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Abstract: The study aims to design flexible manufacturing cells with routing flexibility. A weighted
mixed-integer linear mathematical programming model that aims to find optimal routing of parts in
flexible manufacturing cells under constraints such as minimum machine utilization rate, maximum
machine utilization rate, tool capacities, the utilization rate of workers, and labor-system unbalance
is developed. The mathematical programming model aims to minimize the weighted sum of five ob-
jective functions: (1) the total number of intracellular movements; (2) the total number of intercellular
movements; (3) the total workload unbalance of the machine system; (4) the total number of tools in
all machines in the cells; and (5) the total labor-system workload unbalance. The main contribution
of this study is to obtain these five objectives simultaneously, which have not been encountered to
handle together before. By integrating these factors, the study presents a comprehensive approach to
optimizing the design of flexible manufacturing cells. This study also has the potential to enhance
system performance by addressing these factors. An illustrative problem tests the developed model,
and the LINGO 17.0 optimization program is used to solve the generated mathematical programming
model. Moreover, the related sensitivity analysis is performed with some parameters to examine the
obtained results.

Keywords: flexible manufacturing cells; machine-system unbalance; worker-system unbalance;
alternative routings; mathematical programming model

1. Introduction

In the late 1970s, flexible manufacturing systems emerged due to the need to respond
quickly to increasing customer demands [1]. Askin and Standridge [2] state that a primary
computer supervises flexible manufacturing systems, and an automated material handling
system connects computer numerically controlled machines in these systems.

MacCarthy and Liu [3] define flexible manufacturing systems in different forms. They
define a flexible manufacturing cell as comprised of single flexible machines with the same
material handling devices. In addition, they state that a multi-cell flexible manufacturing
system comprises more than one flexible cell, flexible machines, and a material handling
system that interconnects all machines and cells. Groover [4] defines flexible manufacturing
system components as workstations, including load/unload stations, computer numer-
ically controlled machine tools, and assembly machines. As stated in Groover [4], other
components can be listed as follows: the warehouse and material handling system, the
computer control system, and the labor force.
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Hwang et al. [5] indicate that flexible manufacturing system operations necessitate
various human labor activities such as loading, unloading, setting, changing, mainte-
nance, etc. They also indicate that one of the essential elements is humans who act as
a system controller while supervising and controlling the system, and another essential
element is computers in flexible manufacturing systems. Flexible manufacturing systems
have various significant advantages, such as decreasing flow time, preparation period,
in-process stocks, stock costs, tool costs, labor costs, and providing streamlined production
and increasing quality [1].

1.1. Machine Loading Problem in Flexible Manufacturing Systems

The machine loading problem is a problem related to assigning operations and neces-
sary tools to machines according to alternative routes of parts. Machine loading problems
in flexible manufacturing systems are considered one of the critical pre-production deci-
sions. Therefore, these decisions are closely related to operational problems such as part
type selection, scheduling, etc. [6]. Stecke [7] states that the machine-loading problem is
subsumed under some main objectives, such as machining time balancing, minimizing the
movements, and balancing/unbalancing the workload for each machine.

Machine workload balancing aims to allocate part routes to machines with similar
workloads. The machine workload imbalance is significantly reduced by decreasing the
long waiting times created by parts with high workloads [8]. Guerrero et al. [9] mentioned
in their study that workload balancing problems in the literature are modeled in a wide
variety of ways.

1.2. Routing Term in Flexible Manufacturing Systems

Chang [10] states that a flexible manufacturing system can include several alternative
routes to produce the same parts. Chang [10] expresses that the machine loads are more
balanced if the manufacturing system has routing flexibility, and thus, part types or part
families can be produced without interruption. Chang [10] also states that the possibility of
a production line halt also decreases with routing flexibility when an unexpected situation
occurs, and a system with alternative routes has higher production performance when
some machines are down or in maintenance. Kouvelis [11] defines the routing problem
in flexible manufacturing systems as determining the possible part routes and how many
parts will be produced along the selected routes. Kouvelis [11] states that routing prob-
lems are significant as they have a tremendous impact on the real-time scheduling of
automated systems.

