presence of multiple projects does not 
fundamentally differ from having a single project in the context 
under consideration. The decision variables and constraints 
remain unchanged for both single and multiple projects. 
However, the objectives of the projects may differ. For instance, 
while one project may solely aim to minimize project duration, 
another project may seek to minimize both duration and cost 
simultaneously. When addressing multiple projects, two 
approaches can be adopted: treating each project as an 
independent entity with its distinct start and finish nodes, or 
merging them into a unified project for evaluation. The 
integration of all projects allows for the creation of a single start 
and finish node. In this particular study, the two projects were 
integrated into a unified project, necessitating adjustments to 
the activity and resource relationships accordingly. 

Genetic Algorithm (GA) 

The GA technique, developed by Holland (1975) and 
further enhanced by Goldberg (1989), is an intuitive method 
inspired by the Theory of Evolution. It models the processes of 
inheritance, including crossover, mutation, and selection, to 
transmit inherited information to subsequent generations. GAs 
offer broad applicability and provide accurate, convenient, and 
efficient solutions for various problems GAs aim to address 

complex problems in various domains and fall under the 
category of metaheuristic techniques (Haupt & Haupt, 2004). 
One such application is RCPSPs. GAs consist of key elements: 
chromosome populations, fitness-based selection, crossover for 
generating new generations, and random mutations. GAs 
utilize fitness functions to evaluate chromosome quality. GAs 
differ from traditional optimization methods in several aspects. 
GAs utilize probabilistic rules, objective functions, sets of 
points for solution search, and parameter codes instead of 
direct manipulation. Haupt & Haupt (2004) classify GAs as 
metaheuristic techniques, primarily employed for addressing 
complex problems. With its advantages GAs demonstrate 
versatility in handling both continuous and discrete variables, 
operating without derivative information, exploring solutions 
concurrently with large samples, adapting well to problems 
with many variables, being suitable for parallel computing, 
overcoming local optima in complex solution variables, 
providing a list of optimal variable solutions, encoding 
variables for optimization, and working with numerical, 
experimental, or analytical functions. However, GAs may not 
be the best approach for every problem. Traditional methods 
may suffice for simple problems. Consider using GAs for large 
populations or when past experience indicates their efficacy 
(Goldberg, 1989). GA concepts possess the following 
characteristics (Coley, 1999; Mitchell, 1999; Haupt & Haupt, 
2004): 

• Gen represents a section of the solution in GAs, which
corresponds to a project activity in RCPSP.

• Chromosome encodes a solution in GAs. It represents a
scheduling solution in RCPSP, using random key,
activity list, or other methods.

• Population is the number of solutions being searched
simultaneously. A larger population increases the
chances of finding the optimal solution, but population
size should be adjusted to prevent excessive solution
time.

• Generation is the process of producing solutions
through successive iterations.

• Fitness Function evaluates solutions to recognize the
desired solution. It can be a combination of objectives
for problems with multiple goals.

• Selection chooses chromosomes for the next generation
based on fitness functions.

• Crossover modifies chromosome programming from
one generation to another, creating more qualified
individuals.
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• Mutation creates a new solution by making slight
changes to existing information. Mutation can occur
after crossover or independently and includes
operations like reversal, displacement, insertion, and
reciprocal exchange.

Figure 1. GA diagram 

Generally, the operational principles of a standard GA can 
be summarized in Figure 1 as follows (Coley, 1999; Mitchell, 
1999; Haupt & Haupt, 2004). 

• Generating a solution population by encoding possible
solutions. The population size is determined
considering the complexity and depth of the problem.

• Evaluating the fitness of each chromosome in the
population using a fitness function. The evolution
process involves determining the quality of
chromosomes through this function, which is problem-
specific and critical to the success of the GA.

• Creating a new population by applying crossover and
mutation operators to selected chromosomes. Crossover
promotes diversity, while mutation influences
individual solutions.

• Updating the population by replacing old chromosomes
with newly generated ones, maintaining a fixed
population size.

