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Uğur Duran

Abstract
In this study, we consider Gould-Hopper based truncated degenerate Bernoulli polynomials and examine
diverse properties and formulas covering addition formulas, correlations and derivation property. Then,
we derive some interesting implicit summation formulas and symmetric identities. Moreover, we define
Gould-Hopper based truncated degenerate Bernoulli polynomials of order r and give some of their
properties and relations.
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1. Introduction
Along this paper, the usual notations N, N0, R and C, are referred to the set of all natural numbers, the set of all

non-negative integers, the set of all real numbers and the set of all complex numbers, respectively.
The truncated form of the exponential polynomials en (z) are the first (n+ 1) terms of the Taylor series for ez (cf.

[3]) at z = 0, namely

en (z) =

n∑
k=0

zk

k!
. (1.1)

One can see [3] to get the detailed information about en (z).
For λ ∈ C, the λ-falling factorial (z)n,λ is defined by (z)n,λ = z(z − λ)(z − 2λ) · · · (z − (n− 1)λ) for n ∈ N with

(z)0,λ = 1, cf. [1,4,8,12]. In the case λ = 1, the λ-falling factorial becomes to the usual falling factorial given by
(z)n,1 := (z)n = z(z − 1) · · · (z − n+ 1) with (z)0,1 = 1.

Let λ ∈ R/ {0}. The degenerate form of the exponential function ezλ (z) is defined by (cf. [1,4,5,8,10-14])

eωλ (z) = (1 + λz)
ω
λ and e1λ (z) := eλ (z) . (1.2)
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We note that limλ→0 e
ω
λ (z) = eωz . From (1.2), we attain

eωλ (z) =

∞∑
n=0

(ω)n,λ
zn

n!
. (1.3)

The degenerate truncated form of the exponential polynomials (also called the Detr-exponential polynomials)
are considereed as the first (n+ 1) terms of the Mac Laurin series expansion of eλ (z) in (1.3) (cf. [8]):

en,λ (z) =

n∑
k=0

(1)k,λ
zk

k!
. (1.4)

Also, when λ → 0, the polynomials en,λ (z) (1.4) become the polynomials en (z) in (1.1). To get more detailed
information about the Detr-exponential polynomials and their properties, see [8].

The Stirling numbers S2 (n, k) and polynomials S2 (n, k : ω) of the second kind are provided as follows (cf.
[8,12,17]):

∞∑
n=0

S2 (n, k)
zn

n!
=

(ez − 1)
k

k!
and

∞∑
n=0

S2 (n, k : ω)
zn

n!
=

(ez − 1)
k

k!
ezω . (1.5)

The degenerate form of the Stirling polynomials of the second kind are given below (cf. [6-8,11-13]):

∞∑
n=0

S2,λ (n, k : ω)
zn

n!
=

(eλ (z)− 1)
k

k!
eωλ (z) . (1.6)

The degenerate truncated form of the Stirling polynomials of the second kind are considered as follows (cf. [8]):

∞∑
n=0

S2,m;λ (n, k : ω)
zn

n!
=

(eλ (z)− 1− em−1,λ (z))
k

k!
eωλ (z) . (1.7)

The Gould-Hopper polynomials H(j)
n (ω, θ) are defined by (see [4,6-8,15]):

∞∑
n=0

H(j)
n (ω, θ)

zn

n!
= eωz+θz

j

,

where j ∈ N with j ≥ 2. Choosing j = 1 in (2.14), the polynomials H(j)
n (ω, θ) reduce to the Newton binomial

formula. Moreover, taking j = 2 in (2.14), the polynomials H(j)
n (ω, θ) become the Hermite polynomials Hn (ω, θ)

(cf. [15]). The two polynomials H(j)
n (ω, θ) and Hn (ω, θ) have been utilized to generalize multifarious special

polynomials including Bell, Bernoulli, Genocchi and Euler polynomials (see [4,6-8,15]).
Let j ∈ N and λ ∈ R\ {0}. The degenerate Gould-Hopper polynomials H(j)

n,λ (ω, θ) are defined below (cf. [4,6,7]):

∞∑
n=0

H
(j)
n,λ (ω, θ)

zn

n!
= exλ (z) eyλ

(
zj
)
. (1.8)

Diverse applications and properties of the polynomials H(j)
n,λ (ω, θ) are investigated in [4,6,7].