1.3. Intercellular and Intracellular Movements in Flexible Manufacturing Systems

Cellular manufacturing systems help to simplify part flow by rearranging machines
and parts in the system into various machine cells and part families. The system efficiency
also increases since part movements between cells are significantly reduced as a result
of using cellular manufacturing systems [8]. The total movement of parts in cellular
manufacturing systems is expressed as intracellular and intercellular movements. The
intracellular movements refer to the movements of parts between machines in the same
cell, while the intercellular movements express the movements between machines in
different cells. Logendran [12] mentions that intracellular movement is as essential as
intercellular movement while expressing total movements. Firms want to switch to cellular
manufacturing systems for their operational convenience; they also do not want to lose
the strategic benefits of flexible operations. The concept of flexibility is a significant factor
in the competitive success of firms. Therefore, the design of flexible manufacturing cells
emerges as an essential concept [13].

1.4. Tool Consumption in Flexible Manufacturing System

In flexible manufacturing systems, the tool allocation problem is associated with
loading appropriate tools onto machines. The cutting tool capacities of machines may be
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limited, or it may take a long time to load the tools. Simultaneously, these cutting tools can
be expensive, and their number in the system is limited. Due to the problems related to the
limited number of tools and the long loading times of tools, tool assignment problems in
flexible manufacturing systems are essential [14]. Akturk and Ozkan [15] state that tool
management has a dynamic and critical role in flexible manufacturing systems.

1.5. Human Labor in Flexible Manufacturing System

Even if workers are not directly involved in manufacturing, they support the system
operations in flexible manufacturing systems, and workers are involved in some jobs in the
system, such as [4]:

• Loading of raw material parts onto machines,
• Unloading finished parts,
• Setup, installation, and replacement of machine tools,
• Maintenance and repair of machine equipment,
• Part programming of computerized controllers,
• System management.

In Table 1, some studies, including part movements without cell concept, intercellular
and intracellular part movements, machine system imbalance, alternative routing concept
(routing flexibility), tool concept (tool assignment, tool allocation, tool changing, tool
cost, tool planning, tool management, etc.), and labor force (worker utilization, worker
assignment, etc.) are classified. As seen in Table 1, many authors have examined these
criteria and concepts individually or in different combinations. Although each term is
frequently included in flexible manufacturing systems, problems related to the labor system
have been examined in recent years. The number of studies on the use of labor in cellular
manufacturing systems has increased in dynamic cell systems.

Table 1. Classification of the related literature according to the various factors.
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Guerrero et al. [9], Kumar and Shanker [16], Yang and Wu [17],
Kumar et al. [18], Chen and Ho [19], Arıkan and Erol [20],
Basnet [21]

√ √ √

Logendran [12], Del Valle et al. [22], Gupta et al. [23]
√ √

Bilgin and Azizoğlu [14], Karzan and Azizoğlu [24],
Konak et al. [25], Özpeynirci and Azizoğlu [26], Beezão et al. [27],
Zeid et al. [28]

√

Binghai et al. [29], Swarnkar and Tiwari [30], Ho and Hsieh [31],
Nagarjuna et al. [32], Yogeswaran et al. [33], Abazari et al. [34],
Kim et al. [6]

√ √

Pereira [35]
√ √ √ √

Koltai and Stecke [36], Joseph and Sridharan [37]
√ √

Kattan [38]
√ √ √ √
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Lee and Chen [39], Erozan et al. [40]
√ √ √ √

Onwubolu and Mutingi [41], Mansouri et al. [42],
Yasuda et al. [43]

√ √

Gamila and Motavalli [44], Zeballos et al. [45]
√ √ √

Kim et al. [46], Kim et al. [8], Tavakkoli-Moghaddam et al. [47]
√ √ √

Muruganandam et al. [48]
√ √ √

Defersha and Chen [49]
√ √ √ √

Chan et al. [50]
√ √ √

Aryanezhad et al. [51], Mahdavi et al. [52]
√ √ √

Ghotboddini et al. [53]
√ √ √ √

Nouri [54]
√ √ √ √ √

Saxena and Jain [55], Eguia et al. [56]
√ √ √ √ √

Shin et al. [57]
√ √ √

Mehdizadeh et al. [58], Sakhaii et al. [59], Vafaeinezhad et al. [60]
√ √ √ √

Rafiei and Ghodsi [61], Bagheri and Bashiri [62], Mehdizadeh and
Rahimi [63], Niakan et al. [64]