• Assessing the success of the population by calculating
the fitness values of the new chromosomes.

• Iterating the process to produce improved generations
within a specified time frame.

• Eventually, the solution is obtained by identifying the
best individuals in the population during the generation
computation.

Defuzzification Method in Fuzzy Sets 

The trapezoidal fuzzy numbers defined as 𝐴𝐴
~

= (𝑎𝑎, 𝑏𝑏, 𝑎𝑎,𝑑𝑑) in 
fuzzy sets 𝐴𝐴 ∈ 𝐸𝐸(𝑅𝑅), Wang (2009) proposed the widely used a 
centroid defuzzification method in computed by Eq. (6), which 
is based on trapezoidal numbers in fuzzy sets.  

𝑋𝑋0
~

(𝐴𝐴
~

) = 1
3
�𝑎𝑎 + 𝑏𝑏 + 𝑎𝑎 + 𝑑𝑑 − 𝑑𝑑𝑑𝑑−𝑎𝑎𝑎𝑎

(𝑑𝑑+𝑑𝑑)−(𝑎𝑎+𝑎𝑎)
� (6) 

Application 

In this study, the ship block construction problem in the 
shipyard was solved using a GA in a fuzzy duration 
environment with the RCPSP method. Subsequently, a solution 
set consisting of 32 solutions was generated based on 8 different 
scenarios within the framework of the shipyard’s gradually 
decreasing 4 capacities. The solutions in this set were evaluated 
using the Pareto optimal curve method to find the solutions for 
the optimal shipyard capacity-project completion time. In 
addition, infeasible and unimplementable solutions were also 
searched and evaluated within the solution set in Figure 2. 
Accordingly, the solution steps were as follows: 

Figure 2. Proposed methodology follows 

Since the problem is solved based on the RCPSP 
methodology, the objective function is specifically defined as 
RCPSP. 

The block construction plans for ships A and B are available, 
and they were prepared according to the plans provided. The 
gradually decreasing shipyard capacity values are listed in Table 
1. Additionally, Appendices includes the activity list, resource
workforce values, activity precedence relationships indicating
the activity sequencing, and information about which
workstation the activities will be processed for the block
construction of ships A and B also, they present the fuzzy
trapezoidal duration assigned to the project activities. These
data are also required for solving the RCPSP.
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In Table 1, the capacity, resource supply, and constraints of 
workstations in the shipyard are allocated. Capacity1 represents 
the actual capacity of the shipyard for the work stations as WS 
02, WS 04, WS 05, WS 09 and WS 12. Capacity 2 is obtained by 
reducing Capacity 1 by 75 workers, Capacity 3 is obtained by 
reducing Capacity 2 by reducing 75 workers, and Capacity 4 is 
obtained by reducing Capacity 3 by an additional 75 workers. 

Since the problem is solved using a GA in the resource-
constrained project scheduling framework, deterministic 

processing with durations is necessary. Due to the fuzzy 
duration representation of activity durations, the fuzzy 
durations of activities are transformed into deterministic 
durations through defuzzification considering the membership 
function of fuzzy trapezoidal numbers with known weights. 
Appendices provide the fuzzy trapezoidal durations of the 
block construction activities for ships A and B and their 
corresponding defuzzified values. 

Table 1. The capacity, resource supply, and constraints of workstations in the shipyard 
Work Station 
(WS) 

Resource 
(workforce) 

Capacity 1 
(person/day) 

Capacity 2 
(person/day) 

Capacity 3 
(person/day) 

Capacity 4 
(person/day) 

WS 02 
(Cutting) 

Resource 1 
(Cutting workforce) 

10 10 10 10 

WS 04 
(Prefabrication) 

Resource 2 
(Prefabrication Workforce) 

115 100 85 70 

WS 05 
(Panel Production) 

Resource 3 
(Panel Production Workforce) 

115 100 85 70 

WS 09 
(Block Production) 

Resource 4 
(Block Production Workforce) 

