

ÇBAG kullanılan rüzgar türbinlerinin güç kontrol döngüsüne hassasiyet ve sağlamlık analizi uygulanması

Melikşah ÖZAKTÜRK*

İskenderun Teknik Üniversitesi, Enerji Sistemleri Mühendisliği Bölümü, İskenderun, Hatay

Makale Gönderme Tarihi: 13.02.2017 Makale Kabul Tarihi: 30.03.2017

Öz

Bu makalede, çift beslemeli asenkron generatör (ÇBAG) kullanılan rüzgar türbinlerinin stator güç denklemleri kullanılarak güç kontrol modeli elde edilmiş ve kontrolünde iyileştirmeler sağlanmıştır.

Genellikle, rotor tarafındaki konvertör güç kontrolünde kullanılan geleneksel PI denetleyici yerine band genişliği ve sönümleme ayarlarını yapabilmek amacıyla PID denetleyici kullanılmıştır. Güç kontrol döngüsü için ilgili transfer fonksiyonlar elde edilmiştir. Rotor tarafındaki konvertörün akım döngüsü ile şebeke tarafındaki konvertörün akım ve gerilim döngülerinin doğal frekansı (rad/s birimiyle ω_n veya Hz birimiyle f_n) ve sönüm oranları (ζ) değiştirilmeden bu transfer fonksiyonlarına hassasiyet analizi uygulanmıştır.

Hassasiyet analizi uygulamasıyla bu çalışmada değerlendirilen güç kontrolü ayar parametreleri için 'en iyi' çalışma noktaları belirlenmiştir. 'En iyi' ayar parametreleri dikkate alınarak stator geriliminde ±%20, stator ve mıknatıslanma indüktanslarında ±%10 değişim uygulanarak sağlamlık analizi gerçekleştirilmiştir. Hassasiyet ve sağlamlık analizleri PSCAD simülasyon sonuçlarıyla doğrulanmıştır.

Anahtar Kelimeler: Çift beslemeli asenkron generatör (ÇBAG); Hassasiyet analizi; Sağlamlık analizi; Güç kontrolü; Rüzgar türbini.

^{*}Yazışmaların yapılacağı yazar: Melikşah ÖZAKTÜRK. meliksah.ozakturk@iste.edu.tr; Tel: (326) 613 56 00 (2901)

Giriş

Dünya nüfusunun artmasıyla birlikte enerji talebi de artmaktadır. Fosil kökenli kaynakların azalması (mevcut küresel tüketim eğilimleri dikkate alındığında petrol rezervlerinin 41 yıl, doğalgaz rezervlerinin 67 yıl ömrü kaldığı öngörülmektedir (Sevim, 2013)) ve meydana getirdiği çevresel sorunlar nedeniyle enerji üretiminde venilenebilir enerji kaynaklarının kullanımı önem kazanmıştır. Son yıllarda, yenilenebilir enerji kaynaklarından özellikle rüzgar enerjisi daha çok tercih edilmekte ve kurulu on/off-shore rüzgar santral sayıları gün geçtikçe artmaya devam etmektedir. Hansen ve Hansen (2007), rüzgar türbinlerinde en çok kullanılan generatör tipini arastırmıs olup coğu rüzgar santrallerinde cift beslemeli asenkron generatörlerin (CBAG) kullanıldığını ortaya cıkarmıslardır. Literatürde, rüzgar enerjisi cevrim sistemlerinde kullanılan ÇBAG'lerin avantajlarına ayrıntılı olarak değinilmiştir (Pena vd., 1996: Hopfensperger vd., 2000: Muller vd.: 2002; Hansen vd., 2004; Xu vd., 2006; Hansen ve Hansen, 2007; Anay-Lara vd., 2009; Abad vd., 2011; Burton vd., 2011). ÇBAG modellemesi ve kontrol teknikleri uzun zamandır calısılmaktadır (Pena vd., 1996; Hopfensperger vd., 2000; Muller vd.; 2002; Ekanayake vd., 2003; Hansen vd., 2004; Xu vd., 2006; Anay-Lara vd., 2009; Abad vd., 2011; Burton vd., 2011). Ancak, rüzgar santral sayılarındaki olağanüstü artışla birlikte ÇBAG kontrol sistemlerinin daha sağlam yapıda olması ve muhtemel fiziksel değişikliklerden daha az etkilenmesi gerekir.