√ √ √

Rabbani et al. [65]
√ √ √ √

Shafiee-Gol et al. [66]
√ √

When many studies in the literature are examined in detail, a study examining intercel-
lular and intracellular movement, machine-system workload unbalance, tool consumption,
worker-system workload unbalance, and alternative routing concepts simultaneously is
not encountered. In this study, all these concepts are evaluated simultaneously. The math-
ematical programming model is developed for a multi-objective optimization problem
with various objective function items to design flexible manufacturing cells. The model
considers the alternative routing of the parts. Considering alternative routes for parts also
provides flexibility in the production process, enabling the creation of adaptable workflows
for the processing of different parts. Minimizing the number of tools, reducing machine
system imbalance, balancing workload, and utilizing machines and resources more effi-
ciently contribute to enhancing resource efficiency. Therefore, this approach presented in
this study indirectly contributes to improving the system’s performance.

In the second section of this study, a developed mathematical programming model
whose problem formulation is stated in detail is presented. The third, fourth, and fifth
sections present a sample problem and the related analyses for the developed model,
respectively. In the last section, the conclusions are presented, and some suggestions for
future studies are expressed.
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2. Problem Definition and Formulation

In the study, a mixed-integer linear mathematical programming model is developed.
This model, including the weighted approach, aims to minimize intercellular part move-
ments, intracellular part movements, machine-system workload imbalance, labor-system
workload imbalance, and several tools on all machines in cells providing optimum alter-
native routes for parts. The model assumes that there is routing flexibility for all parts of
the system. Therefore, parts can be processed on different machines in different cells using
different tool types according to selected alternative routings. Yılmaz [67] and Yılmaz
and Erol [68] emphasize the importance of alternative routings in their studies on the
reconfiguration of flexible manufacturing cells. They indicate that excluding alternative
routes for parts can lead to increases in the optimum total reconfiguration cost.

The assumptions of this study are as follows:

• The processing time of each part on machines is known, and all parts have a constant
and known demand.

• Parts can be produced on different machines. Parts have routing flexibility.
• Intercellular and intracellular part movements are known.
• The capacity of each machine, the total number of tool types in each machine in the

cells, and the capacity of each tool on each machine are known and constant.
• The numbers of machines, parts, tools, cells, and workers are given in the system.
• The number of workers in each cell is known.
• Workers’ capacities are constant and known.

Mathematical Programming Model

The mathematical model describing the characteristics of the problem can be formu-
lated using the following notation:

Indices:

p part types p = 1, . . . ,P P indicates the number of part types
r alternative routes r = 1, . . . ,R R indicates the number of alternative routes
c cells c = 1, . . . ,C C indicates the number of cells
m machines m = 1, . . . ,M M indicates the number of machines
j tool types j = 1, . . . ,J J indicates the number of tool types
i worker types i = 1, . . . ,I I indicates the number of worker types

Parameters:

Dp the demand for part p
qpr number of visited cells according to chosen alternative route r for part p
zpr number of movements within cells according to chosen alternative route r for part p
tprcm process time of part p according to chosen alternative route r on machine m in cell c
ycm number of machines m in cell c
Km capacity of machine m
Wc machine capacity of cell c
Lc labor capacity of cell c
sprcmj tool type j number on machine m in cell c by route r of part p
tkcmj capacity of tool type j on machine m in cell c
tlprci working time of worker type i in cell c using route r of part p
ısi capacity of worker type i
ıslci number of worker type i in cell c
AG1 The weighted factor for the total number of intracellular movements
AG2 The weighted factor for the total number of intercellular movements
AG3 The weighted factor for the total machine-system workload unbalance
AG4 The weighted factor for the total number of used tools
AG5 The weighted factor for the total worker-system workload unbalance
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Decision variables:

xpr

{
1, if route r for part p is chosen
0, otherwise

ucm the utilization rate of machine m in cell c
ulci the utilization rate of worker i in cell c
hlc the utilization rate of workers of cell c
Ac the minimum machine utilization rate of cell c
Bc the maximum machine utilization rate of cell c

In the model, the parameters tprcm, Wc, tlprci, and ısi have the same time unit.
Objective function:

min



AG1
P
∑

p=1

R
∑

r=1
zprxpr + AG2

P
∑

p=1

R
∑

r=1

(
qpr − 1

)
xpr

+AG3
1
C

C
∑

c=1
(Bc − Ac)