270 240 210 180 

WS 12 
(Slipway) 

Resource 5 
(Slipway Workforce) 

135 120 105 90 

Total 645 570 495 420 

Table 2. The solution scenarios of the problem 
Scenario Description Capacity 1 Capacity 2 Capacity 3 Capacity 4 

A Normal project programming A1 A2 A3 A4 

B 20% workforce increase for WS 04 (Prefabrication) and WS 05 
(Panel Production) 

B1 B2 B3 B4 

C 3 workers (12%) increase in critical activities 295 and 297 C1 C2 C3 C4 

D 3 workers (12%) increase in critical activities 274, 299, 300 and 301 D1 D2 D3 D4 

E 3 workers (12%) increase in critical activities 274, 295, 297, 299, 300 
and 301 

E1 E2 E3 E4 

F 5 workers (20%) increase in critical activities 295 and 297 F1 F2 F3 F4 

G 5 workers (20%) increase in critical activities 274, 299, 300 and 301 G1 G2 G3 G4 

H 5 workers (20%) increase in critical activities 274, 295, 297, 299, 300 
and 301 

H1 H2 H3 H4 

With all the necessary data provided, the solution sets are 
generated using the GA in the RCPSP. In this study, the GA, 
which is a metaheuristic method, is employed for solving the 
RCPSP. Therefore, the mutation rate, selection rate, crossover, 
population size, and generation parameter values of the GAs are 

determined, and the problem-solving process starts with these 
parameter values. Multiple solutions were generated for each 
solution with different GA parameter values, and the solutions 
with the best local values were included in the solution set. The 
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assumptions in line with the structure of the GA RCPSP can be 
stated as follows: 

• Activity durations are deterministic, converting fuzzy
durations into precise values

• The amount of resources used per unit of time in
activities is constant.

• A resource assigned to an activity cannot be used by
another activity until the completion of that activity.

• There are no breaks or discontinuities between the start
and finish of activities.

• The defined activities cannot be canceled and must be
completed.

• The resources used for the execution of activities are
considered as renewable resources.

• Subsequent activities cannot start before the completion
of preceding activities.

• RCPSP literature can be classified into groups aiming to
minimize project duration, project cost, or achieve a
multi-objective optimal solution considering time and
cost.

• Initialization of the Initial Population: Activities were
assigned randomly within a given period based solely on
their priority constraints. The scheduling period used
was the longest completion time of the project. Start
times were sorted in descending order based on the
activity constraints, creating the initial activity sequence.

• Chromosome Structure: Chromosomes were
constructed using the activity list design method. Genes
in the chromosome represented the starting order of
activities. Activity starts and finish times were
determined based on the activity sequence and resource
capacities.

• Generation of the Initial Population: The initial
population was randomly generated according to the
activity priority rule. Serial scheduling was employed to
order the project’s activities.

• Fitness Function: The fitness function evaluated the
chromosomes based on the project’s duration.

• The objective was to minimize the project’s duration
while considering all resource constraints.

• Crossover Operation: Single-point sequential crossover
method was used.

• Mutation Operation: Single-point mutation operator
was applied with varying mutation parameters.

• Selection Operation: Elitist selection mechanism was
employed to choose the best individuals for the next
generation.

• Termination of the Algorithm: The algorithm stopped
after reaching a specified generation count.

• Software Solution: The Genetic Algorithm Project
Scheduler (Satıç, 2014) was used to compute the RCPSP.

Based on these 8 different scenarios, a solution set 
consisting of 32 solutions, representing the shipyard’s capacity-
project completion time combinations, is generated. In this 
study, various solution scenarios were generated for ship block 
construction, considering the problem scenarios. Solutions 
were then produced based on these scenarios. These scenarios 
are classified as follows. The solution set for these scenarios is 
presented in Table 2. 