Bu calışmada; doğal frekans (ω_n veya f_n), sönüm oranı (ζ) ve türevsel kazanc (K_D) ayar herhangi parametrelerinden ikisi referans değerlerinde sabit tutulup diğer parametre sıravla değistirilerek güc kontrolü icin hassasivet analizi yapılmıştır. Böylece, PID ayar parametrelerinde meydana gelebilecek herhangi bir değişimin sistem kontrolü üzerindeki etkisi incelenmistir. Hassasiyet analizi sonucunda ayar parametreleri için 'en iyi' çalışma noktaları belirlenmistir. Daha sonra bu calısma noktaları

kullanılarak her bir stator gerilimi (0.8pu, 1pu ve 1.2pu) için stator ve mıknatıslanma indüktanslarının ±%10 değiştiği kabul edilerek sağlamlık analizi gerçekleştirilmiştir.

ÇBAG Modeli ve Kontrolü

CBAG kullanılan tipik bir rüzgar türbin sistem modeli Sekil 1'de sunulmustur. Bu sistemde; stator, bir transformatör aracılığıyla şebekeye bağlanırken rotor terminalleri iki yönlü back-toback kısmi anma güce sahip konvertörler vasıtasıyla önce transformatöre ve nihavetinde sebekeye bağlanmıştır. Bu iki konvertör arasına doğru akım (DA)-link kondansatörü verleştirilmiş ve ayrıca güç elektroniği bilesenlerini korumak için crowbar koruma cihazı sisteme eklenmiştir.

Şekil 1. Tipik ÇBAG rüzgar türbini sistemi

CBAG'ler, rüzgardan maksimum güç eldesi sağlayabilirler ve değişken hızlarda (senkron hızın yaklaşık ±%33'ü (Abad vd., 2011)) calışmaya elverişlidirler. Bu calışmada, darbe genişliği modülasyonu anahtarlama tekniği ile kontrol edilen IGBT (insulated gate bipolar transistor-izole edilmis kapılı, iki kutuplu transistör) kullanılan gerilim kaynaklı 3 fazlı konvertör topolojisi tercih edilmiştir. Rotor tarafındaki konvertör, ÇBAG'nin aktif ve reaktif güc kontrolü ile generatör icin gerekli olan mıknatıslanma enerjisini sağlamakla görevlidir. Sebeke tarafındaki konvertör ise DAlink kondansatörü üzerindeki gerilimi istenilen değerde sabit tutmaya çalışır ve rotor gücünü sebekeye aktarır veya gerekli olan rotor gücünü sebekeden rotora tasır. Pena ve diğerleri (1996), Hopfensperger ve diğerleri (2000), Anaya-Lara ve diğerleri (2009), Abad ve diğerleri (2011) rotor ve

şebeke tarafındaki konvertörler için tasarlanan kontrol sistemleri hakkında kapsamlı çalışmalar yapmışlardır.

Güç Kontrolü

CBAG'li rüzgar türbinlerinde güc kontrolü geleneksel PI denetleyici ile sağlanmaktadır. Ancak, bu arastırmada değerlendirilen sistemin doğası gereği PI denetleyici kullanmak güç kontrolü icin birinci dereceden transfer fonksiyonu ile sonuçlanacağından sadece band genisliği ayarı yapılabilir, fakat sönümleme durumuna müdahale edilemez. Dolayısıyla, sönümlemeyi de kontrol edebilmek amacıyla PI verine PID denetleyici kullanılmıştır. Ancak, PID ayar işlemi PI denetleyiciye göre oldukça karmaşıktır. Oransal, integral ve türevsel kazanç seçimi konusunda çok dikkatli olmak gereklidir. Güç kontrol döngüsünü tasarlamak için aşağıda verilen stator aktif ve reaktif güc denklemleri kullanılmıştır (Ozakturk, 2012):

$$P_{s} = (1.5\sqrt{2V_{s}L_{m}i_{r\,a}})/L_{s} \tag{1}$$

$$Q_{s} = \left[1.5\sqrt{2V_{s}}(\Psi_{s} - L_{m}i_{r_{d}})\right]/L_{s}$$
(2)