+AG4
P
∑

p=1

R
∑

r=1

C
∑

c=1

M
∑

m=1

J
∑

j=1
sprcmjxpr + AG5

1
C

C
∑

c=1
(Lc − hlc)


(1)

The objective function of the mathematical model is shown by Equation (1). The
objective function minimizes the weighted sum of movements within and between cells
in flexible manufacturing cells, machine-to-system workload unbalances, tool usage, and
worker-system workload unbalance items under certain constraints. A weighted approach
is used for different terms in the objective function. The first part of Equation (1) calcu-
lates the intracellular movements using alternative routings of parts. The second part of
Equation (1) calculates the number of intercellular movements using alternative routings
of parts. As stated in Logendran [12], if a part is required to visit n cells (n ≥ 1), then it
contributes to (n − 1) intercellular moves. The third part of Equation (1) calculates the total
machine-system workload unbalances. The fourth part of Equation (1) calculates the total
number of tools on all machines in cells according to the optimum routes of parts. The
final part of Equation (1) calculates the total worker-system workload unbalances. The
system-based average waiting time of workers in cells is minimized. Each term of the
objective function has a user-specified weight.

Constraints:
R

∑
r=1

xpr= 1 ∀p (2)

P

∑
p=1

R

∑
r=1

(tprcmxprDp)/Km = ucmycm∀c, m (3)

Ac ≤ ucm ∀c, m (4)

ucm ≤ Bc ∀c, m (5)

M

∑
m=1

ycm ≥ 1 ∀c (6)

M

∑
m=1

ycm ≤Wc ∀c (7)

P

∑
p=1

R

∑
r=1

(
sprcmjxpr

)
≤ tkcmj ∀c, m, j (8)
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P

∑
p=1

R

∑
r=1

(
tlprcixprDp

)
/ısi = ulciıslci∀c, i (9)

I

∑
i=1

(ulciıslci) = hlc∀c (10)

I

∑
i=1

(ulciıslci) ≤ Lc∀c (11)

0 ≤ ulci ≤ 1∀c, i (12)

AG1 + AG2 + AG3 + AG4 + AG5 = 1 (13)

0 ≤ ucm ≤ 1∀c, m (14)

xpr ∈ {0, 1}∀p, r (15)

Equation (2) states that only one of its alternative routes for parts can be selected.
The utilization of each machine in each cell (ucm) is calculated by Equation (3). While
calculating the utilization of each machine in each cell, the demand and processing time
for each part and the capacity of each machine are considered, along with alternative
routings of parts. While Equation (4) provides the minimum machine utilization rate in
each cell, Equation (5) allows the maximum machine utilization rate to be calculated. The
machine-system workload unbalance specified in the objective function is minimized with
the minimum and maximum utilization rates. Thus, using Equations (3)–(5), the machine-
system unbalance stated in the objective function is calculated. Equation (6) indicates that
each cell must contain one machine. Simultaneously, the maximum number of machines
that each cell can contain is given in Equation (7). Equation (8) indicates that the number of
tools used for the selected routes of parts cannot exceed the tool capacities. Equation (9)
calculates the utilization rate of each worker in each cell (ulci). Equation (10) provides that
the sum of workers’ utilization rates within a cell determines the labor utilization rate of
the cell. Equation (11) provides that the total utilization rate of workers in each cell cannot
exceed its labor capacity. Using Equations (9)–(11) ensures the calculation of the labor-
system unbalance stated in the objective function. Equation (12) ensures that each worker’s
utilization rate in each cell can take a continuous value between 0 and 1. Equation (13) is
related to the weight coefficient stated in the objective function. Equation (14) indicates
that the utilization rate of each machine in each cell can take a continuous value between 0
and 1. Equation (15) demonstrates that the part-route decision variable can take a value of
0 or 1, that is, a binary value. It can be referred to Bozoklar [69] for more definitions and
information related to the mathematical programming model.

3. Illustrative Problem

A sample problem is generated to test the developed mathematical programming
model, and then sensitivity analyses are conducted on some specific factors to analyze
the results. In the illustrated example, two flexible manufacturing cells with a total of six
machines and four different parts with three different alternative routes are considered.
It is assumed that there are four workers in the system, and two different workers are
working on each cell. Figure 1 shows a schematic representation of the first route in Part 1
of the system.
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Figure 1. Schematic representation of the sample system.