In the context of a ship block construction project where a 
GA-based resource-constrained project scheduling method is 
applied in a fuzzy time environment, the solutions obtained 
based on different project capacities are provided in Table 3. 
When evaluating the project completion times in the solution 
set, the following observations can be made: 

• Normal Project Completion Time: The project’s normal
completion time, without any resource constraints, is
462 days.

• Scenario A: Normal Project Scheduling: In this scenario,
the project completion time remains the same at 462
days for the capacities of shipyard numbers 1, 2, and 3.
Despite a gradual decrease in the shipyard’s capacity,
there is no increase in the project completion time.
However, for the solution based on the capacity of
shipyard number 4, the project completion time
increases by 20 days to 482 days.

• Scenario B: 20% Workforce Increase for WS 04 and WS
05: In this scenario, the project completion time remains
the same at 461 days for the capacities of shipyard
numbers 1, 2, and 3. There is no increase in the project
completion time despite the gradual decrease in the
shipyard’s capacity. Furthermore, with the increase in
workforce, the project duration is reduced by 1 day.
However, for the solution based on the capacity of
shipyard number 4, the project completion time
increases by 11 days to 473 days.

• Scenario C: 3-Person (12%) Increase for Activities 295
and 297: In this scenario, the project completion time
remains the same at 445 days for the capacities of
shipyard numbers 1, 2, and 3. Despite the decrease in the



Akan and Alkan (2023) Marine Science and Technology Bulletin 12(3): 380-401 

390 

shipyard’s capacity, there is no increase in the project 
completion time. By increasing the resources for 
activities 295 and 297, the project completion time is 
reduced by 17 days. However, for the solution based on 
the capacity of shipyard number 4, the project 
completion time decreases by 6 days to 456 days. 

• Scenario D: 3-Person (12%) Increase for Activities 274,
299, 300, and 301: In this scenario, the project
completion time decreases by 17 days to 445 days for the
capacity of shipyard number 1, by 14 days to 448 days
for the capacity of shipyard number 2, by 13 days to 449
days for the capacity of shipyard number 3, and
increases by 11 days to 473 days for the capacity of
shipyard number 4.

• Scenario E: 3-Person (12%) Increase for Activities 274,
295, 297, 299, 300, and 301: In this scenario, the project
completion time decreases by 30 days to 432 days for the
capacities of shipyard numbers 1 and 2, by 29 days to
433 days for the capacity of shipyard number 3, and
increases by 7 days to 469 days for the capacity of
shipyard number 4.

• Scenario F: 5-Person (15%) Increase for Activities 295
and 297: In this scenario, the project completion time
decreases by 26 days to 436 days for the capacities of
shipyard numbers 1, 2, and 3, and decreases by 6 days to
456 days for the capacity of shipyard number 4.

• Scenario G: 5-Person (15%) Increase for Activities 274,
299, 300, and 301: In this scenario, the project
completion time decreases by 21 days to 441 days for the
capacities of shipyard numbers 1 and 2, by 19

• Scenario H: 5-Person (15%) Increase for Activities 274,
295, 297, 299, 300, and 301: In this scenario, the project

completion time decreases by 47 days to 415 days for the 
capacity of shipyard number 1, decreases by 43 days to 
419 days for the capacity of shipyard number 2, 
decreases by 41 days to 421 days for the capacity of 
shipyard number 3, and decreases by 13 days to 449 days 
for the capacity of shipyard number 4. 

According to the results of the project computation in Table 3: 
• For Capacity 1, which is 645 persons/day; the project

completion duration is 462 days for A1, 461 days for B1,
445 days for C1, 445 days for D1, 432 days for E1, 436
days for F1, 441 days for G1 and 415 days for H1.

• For Capacity 2, which is 570 persons/day; the project
completion duration is 462 days for A2, 461 days for B2,
445 days for C2, 448 days for D2, 432 days for E2, 436
days for F2, 441 days for G2 and 419 days for H2.

• For Capacity 3, which is 495 persons/day; the project
completion duration is 462 days for A3, 461 days for B3,
445 days for C3, 449 days for D3, 433 days for E3, 436
days for F3, 443 days for G3 and 421 days for H3.