Bağıntı (1)'de verilen stator aktif gücün pozitif stator aktif güç akış cıkması, yönünün generatörden sebekeve doğru olması (generatör modunda çalışması) anlamına gelmektedir. (2) Bağıntısının pozitif sonuç vermesi durumunda sistemin ileri stator güç faktörü olduğu anlaşılmalıdır. Stator gerilimi (V_s) ile stator akısının (Ψ_s) değismediği kabulüyle Bağıntı (1) ve (2); rotor akımının q bileşeni ile stator aktif güç arasında doğrusal bir ilişki olduğunu ve stator reaktif gücün ise rotor akımının d bileşeni arasında bir ilişki olduğunu göstermektedir. Hopfensperger ve diğerleri (2000), Slootweg ve diğerleri (2001) ve Boldea (2005), ÇBAG'ya ait tüm dinamik makine denklemlerini ve ilgili kabulleri ayrıntılı olarak aktarmışlardır. Bu calışmada dq dönüşümü yapılırken stator akısı referans alınmış ve stator akı transiyentleri ihmal edilmiştir (kararlı durumda $d\Psi_s/dt = 0$). Güç kontrolü blok şeması Şekil 2'de verilmiştir.

Şekil 2. Güç kontrolü blok şeması

Şekil 2'de verilen güç kontrolüne ait *transfer fonksiyonu* (TF) aşağıdaki gibi elde edilir:

$$TF = \frac{Q_s}{Q_s^*} = \frac{P_s}{P_s^*} = \frac{1.5\sqrt{2}V_s L_m i_{r_q}}{L_{ss}}$$
$$TF = \frac{\left(s^2 + s\frac{K_p}{K_D} + \frac{K_i}{K_D}\right)}{\left(s^2 + s\frac{K_p + \frac{2}{3\sqrt{2}V_s L_m} + \frac{K_i}{K_D}\right)}{K_D}}$$
(3)

Bir rüzgar türbininde üretilen gücün dizginlenmesi istendiğinde kanatlar. gelen hakim rüzgar yönünden başka tarafa saptırılır veya daha fazla güç üretebilmek için türbin kanatları rüzgara doğru çevrilir. Ancak, kanatların hareketi çok ağır olan nacelle döndürülerek elektromekanik olarak sağlanır. Mekanik bir arızaya yol acmamak icin nacelle, olabildiğince hareket ettirilmelidir. vavas Dolavisivla. buna paralel olarak güc kontrolünün de yavas olması önemlidir. Güc kontrolünde kullanılan PID denetleyicinin doğal frekansı da makul olacak sekilde düsük seçilmelidir. Düşük doğal frekans tercih edildiğinde Bağıntı (3)'ün payında bulunan s^2 teriminin transfer fonksiyonuna etkisi diğer iki terime göre daha az olacağından ihmal edilebilir. Böylece, güç kontrolü transfer fonksiyonu, aşağıdaki denklemde gösterildiği gibi basitleştirilmiş transfer fonksiyonuna (STF) dönüsür:

$$STF = \frac{\left(s\frac{\kappa_{D}}{\kappa_{D}} + \frac{\kappa_{i}}{\kappa_{D}}\right)}{\left(s^{2} + s\frac{\kappa_{P} + \frac{2}{3\sqrt{2}V_{SLm}}}{\kappa_{D}} + \frac{\kappa_{i}}{\kappa_{D}}\right)}$$
(4)

Son olarak K_i>>K_p olması şartıyla Bağıntı (4)'ün payında bulunan sK_p terimi de ihmal edilebilir ve STF sadeleşerek 2. dereceden yaklaşık transfer fonksiyonuna (SoATF) indirgenir:

$$SoATF = \frac{\left(\frac{K_L}{K_D}\right)}{\left(s^2 + s \frac{K_D + \frac{2L_{SS}}{3\sqrt{2}V_S L_m}}{K_D} + \frac{K_L}{K_D}\right)}$$
(5)