2. The Gould-Hopper Based Degenerate Truncated Bernoulli Polynomials

In this chapter, we consider the Gould-Hopper based degenerate truncated Bernoulli polynomials and examine
diverse formulas and correlations such as implicit summation formulas, derivation rule and symmetric identities.

The Bernoulli polynomials are defined below (cf. [1,2,6-10,14,16,18]):

∞∑
n=0

Bn (x)
zn

n!
=

z

ez − 1
exz. (|z| < 2π)
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The degenerate form of the Bernoulli polynomials are given below (cf. [1,8,10,14]):

∞∑
n=0

Bn,λ (x)
zn

n!
=

2z

eλ (z) + 1
exλ (z) .

The truncated form of the Bernoulli polynomials Bm,n (x) are provided below (cf. [3,9]):

∞∑
n=0

Bm,n (x)
zn

n!
=

zm+1

(m+1)!

ez − 1− em−1 (z)
exz . (2.1)

Thanks to many mathematicians, recently, multifarious truncated and degenerate extensions of the Bernoulli
polynomials have been considered and invesitgated in [1,4,6-10,14,16].

The degenerate truncated Bernoulli polynomials are defined below (cf. [8]):

∞∑
n=0

Bm,n,λ (x)
zn

n!
=

(1)m+1,λ
zm+1

(m+1)!

eλ (z)− 1− em−1,λ (z)
exλ (z) . (2.2)

When x = 0, we have Bm,n,λ (0) := Bm,n,λ called the degenerate truncated Bernoulli numbers provided by

∞∑
n=0

Bm,n,λ
zn

n!
=

(1)m+1,λ
zm+1

(m+1)!

eλ (z)− 1− em−1,λ (z)
. (2.3)

The polynomials Bm,n,λ (x) in conjuction with the several identities and formulas are analyzed in [8] with details.
We now introduce the Gould-Hopper based degenerate truncated Bernoulli polynomials as follows.

Definition 2.1. Let x and y be two independent variables and j ∈ N0. The Gould-Hopper based degenerate
truncated Bernoulli polynomials are defined below:

∞∑
n=0

HB
(j)
m,n,λ (x, y)

zn

n!
=

(1)m+1,λ
zm+1

(m+1)!

eλ (z)− 1− em−1,λ (z)
exλ (z) eyλ

(
zj
)
. (2.4)

We choose to call the Gould-Hopper based Detr-Bernoulli polynomials instead of the Gould-Hopper based
degenerate truncated Bernoulli polynomials.

Remark 2.1. When x = 0 in Definition 2.1, the Gould-Hopper based Detr-Bernoulli polynomials Bm,n,λ (x) reduce
to the following polynomials which is also new extension of the Detr-Bernoulli polynomials:

∞∑
n=0

B
(j)
m,n,λ (y)

zn

n!
=

(1)m+1,λ
zm+1

(m+1)!

eλ (z)− 1− em−1,λ (z)
eyλ
(
zj
)
. (2.5)

Remark 2.2. Taking x = y = 0 in Definition 2.1, the polynomials HB
(j)
m,n,λ (x, y) reduce to the degenerate truncated

Bernoulli numbers in (2.3).

Theorem 2.1. The following summation formulae holds for n ∈ N0:

HB
(j)
m,n,λ (x, y) =

n∑
k=0

(
n

k

)
(x)k,λ HB

(j)
m,n−k,λ (y) (2.6)

and

HB
(j)
m,n,λ (x, y) =

n∑
k=0

(
n

k

)
H

(j)
n−k,λ (x, y)Bm,k,λ.
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Proof. By Definition 2.1 and utilizing the (2.5) and (2.3), we attain

∞∑
n=0

HB
(j)
m,n,λ (x, y)

zn

n!
=

(1)m+1,λ
zm+1

(m+1)!

eλ (z)− 1− em−1,λ (z)
exλ (z) eyλ

(
zj
)

=

∞∑
n=0

HB
(j)
m,n,λ (y)

zn

n!

∞∑
n=0

(x)n,λ
zn

n!