• For Capacity 4, which is 420 person/day; the project
completion duration is 482 days for A4, 473 days for B4,
456 days for C4, 473 days for D4, 469 days for E4, 456
days for F4, 471 days for G4 and 449 days for H4.

The Pareto optimal curve method is applied to the solution 
set to identify optimal solutions and infeasible solutions, which 
are then interpreted. After 32 different scenarios consisting of 
shipyard capacity and project completion times were computed 
by proposed methodology, a convex solution set of Pareto 
optimality is obtained as shown in Figure 2. Accordingly, 
solutions within the region that does not lie on the convex 
Pareto curve are observed not to be optimal solutions. 

Table 3. The comparison of project completion durations 

Scenario Capacity 1 Capacity 2 Capacity 3 Capacity 4 

645 persons/day  570 persons/day  495 persons/day  420 persons/day  

An 462 days 462 days 462 days 482 days 

Bn 461 days 461 days 461 days 473 days 

Cn 445 days 445 days 445 days 456 days 

Dn 445 days 448 days 449 days 473 days 

En 432 days 432 days 433 days 469 days 

Fn 436 days 436 days 436 days 456 days 

Gn 441 days 441 days 443 days 471 days 

Hn 415 days 419 days 421 days 449 days 

Note: n=(1, …, 4), n∈Ν 
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Figure 2. The Pareto optimal curve and the capacity-time 
solution set 

The solutions located on the Pareto optimal curve are 
represented by H1, H3, H4, and F4. Therefore, the optimal 
solution should be sought within this boundary. Upon 
examining these solutions: Scenario H1 is the solution with the 
shortest duration and the highest capacity supply. Scenario H3 
is one of the optimal solutions. Scenario H4 is one of the 
optimal solutions. Scenario F4 is the solution with the longest 
duration and the lowest capacity supply. Furthermore, 
comparing H3 and H4, in H3, the project completion time is 
421 days with a shipyard capacity of 495 persons/day, whereas 
in H4, the project completion time is 449 days with a shipyard 
capacity of 420 persons/day. Although the solutions within the 
space that is not on the convex Pareto curve are not optimal 
solutions, their preference or prioritization will be evaluated by 
the shipyard. On the other Project delays lead to increased 
costs, while early completion yields cost savings. As the 
resources allocated from the shipyard capacity decrease, the 
gains in cost increase up to a certain threshold. Scenarios A4, 
B4, D4, E4, and G4 of the shipyard do not exhibit value gains 
but rather result in losses. Scenarios A1, A2, and A3 do not yield 
any gains or losses. Other solutions show gains. The largest 
value loss occurs in scenario A4 with shipyard capacity number 
4, whereas the greatest value gain is observed in scenario H1 
with shipyard capacity 1. 

Results and Discussion 

This study addresses the RCPSP in the context of block 
construction of ships in shipyards, aiming to optimize capacity 
utilization. The RCPSP becomes particularly important in 
competitive environments or situations with limited resources. 
The problem objectives in RCPSP include minimizing costs, 
minimizing project duration, and optimizing the trade-off 
between costs and time. 