In Table 2, the demands and processing times of parts on the machines in the cells
and the tool types used in the machines according to the alternative routes of parts are
given. Depending on alternative routes, parts can be processed with different processing
times using different toolsets on different machines. The system has routing and machine
flexibilities. Table 3 shows the processing capacities of the machines.

Table 2. Part demands, tool numbers, and machine-processing times according to alternative routes
of parts.

Part (Demand) Route Cell (C)-Machine (M)-Processing Time-Tool Type (J) (Number)

1 (100) 1 C1-M2-(2)-J1(2),
J2(3), J3(2) C1-M3-(3)-J1(3), J4(1) C2-M6-(5)-J1(2), J2(3)

2 C1-M1-(2)-J1(2), J2(3) C1-M3-(5)-J1(3) C2-M4-(5)-J2(3), J5(2)
3 C1-M3-(8)-J1(2), J4(2) C2-M4-(5)-J2(3) C2-M5-(6)-J1(3)

2 (30) 1 C1-M2-(8)-J1(3), J2(3) C2-M4-(4)-J2(3), J5(2)
2 C1-M1-(2)-J1(2) C1-M2-(3)-J1(5) C1-M3-(7)-J1(4), J4(4)
3 C1-M1-(3)-J1(3) C1-M2-(5)-J3(4) C2-M5-(5)-J1(5) C2-M6-(3)-J1(4), J2(2)

3 (40) 1 C1-M1-(2)-J1(2) C1-M2-(5)-J1(5), J2(3) C2-M4-(5)-J2(4) C2-M5-(6)-J3(3)
2 C1-M1-(3)-J1(2) C1-M2-(2)-J1(3) C1-M3-(4)-J1(2) C2-M6-(8)-J2(7)
3 C1-M2-(2)-J3(3) C2-M4-(3)-J5(2) C2-M5-(5)-J1(3) C2-M6-(4)-J1(4)

4 (20) 1 C1-M3-(2)-J1(7) C2-M5-(8)-J3(3)
2 C1-M1-(1)-J1(5) C1-M3-(2)-J4(5)
3 C1-M1-(3)-J1(4) C2-M4-(8)-J5(4) C2- M5-(9)-J1(4)

Table 3. The capacities of machines.

Machine Capacity

1 1100
2 900
3 1000
4 1200
5 1000
6 1200

As seen in Table 4, Cell 1 contains machines 1, 2, and 3, while Cell 2 contains machines 4,
5, and 6. The capacities of all tool types on the machines are given in Table 4.
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Table 4. The capacities of tool types in machines.

Cell 1 Cell 2

Tool (J) Machine 1 Machine 2 Machine 3 Machine 4 Machine 5 Machine 6

J1 10 16 12 - 15 12
J2 15 14 - 17 - 15
J3 - 10 - - 12 -
J4 - - 13 - - 14
J5 - 12 - 13 - -

The maximum numbers of machines and workers that cells can have are given in
Table 5.

Table 5. Worker and machine capacities of cells.

Cell 1 Cell 2

Worker capacity 2 2
Machine capacity 4 5

Table 6 displays the working times of workers in the cells according to the selected
alternative routes for parts. Because flexible manufacturing systems have high automation
technologies, in the system, the number of workers is less than the number of machines.

Table 6. Working times of workers in the cells by the different routes of parts.

Part Route

Cell 1 Cell 2

Worker (Capacity) Work Time Worker (Capacity) Work Time

Worker 1 (385) Worker 2 (320) Worker 3 (330) Worker 4 (315)

1 1 1 1 1 1
2 2 1 1 1
3 2 2 3 2

2 1 3 1 - 1
2 3 2 - -
3 2 2 2 2

3 1 2 1 3 2
2 2 2 2 1
3 1 - 4 2

4 1 - 1 2 1
2 1 - - -
3 1 - 4 3

Table 7 shows the number of intracellular movements and the number of cells visited
according to the alternative routes of parts. These movement numbers are created according
to the part movements between the machines along the routes that the parts followed.
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Table 7. The number of intracellular movements and the number of cells visited.

Part Route Number of Intracellular Movements Number of Cells Visited

1 1 1 2
2 1 2
3 1 2

2 1 - 2
2 2 1
3 2 2

3 1 2 2
2 2 2
3 2 2

4 1 - 2
2 1 1
3 1 2

In Table 8, the weight coefficients of the objective function items of the model tested
on the sample problem are given. The user determines these weight coefficients, and their
sum is 1. These coefficients can vary according to the items prioritized by the system user.