=

∞∑
n=0

(
n∑
k=0

(
n

k

)
(x)k,λ HB

(j)
m,n−k,λ (y)

)
zn

n!

and

∞∑
n=0

HB
(j)
m,n,λ (x, y)

zn

n!
=

(1)m+1,λ
zm+1

(m+1)!

eλ (z)− 1− em−1,λ (z)
exλ (z) eyλ

(
zj
)

=

∞∑
n=0

H
(j)
n,λ (x, y)

zn

n!

∞∑
n=0

Bm,n,λ
zn

n!

=

∞∑
n=0

(
n∑
k=0

(
n

k

)
H

(j)
n−k,λ (x, y)Bm,k,λ

)
zn

n!
,

which complete the proof.

We give the following lemma.

Lemma 2.1. (cf. [6]) The following series manipulation is valid:

∞∑
n=0

∞∑
k=0

A(k, n) =

∞∑
n=0

bn/jc∑
k=0

A(k, n− jk), (2.7)

where b·c is the Gauss symbol, and shows the maximum integer that does not exceed the number in the square brackets.

We give the following theorem.

Theorem 2.2. We have

HB
(j)
m,n,λ (x, y) = n!

bn/jc∑
k=0

(y)n−jk,λ
k! (n− jk)!

Bm,k,λ (x) . (2.8)

Proof. By applying (2.7) and using the following equality

∞∑
n=0

HB
(j)
m,n,λ (x, y)

zn

n!
=

(1)m+1,λ
zm+1

(m+1)!

eλ (z)− 1− em−1,λ (z)
exλ (z) eyλ

(
zj
)

=

( ∞∑
n=0

Bm,n,λ (x)
zn

n!

)( ∞∑
n=0

(y)n,λ
zjn

n!

)

=

∞∑
n=0

n!

bn/jc∑
k=0

(y)n−jk,λ
k! (n− jk)!

Bm,k,λ (x)

 zn

n!
,

which is the claimed result (2.8).

Theorem 2.3. We have

HB
(j)
m,n,λ (x1 + x2, y1 + y2) =

n∑
k=0

(
n

k

)
HB

(j)
m,k,λ (x1, y1)H

(j)
n−k,λ (x2, y2) . (2.9)
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Proof. Using the following equality

(1)m+1,λ
zm+1

(m+1)!

eλ (z)− 1− em−1,λ (z)
ex1+x2

λ (z) ey1+y2λ

(
zj
)

=
(1)m+1,λ

zm+1

(m+1)!

eλ (z)− 1− em−1,λ (z)
ex1

λ (z) ey1λ
(
zj
)
ex2

λ (z) ey2λ
(
zj
)
,

the proof is similar to Theorem 2.1. We, therefore, choose to omit details involved.

Theorem 2.4. We have
∂

∂x
HB

(j)
m,n,λ (x, y) = n!

∞∑
s=1

HB
(j)
m,n−s,λ (x, y)

(−1)
s+1

(n− s)!s
λs−1. (2.10)

Proof. By appliying the operator ∂
∂x to both sides of (2.4), we then derive

∞∑
n=0

∂

∂x
HB

(j)
m,n,λ (x, y)

zn

n!
=

(1)m+1,λ
zm+1

(m+1)!e
y
λ

(
zj
)

eλ (z)− 1− em−1,λ (z)

∂

∂x
(1 + λz)

x
λ

=
(1)m+1,λ

zm+1

(m+1)!e
y
λ

(
zj
)

eλ (z)− 1− em−1,λ (z)
(1 + λz)

x
λ ln (1 + λz)

1
λ

=

∞∑
n=0

HB
(j)
m,n,λ (x, y)

zn

n!

∞∑
s=1

(−1)
s+1

s
λs−1zs

=

∞∑
n=0

∞∑
s=1

HB
(j)
m,n,λ (x, y)

(−1)
s+1

s
λs−1

zn+s

n!
,

which means the assertion in (2.10).

Theorem 2.5. For n,m ∈ N0, we have

HB
(j)
m+1,n,λ (x, y) = n

1− (m+ 1)λ

m+ 2
HB

(j)
m,n−1,λ (x, y) (2.11)

+
(m+ 1)!

(1−mλ)

n∑
k=0

(
n+ 1

k

)
Bm,k;λ HB

(j)
m+1,n+1−k,λ (x, y) .