The flow time values are the same for all jobs at workstation 
WS 02 in the entire capacity of the shipyard. This is because the 
station operates at full capacity and there is no idle workforce 
available. Additionally, this station has the shortest processing 
time among all production workstations. On the other hand, 
workstation WS 09 has the highest flow time value among the 
production workstations, which is proportional to the decrease 
in its capacity. Furthermore, when the shipyard’s capacity 
decreases, this workstation still has the highest flow time value, 
and the job flow at this workstation becomes intermittent when 
the shipyard operates at capacity 4. Considering the block 
construction times of both ships and the conditions at their 
workstations, the flow time of ship B, which is being 
constructed, is longer than that of ship A. When evaluating the 
solution set based on the makespan (total project completion 
time), both projects are expected to be completed within 462 
days under normal conditions. However, solutions that exceed 
this duration result in longer makespan values. The project 
completion times range from a maximum of 482 days to a 
minimum of 415 days. Therefore, a decrease in the shipyard’s 
capacity leads to longer project durations. While projects can 
be completed within the normal or shorter time frame for 
shipyard capacities 1, 2, and 3, the makespan, or total project 
completion time, increases for capacity 4. This pattern is 
observed in other solution alternatives as well. When the 
project’s completion time exceeds the normal completion time, 
the lateness values in this solution set become greater than zero, 
resulting in tardiness. An increase in tardiness is observed as 
the resource constraint decreases. Among the solutions in the 
solution set, the solution obtained with the shipyard’s capacity 
4 shows the highest tardiness value. For other solution 
scenarios, the tardiness values are lower. In contrast, no 
tardiness occurs for capacities 1, 2, and 3, and the lateness 
values are smaller than zero due to projects being completed 
earlier than the normal completion time. The solution set 
includes projects with completion times reduced to 415 days, 
and the solution with the smallest earliness value is generated 
by H1. Solutions C4, F4, and H4 show earliness values for 
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capacity 4 and for other capacities, which means the projects 
are completed earlier. All solutions in the solution set aim to 
minimize the completion time for the due dates of the projects. 
For capacities 1, 2, and 3, the completion time occurs earlier 
than the project’s total completion time. However, for capacity 
4, the completion time is later than the project’s total 
completion time with a certain tardiness value. In the block 
construction process, for delayed projects, especially in capacity 
4 of the shipyard, the critical ratio can be used to prioritize the 
completion of preferred projects or projects that need to be 
completed early in order to prevent delays in project delivery. 
However, in this study, the completion time of ship B is later 
than that of ship A, so such a delivery priority is disregarded. 
For solutions in capacities 1, 2, and 3 of the shipyard, the 
resource histogram shows similar values for the makespan, 
which is the normal completion time of the project. However, 
in capacity 4 of the shipyard, as the workforce supply provided 
by the shipyard decreases, the resource distribution changes, 
resulting in an increase in the makespan of the project. 
Therefore, the resource distribution chart shows a spread 
towards the completion time of the project. 

In the literature, GA RCPSP method has been widely used 
in many fields (e.g., Muritiba et al., 2018; Chand et al. 2019; Liu 
et al., 2020; Zaman et al., 2021; Hua et al., 2022; Zhang et al., 
2023) however, neither GA RCPSP nor RCPSP in fuzzy 
environment has been proposed as a methodology for the 
shipbuilding except for the study of Akan (2017), but there is a 
study that proposes a project scheduling problem with spatial 
resource constraints (Hu et al., 2019) for RCPSP methodology 
in shipbuilding. . On the other hand, RCPSP are widely applied 
in many fields with integrating extension methods such as 
branch and bound (Bianco & Caramia, 2012), fuzzy mixed 
integer nonlinear programming (MILP), and GA and particle 
swarm optimization (PSO) (Birjandi & Mousavi, 2019), ant 
colony optimization (ACO) (Dridi et al., 2019), fuzzy clustering 
chaotic-based differential evolution (Cheng et al., 2014), 
genetic programming based hyper-heuristic (Chand et al., 
2018), memetic algorithm (Rahman et al., 2022), hybrid 
simulation and optimization (Wang et al., 2020), multi-agent-
based cooperative (Li et al., 2021), exact linear programming 
binary formulation (García-Nieves et al., 2019), Improvement 
of the critical chain method (Tian et al., 2020), nondominated 
sorting genetic algorithm II (NSGA-II) (Laszczyk & 
Myszkowski, 2019), and column generation (Changchun et al., 
2018).  