Table 8. The weight coefficients of the objective function.

Objective Function Items Weight Coefficients

Intracellular movement (AG1) 0.20
Intercellular movement (AG2) 0.20
Machine-system unbalance (AG3) 0.30
Tool consumption (AG4) 0.10
Worker-system unbalance (AG5) 0.20
Total: 1.00

LINGO 17.0 optimization software based on the branch and bound algorithm on a
personal laptop with Intel® Core™ i5-3230M, CPU@2.60 GHz, 2.60 GHz processors, and
6 GB RAM is used to solve the illustrated problem. The optimal global solution is achieved
in less than 1 s. As shown in Table 9, the global optimal result obtained in LINGO 17.0
shows the weighted objective function values.

Table 9. The value of the objective function items obtained according to weight coefficients.

Objective Function Items Weighted Objective Function Values

Intracellular movement 0.6
Intercellular movement 0.8
Machine-system unbalance 0.12622728
Tool consumption 4.6
Worker-system unbalance 0.10348576
Total: 6.22971304

Table 10 shows the optimal routes of parts, the machine operation sequence based on
the optimal routes, and the number of tools used in the operation sequence. In Table 11,
according to the optimal routes of parts, the utilization rates of machines and workers in
cells are demonstrated.
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Table 10. The optimal routing, machine operation sequence, and tools of the sample problem.

Part Optimal Route Machine Operation Sequence and Total
Number and Types of Tools Used

1 Route 2 M1-J1(2), J2(3)-M3-J1(3)-M4-J2(3), J5(2)
2 Route 1 M2-J1(3), J2(3)-M4-J2(3), J5(2)
3 Route 3 M2-J3(3)-M4-J5(2)-M5-J1(3)-M6-J1(4)
4 Route 1 M3-J1(7)-M5-J3(3)

Table 11. The machine and worker utilization rate in cells.

Cell 1 Cell 2

Machine M1 M2 M3 M4 M5 M6

Utilization rate 0.181 0.355 0.540 0.616 0.360 0.133

Worker I1 I2 I3 I4

Utilization rate 0.857 0.468 0.909 0.730

4. Sensitivity Analysis

The sensitivity analysis is applied to the sample problem to analyze parts demands,
worker capacities, machine capacities, and tool capacities for the optimal objective func-
tion value.

Figure 2 illustrates the effects of the demands of all parts on the optimal objective
value. With the increase in demands, the increase in optimum value is seen in the figure.
These changes seen in Figure 2 result from the changes in the routings and the values of the
objective function items.
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In this analysis, there are changes in the demand for each part type by decreasing
or increasing 10 units at specific intervals. The demand value for Part 1 is 100, which is
higher than the demands for the other parts. As a result, the sensitivity analysis ranges
from 50 to 150 and has a different starting point on the graph compared to the other parts
in Figure 2. For instance, when the demand for Part 1 increases from 100 to 150, the total
objective function increases by approximately 5.52%. This means that the current situation
for the demand for Part 1 performs better than such an increase.

In Figure 3, the worker capacities’ effects on the objective function value are presented.
As shown in this figure, generally, an increase in worker capacities can increase the optimum
objective function value.
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Figure 3. Effects of worker capacities.

In this analysis, there are changes in the capacities of workers by decreasing or increas-
ing 10 units at specific intervals. The capacity value of Worker 1 is 385, which is higher
than the capacities of other workers. Consequently, the sensitivity analysis for Worker 1 is
changed within the range of 345–425, and it indicates a distinct starting point on the graph
compared to the other workers in Figure 3.

The effects of machine capacities on objective function values are presented in Figure 4.
The changes in the capacity of Machine 5 in Cell 2 do not affect the objective function value.
It is also seen in Figure 4 that an increase in the capacities of Machines 3 and 4 leads to
a simultaneous reduction in the objective function value. As a specific example, when
the capacity of Machine 3 decreases from 1000 to 900, the total objective function value
increases by approximately 0.14%.
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Figure 4. Effects of machine capacities.

In Figure 5, it is shown how the changes in tool capacities affect the objective function
values. An increase or decrease in the capacity value of Tool 2 of Machine 6, located in
Cell 2, does not change the objective function value. For this analysis, as a specific example,
decreasing the capacity of Tool 2 in Machine 4 from 17 to 5 results in an increase in the total
objective function value of approximately 5.44%.