Proof. Utilizing the following equality

(1)m+2,λ

zm+2

(m+ 2)!
exλ (z) eyλ

(
zj
)

= (eλ (z)− 1− em,λ (z))

∞∑
n=0

HB
(j)
m+1,n,λ (x, y)

zn

n!

= (eλ (z)− 1− em−1,λ (z))

∞∑
n=0

HB
(j)
m+1,n,λ (x, y)

zn

n!

− (1)m,λ
zm

m!

∞∑
n=0

HB
(j)
m+1,n,λ (x, y)

zn

n!
,

the proof is similar to Theorem 2.1. We, therefore, choose to omit details involved.

Theorem 2.6. For n,m ∈ N0, we have

(1)m+1,λ

(m+ 1)!
H

(j)
n,λ (x, y) =

n+1∑
k=0

n! (1)k+m,λ
HB

(j)
m,n+1−k,λ (x, y)

(k +m)! (n+ 1− k)!
− n!

HB
(j)
m,n+m+1,λ (x, y)

(n+m+ 1)!
. (2.12)

Proof. By Definition 2.1, we have

(1)m+1,λ

zm+1

(m+ 1)!
exλ (z) eyλ

(
zj
)

= (eλ (z)− 1− em−1,λ (z))

∞∑
n=0

HB
(j)
m,n,λ (x, y)

zn

n!

=

∞∑
n=m

(1)n,λ
zn

n!

∞∑
n=0

HB
(j)
m,n,λ (x, y)

zn

n!
−
∞∑
n=0

HB
(j)
m,n,λ (x, y)

zn

n!
,

which yields the asserted result (2.12).
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In recent years, many mathematicians have been studied special polynomials to acquire some of their symmetric
identities and implicit summation formulas, cf. [5,15] and see also each of the references cited therein. We now
derive some the mentioned formulas and identities for the polynomials HB

(j)
m,n,λ (x, y).

Theorem 2.7. For n,m ∈ N0, we have

HB
(j)
m,n,λ (x, y) =

n∑
l=0

n∑
k=0

(
n

k

)
B

(j)
m,n−k,λ (y)S2;λ (k, l : −l) (x)

(l)
, (2.13)

where (x)
(l)

= x (x+ 1) (x+ 2) · · · (x+ (l − 1)) for l ∈ N with (x)
(l)

:= 1 (cf. [8]).

Proof. From Definition 2.1 and utilizing (1.6) and (2.5), we acquire

∞∑
n=0

HB
(j)
m,n,λ (x, y)

zn

n!
=

(1)m+1,λ
zm+1

(m+1)!e
y
λ

(
zj
)

eλ (z)− 1− em−1,λ (z)

(
e−1λ (z)− 1 + 1

)x
=

(1)m+1,λ
zm+1

(m+1)!e
y
λ

(
zj
)

eλ (z)− 1− em−1,λ (z)

∞∑
l=0

(
x+ l − 1

l

)(
1− e−1λ (z)

)l
=

(1)m+1,λ
zm+1

(m+1)!e
y
λ

(
zj
)

eλ (z)− 1− em−1,λ (z)

∞∑
l=0

(
x+ l − 1

l

)
(eλ (z)− 1)

l

l!
e−lλ (z) l!

=

∞∑
l=0

(x)
(l)
∞∑
n=0

B
(j)
m,n,λ (y)

zn

n!

∞∑
n=0

S2;λ (n, l : −l) z
n

n!

=

∞∑
l=0

(x)
(l)
∞∑
n=0

(
n∑
k=0

(
n

k

)
B

(j)
m,n−k,λ (y)S2;λ (k, l : −l)

)
zn

n!
,

which means the assertion (2.13).

Note that (cf. [5,15])
∞∑
N=0

f(N)
(x+ y)N

N !
=

∞∑
n,s=0

f(n+ s)
xn

n!

ys

s!
. (2.14)

We give the following theorem.

Theorem 2.8. We have

HB
(j)
m,k+l,λ (x, y) =

k,l∑
n,s=0

(
k

n

)(
l

s

)
(µ− x)n+s,λ HB

(j)
m,k+l−n−s,λ (µ, y) . (2.15)

Proof. Taking z by z + ω in (2.4), it yields

(1)m+1,λ
(z+ω)m+1

(m+1)!

eλ (z + ω)− 1− em−1,λ (z + ω)
eyλ

(
(z + ω)

j
)

= eµλ (z + ω)

∞∑
k,l=0

HB
(j)
m,k+l,λ (µ, y)

zk

k!