In production planning and management, scheduling 
operations play a crucial role. Finding the best schedule can be 

challenging, depending on the project environment, 
performance criteria, and process constraints. GAs are a viable 
method for addressing RCPSPs, which belong to the np-hard in 
the strong sense class. While intuitive approaches don’t 
guarantee optimal solutions, metaheuristic methods like GAs 
have shown better results. These problems offer combinatorial 
solutions, and GAs provide efficient and effective solutions. 
GAs use genetic operators, including crossover, mutation, and 
selection, to create the solution set. The mutation rate, ranging 
from 0% to 100%, influences the best solution time, with rates 
of 50% to 70% yielding optimal results. Selection operators 
prioritize the project completion time, typically with selection 
rates of 10% to 20% for the best local value. The population rate, 
representing the global solution set, is usually set between 100 
and 200. As the population size increases, the solution space 
grows, resulting in longer solution times. The number of 
generations affects the algorithm’s runtime and the quality of 
the best local solution. Generally, 1,000 to 2,000 generations are 
preferred, with 1,000 generations often leading to the best 
solutions. GAs search for solutions within a population rather 
than a single set. Mutated and selected new generations 
maintain the problem objectives, and the final generation with 
improved solution sets achieves the best result. Traditional 
methods for resource-constrained project scheduling, such as 
first come first served, fail to consider future resource 
requirements. In contrast, GAs prioritize critical activities and 
schedule remaining activities randomly, adhering to priority 
rules and project-wide constraints. The scheduling process 
generates a population of solutions, which is then refined using 
genetic operators until the desired number of generations is 
reached. GAs require computer resources even for simple 
projects. The algorithm’s design involves methods, encoding, 
creation, population initialization, genetic operators 
(crossover, mutation, selection), and a fitness function. Genetic 
parameters, including population size, generation count, 
mutation rate, and project activity count, impact the 
algorithm’s runtime. 

In terms of practical implications, shipbuilding projects 
often face uncertainties such as unexpected delays, material 
shortages, or workforce fluctuations. This means that 
shipbuilders can plan and allocate resources more effectively, 
taking into account potential disruptions, and thereby 
improving the overall project success rate. On the analysis side, 
stakeholders can visually understand the impact of different 
scheduling decisions and the trade-offs involved. In addition, 
shipbuilding production efficiency is improved by optimizing 
the allocation of resources and tasks, resulting in reduced 
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project completion times while maintaining effective resource 
utilization. This optimization is critical due to the limited and 
expensive resources in shipbuilding. GAs can be used to 
optimize allocation, ensuring that the right resources are 
assigned to tasks at the right time. This minimizes waste and 
idle time, ultimately resulting in cost savings. These actions 
have a significant financial impact, leading to a faster return on 
investment and improved overall business performance. 

Conclusion 

This study optimizes ship production processes through the 
RCPSP, focusing on cost minimization, project duration 
reduction, and optimal cost-time optimization. Utilizing GA 
and fuzzy set theory, it enhances project planning for efficient 
resource allocation in competitive, resource-intensive 
shipbuilding. The framework integrates probabilistic models 
and scenario analysis to optimize project completion time and 
resource utilization. 

The study’s major contributions to the literature can be 
summarized as follows: 

i) The solution of GA RCPSP method in fuzzy
environment was carried out.

ii) The analysis of Pareto optimal solutions was carried out.

iii) The application of this study has been carried out in
shipbuilding industry.

Overall, it was observed that the utilization of a GA 
approach to address the RCPSP in the context of shipbuilding, 
considering a fuzzy environment can be applied to ship 
production plan during the shipbuilding process. With this 
study, GA RCPSP with fuzzy environment in shipbuilding 
process planning can be a contribution for the literature of the 
shipbuilding process. 

The main limitation of this study is that the method GA 
RCPSP can be designed different aspects to optimize alternative 
solutions with GA designed architecture. Regarding future 
research, the problem can be applied by different designed GA 
RCPSP methodologies or alternative metaheuristic RCPSP 
solutions methods or other methods. The focus will be on the 
development of methods for the parallel inclusion of fuzzy 
numbers in the model. A shipyard will engage in holistic 
planning by considering all shipbuilding projects within the 
shipyard’s production planning process. 
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