Appl. Sci. 2023, 13, 7420 13 of 17Appl. Sci. 2023, 13, x FOR PEER REVIEW  5  of  5 
 

 

Figure 5. Effects of tool capacities. 

 

Figure 5. Effects of tool capacities.

In this study, sensitivity analysis evaluates the effect of changes in part demands,
machine capacities, tool capacities, and workforce capacities on the objective function.
Along with sensitivity analysis, managers can gain valuable insights into decision-making
regarding capacity planning and process optimization. By examining the sensitivity of
system performance to different parameters, administrators can identify critical factors and
optimize the overall performance of the system. For example, managers can administrate
their long-term decisions in this context when they examine the impact of the increase in
part demands on the machine system imbalance or the worker system imbalance. This
allows them to make informed decisions in capacity planning, production planning, and
system optimization. In this way, it can make it easier for them to contribute to the
improvement of system performance.

5. Analysis Related to Computational Complexity

Table 12 illustrates the complexity of the developed model in terms of the total number
of decision variables. As can be seen from this table, the increases in the number of indices
of the decision variables of the model also cause an increase in the complexity of the model.

Table 12. Total number of decision variables in terms of indices of the developed model.

Variable Number Variable Number

xpr P × R hlc C
ucm C ×M Ac C
ulci C × I Bc C

Total number = [(P × R) + (C ×M) + (C × I) + (3 × C)]

6. Conclusions

This study introduces a mixed-integer mathematical programming model with routing
flexibility to design flexible manufacturing cells. This model minimizes the weighted sum
of the objective function items containing the total numbers of intracellular and intercellular
movements, tool utilization, machine-system workload unbalance, and worker-system
workload unbalance. The sample problem is developed and then solved using the LINGO
17.0 optimization program under the branch and bound algorithm. The optimal global
solution of the developed model containing the objective function value and the values
of the decision variables, such as optimal routes among the alternative routes of parts, is
obtained in less than 1 s. Generally, the other results ensured from this study are as follows:
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• According to the selected alternative routes of parts, it is determined that the parts can
be processed on machines located in the same cell or different cells. This way, the total
number of intracellular and intercellular movements is minimized.

• The total number of tools used in the system is minimized according to the selected
alternative routes for parts.

• Balancing the workloads of the machines and workers in cells contributes to improving
the system’s performance.

• By calculating the idle waiting rates of workers in each cell, the average idle wait-
ing rates of the cells are minimized. In this way, the system-worker unbalance is
minimized, and the workers are used efficiently in line with their capacities.

• As can be seen from the sensitivity analysis of the sample problem, changes in the
demands of the parts and the capacities of the machines, tools, and workers can change
the objective function value.

• The developed mathematical programming model can be an effective mechanism for
solving the design and planning problems of flexible manufacturing cells.

Under the constraints considered, a mathematical programming model can serve as
an effective mechanism for solving the design and planning problems of flexible manu-
facturing cells. This model simultaneously provides a balancing of machine workloads
and a balanced use of the workforce, reduces intracellular and intercellular movements
of parts in the system, and minimizes the number of tools used. The developed model
enabled the identification of the optimal routes for parts with alternative routings within
the context of flexible manufacturing cells. Additionally, the model effectively optimized
the allocation of parts and tools to the respective machines, thereby enhancing overall
efficiency and performance. The integration of these factors contributes to the design of
flexible manufacturing cells, serving as an effective mechanism for planning problems.

In future studies, deterministic parameters such as demand values and processing
times can be considered stochastic or fuzzy parameters in the model. The approach
presented in this study can be expanded by including different objective elements in
the model by using the epsilon-constraint, which is one of the optimization methods.
In addition, heuristic or metaheuristic algorithms can be utilized when the size of the
model instance expands and when achieving the optimal solution within a reasonable
time frame becomes unfeasible. Workers’ social and physical factors are ignored while
ensuring cell labor-workload balance. Future studies may include factors such as workers’
skills, learning abilities, and teamwork. Further studies should emphasize the integration
of sustainability principles into the design of flexible manufacturing cells. Investigating
strategies for energy optimization, waste reduction, and carbon footprint minimization
can lead to more sustainable manufacturing processes. Moreover, as a future study, the
developed approach in this study can be applied using real data.
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