ωl

l!

and similarly we acquire

(1)m+1,λ
(z+ω)m+1

(m+1)!

eλ (z + ω)− 1− em−1,λ (z + ω)
eyλ

(
(z + ω)

j
)

= exλ (z + ω)

∞∑
k,l=0

HB
(j)
m,k+l,λ (x, y)

zk

k!

ωl

l!
.

By the last two equalities, we write
∞∑

k,l=0

HB
(j)
m,k+l,λ (x, y)

zk

k!

ωl

l!
= eµ−xλ (z + ω)

∞∑
k,l=0

HB
(j)
m,k+l,λ (µ, y)

zk

k!

ωl

l!

=

∞∑
n,s=0

(µ− x)n+s,λ
zn

n!

ωm

s!

∞∑
k,l=0

HB
(j)
m,k+l,λ (µ, y)

zk

k!

ωl

l!
.
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By using (2.14), we acquire

∞∑
k,l=0

HB
(j)
m,k+l,λ (x, y)

zk

k!

ωl

l!
=

∞∑
k,l=0

k,l∑
n,s=0

(µ− x)n+s,λ HB
(j)
m,k+l−n−s,λ (µ, y)

n!s! (k − l)! (l − s)!
zkωl,

whichmeans the assertion (2.15).

Theorem 2.9. The following symmetric identity holds for n ∈ N0 and a, b ∈ R:

n∑
k=0

(
n

k

)
HB

(j)
m,n−k,λ (bx, y) HB

(j)
m,k,λ (ax, y) an−kbk =

n∑
k=0

(
n

k

)
HB

(j)
m,n−k,λ (ax, y) HB

(j)
m,k,λ (bx, y) bn−kak. (2.16)

Proof. Let

Υ =
(az)

m+1
(bz)

m+1
(

(1)m+1,λ

(m+1)!

)2
ebxλ (az) eaxλ (bz) eyλ

(
ajzj

)
eyλ
(
bjzj

)
(eλ (az)− 1− em−1,λ (az)) (eλ (bz)− 1− em−1,λ (bz))

Then, thanks to Υ being symmetric in a and b, we have two expansions of Υ as follows:

Υ =

∞∑
n=0

HB
(j)
m,n,λ (bx, y)

(az)
n

n!

∞∑
n=0

HB
(j)
m,n,λ (ax, y)

(bz)
n

n!

=

∞∑
n=0

n∑
k=0

(
n

k

)
HB

(j)
m,n−k,λ (bx, y) HB

(j)
m,k,λ (ax, y) an−kbk

zn

n!

and similarly

Υ =

∞∑
n=0

n∑
k=0

(
n

k

)
HB

(j)
m,n−k,λ (ax, y) HB

(j)
m,k,λ (bx, y) bn−kak

zn

n!
,

which means the assertion (2.16).

For k,m ∈ N0, we define the numbers Sm,k,λ (n) as follows:

eλ ((n+ 1) z)− 1− em−1,λ ((n+ 1) z)

eλ (z)− 1− em−1,λ (z)
=

∞∑
k=0

Sm,k,λ(n)
zk

k!
, (2.17)

which, for λ→ m = 0, reduces to the power sum limλ→0 S0,k,λ (n) := Sk(n) given by (cf. [5])

∞∑
k=0

Sk(n)
zk

k!
=
e(n+1)z − 1

ez − 1
.

A symmetric identity for HB
(j)
m,n,λ (x, y) is stated below.

Theorem 2.10. For a, b being two integers and n,m ∈ N0, we have

n∑
u=0

n−u∑
j=0

u∑
i=0

(
n

u

)(
n− u
j

)(
n

i

)
HB

(j)
m,n−u−j,λ (bx, by)Sm,j,λ(b− 1)

× HB
(j)
m,u−i,λ (ax, ay)Sm,i,λ(a− 1)an−ubu

=

n∑
u=0

n−u∑
j=0

u∑
i=0

(
n

u

)(
n− u
j

)(
n

i

)
HB

(j)
m,n−u−j,λ (ax, ay)Sm,j,λ(a− 1)

HB
(j)
m,u−i,λ (bx, by)Sm,i,λ(b− 1)bn−uau.
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Proof. Let

Ψ =
(az)

m+1
(bz)

m+1
(

(1)m+1,λ

(m+1)!

)2
(eλ (abz)− 1− em−1,λ (abz))

2

(eλ (az)− 1− em−1,λ (az))
2

(eλ (bz)− 1− em−1,λ (bz))
2

×ebxλ (az) eaxλ (bz) ebyλ
(
ajzj

)
eayλ
(
bjzj

)
=

(az)
m+1 (1)m+1,λ

(m+1)! e
bx
λ (az) ebyλ

(
ajzj

)
eλ (az)− 1− em−1,λ (az)

eλ (abz)− 1− em−1,λ (abz)

eλ (az)− 1− em−1,λ (az)

×
(bz)

m+1 (1)m+1,λ

(m+1)! e
ax
λ (bz) eayλ

(
bjzj

)
eλ (bz)− 1− em−1,λ (bz)

eλ (abz)− 1− em−1,λ (abz)

eλ (bz)− 1− em−1,λ (bz)

Thus we have

Ψ =

∞∑
n=0

n∑
l=0

(
n

l

)
HB

(j)
m,n−l,λ (bx, by)Sm,l,λ(b− 1)

(az)
n

n!

×
∞∑
n=0

n∑
l=0

(
n

l

)
HB

(j)
m,n−l,λ (ax, ay)Sm,l,λ(a− 1)

(bz)
n

n!
,

which completes the proof.

3. Further Remarks

Now, we introduce the Gould-Hopper based Detr-Bernoulli polynomials B(r)
m,n,λ (x) of order r as follows:

∞∑
n=0

HB
(j,r)
m,n,λ (x, y)

zn

n!
=

 (1)m+1,λ
zm+1

(m+1)!

eλ (z)− 1− em−1,λ (z)

r

exλ (z) eyλ
(
zj
)
. (3.1)

We note that HB
(j,1)
m,n,λ (x, y) :=H B

(j)
m,n,λ (x, y). Also, upon letting x = y = 0, the polynomials in (3.1) reduce to

the Gould-Hopper based Detr-Bernoulli numbers of order r below:

∞∑
n=0

B
(r)
m,n,λ

zn

n!
=

 (1)m+1,λ
zm+1

(m+1)!

eλ (z)− 1− em−1,λ (z)

r

.

We first give the following summation formula.

Theorem 3.1. We have

HB
(j,r)
m,n,λ (x, y) =

n∑
l=0

(
n

l

)
B

(r)
m,n−l,λH

(j)
l,λ (x, y)

Proof. By using (1.8) and (3.1), the proof is similar to Theorem 2.1. We, therefore, choose to omit details involved.

Addition property of the Gould-Hopper based Detr-Bernoulli polynomials of order r is given below.

Theorem 3.2. We have

HB
(j,r1+r2)
m,n,λ (x1 + x2, y1 + y2) =

n∑
u=0

(
n

u

)
HB

(j,r1)
m,u,λ (x1, y1) HB

(j,r2)
m,n−u,λ (x2, y2) .

Proof. By utlizing (1.8) and (3.1), the proof is similar to Theorem 2.1. We, therefore, choose to omit details involved.
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Theorem 3.3. We have

H
(j)
n,λ (x+ µ, y) =

n!r!
(

(1)m+1,λ

)r
(n+ (m+ 1))! ((m+ 1)!)

r (3.2)

×
n+(m+1)r∑

l=0

(
n+ (m+ 1)

l

)
S2,m;λ (n+ (m+ 1)− l, r : µ) HB

(j,r)
m,l,λ (x, y) .

Proof. By (1.7), (1.8) and (3.1), we investigate

∞∑
n=0

S2,m;λ (n, r : µ)
zn

n!

∞∑
n=0

HB
(j,r)
m,n,λ (x, y)

zn

n!
=

(eλ (z)− 1− em−1,λ (z))
r

r!
eµλ (z)

×

(
(1)m+1,λ

)r
z(m+1)r

((m+1)!)r

(eλ (z)− 1− em−1,λ (z))
r e
x
λ (z) eyλ

(
zj
)

= ex+µλ (z) eyλ
(
zj
) ((1)m+1,λ

)r
r!

z(m+1)r

((m+ 1)!)
r

=

∞∑
n=0

H
(j)
n,λ (x+ µ, y)

zn+(m+1)r

n!

(
(1)m+1,λ

)r
r! ((m+ 1)!)

r ,

which implies the assertion (3.2).

4. Conclusion
In this study, we have introduced the Gould-Hopper based truncated degenerate Bernoulli polynomials and

have examined diverse properties and formulas covering addition formulas, derivation rule and relationships
with the Gould-Hopper polynomials and the degenerate Stirling numbers of the second. Then, we have derived
some interesting symmetric relations and implicit summation identities. Moreover, we have defined Gould-Hopper
based truncated degenerate Bernoulli polynomials of order r and have given some of their properties and relations.

Acknowledgment.

We thank the reviewer for their insightful comments and suggestions that helped us improve the paper.

Funding

There is no funding for this work.

Availability of data and materials

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author’s contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.



134 U. Duran

References
[1] Carlitz, L.: Degenerate Stirling, Bernoulli and Eulerian numbers. Utilitas Mathematica. 15, 51-88 (1975).

[2] Cheon,G.-S.: A note on the Bernoulli and Euler polynomials. Applied Mathematics Letters. 16, 365-368 (2003).

[3] Dattoli, G., Ceserano, C., Sacchetti, D.: A note on truncated polynomials. Applied Mathematics and Computation.
134, 595-605 (2003).

[4] Duran, U, Acikgoz, M.: Generalized Gould-Hopper based fully degenerate central Bell polynomials. Turkish Journal of
Analysis and Number Theory. 7 (5), 124-134 (2019).

[5] Duran, U., Araci, S., Acikgoz, M.: Bell-Based Bernoulli polynomials with applications. Axioms. 10, no. 29 (2021).

[6] Duran, U., Sadjang, P.N.: On Gould-Hopper-based fully degenerate poly-Bernoulli polynomials with a q-parameter.
Mathematics. 7, no. 121 (2019).

[7] Duran, U., Acikgoz, M.: On generalized degenerate Gould-Hopper based fully degenerate Bell polynomials. Journal of
Mathematics and Computer Science. 21 (3), 243-257 (2020).

[8] Duran, U., Acikgoz, M.: On Degenerate Truncated Special Polynomials. Mathematics. 8 (1), no. 144 (2020).

[9] Hassen, A., Nguyen, H.D.: Hypergeometric Bernoulli polynomials and Appell sequences. International Journal of
Number Theory. 4, 767-774 (2008).

[10] Howard, F.T.: Explicit formulas for degenerate Bernoulli numbers. Discrete Mathematics. 162, 175-185 (1996).

[11] Kim, T., Kim, D.S., Jang, L.-C., Kwon, H.I.: Extended degenerate stirling numbers of the second kind and extended
degenerate Bell polynomials. Utilitas Mathematica. 106, 11-21 (2018).

[12] Kim, T., Yao, Y., Kim, D.S., Jang, G.-W.: Degenerate r-Stirling numbers and r-Bell polynomials. Russian Journal of
Mathematical Physics. 25, 44-58 (2018).

[13] Kim, T.: A note on degenerate Stirling polynomials of the second kind. Proceedings of the Jangjeon Mathematical
Society. 20, 319-331 (2017).

[14] Kurt, B: Explicit relations for the modified degenerate Apostol-type polynomials. Journal of Balikesir University
Institute of Science and Technology. 20, 401-412 (2018).

[15] Pathan, M.A., Khan, W.A.: Some implicit summation formulas and symmetric identities for the generalized Hermite-
Bernoulli polynomials. Mediterranean Journal of Mathematics. 12, 679-695 (2015).

[16] Srivastava, H.M., Araci, S., Khan, W.A., Acikgoz, M.: A note on the truncated-exponential based Apostol-type
polynomials. Symmetry. 11, no. 538 (2019).

[17] Srivastava, H.M., Choi, J.: Zeta and q-Zeta functions and associated series and integrals. Elsevier Science
Publishers. Amsterdam (2012).

[18] Srivastava, H.M., Pinter, A.: Remarks on some relationships between the Bernoulli and Euler polynomials. Applied
Mathematics Letters. 17, 375-380 (2004).

Affiliation
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