SoATF kullanılarak sönüm oranı (ζ) ve doğal frekans (ω_n) bağıntıları elde edilebilir:

$$SoATF \approx \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

$$\omega_n^2 = \frac{K_i}{K_D} \quad \text{ve} \quad 2\zeta\omega_n = \frac{K_p + \frac{2}{3\sqrt{2V_s Lm}}}{K_D}$$

$$\omega_n = \sqrt{\frac{K_i}{K_D}} \quad (6)$$

$$\zeta = \frac{K_p + \frac{2}{3\sqrt{2V_s Lm}}}{2\sqrt{K_i K_D}} \quad (7)$$

Bu makalede kullanılan fiziksel büyüklüklerin nominal değerleri dikkate alındığında $\frac{2}{3\sqrt{2}V_sL_m}$ teriminin değeri yaklaşık 0.852'ye eşit olduğu hesaplanmıştır.

Hassasiyet Analizi

Güç kontrolü için gerçekleştirilen hassasiyet analizinde PID ayar parametrelerinden iki tanesi nominal değerlerinde sabit tutulurken sadece bir parametrenin değeri değiştirilmiştir. Sönüm oran (ζ) değerleri 0.7, 0.8, 0.9, 1 ve 1.1; doğal frekans (ω_n) değerleri 1Hz, 1.5Hz, 2Hz ve 2.5Hz; türevsel kazanc (K_D) değerleri 0.1s, 0.2s, 0.3s ve 0.4s olarak seçilmiştir. Hassasiyet analizinde ilk basamak, sönüm oranı ve türevsel kazanç değerleri sabit iken doğal frekans değerini 1Hz ile 2.5Hz arasında değiştirmek olmuştur. İkinci adımda, doğal frekans ve türevsel kazanç değerleri sabit tutulurken sönüm oranını 0.7 ile 1.1 arasında değiştirilmiştir. Son olarak, doğal frekans ve sönüm oranı sabit iken türevsel kazanç 0.1s ile 0.4s arasında değiştirilmiştir. Böylece, en makul PID ayar parametre değerleri çalışma noktaları halinde

saptanmaya çalışılmıştır.

Hassasiyet analizi, güç kontrolü blok şemasından elde edilen üç transfer fonksiyonuna (TF, STF ve SoATF) uygulanmıştır. STF'yi SoATF'ye indirgemek için önerilen kabulü gerçeklemek amacıyla Ki (=1/Ti) integral sabiti, K_p oransal kazançtan olabildiğince (en az 10 kat) büyük seçilmelidir (Ozakturk, 2012). K_i/K_p oranı büyüdükçe K_p değeri küçülecektir. Dolayısıyla, Kp değerinin çok küçük olmamasına da özen gösterilmelidir. PID denetleyicide türevsel kazanç, kapalı çevrim kararlılığını artırmak amacıyla kullanılır (Aström ve Hagglund, 1995). Ancak, sistem cevabinin gürültüden çok fazla etkilenmemesi için K_D türevsel kazancın olabildiğince küçük olması önemlidir. Fakat çok küçük K_D değeri negatif bir Kp ile sonuçlanabileceğinden KD değeri seçiminde çok dikkatli olunmalıdır. Negatif kazanç ya da negatif olarak sönümlenmiş durumda sönüm oranı 0'dan küçük olacağından sistem cevabı kararlı olamayacak ve dengeli bir kontrol sağlanamayacaktır. Güç kontrol döngüsünün referans ayar parametreleri dikkate alındığında KD değeri 0.125s olarak hesaplanmıştır (Ozakturk, 2012).

Doğal Frekansın Değiştirilmesi

Sönüm oranı ile türevsel kazanc değistirilmeden sadece doğal frekans 0.5Hz aralıklarla 1Hz'den 2.5Hz'e kadar artırılmıştır. Çalışma noktası kullanılan belirlenmesinde matematiksel hesaplamalar Tablo 1'de verilmiştir. Doğal frekans değerinin arttırılması Kp ve Ki kazançlarını arttırırken Ti integral zaman sabitini azaltmaktadır. Ki değerinin Kp'den en az 10 kat büyük olması kabulünü sağlayan çalışma noktaları dikkate alınmıştır. Bazı çalışma noktaları, $\frac{K_i}{K_p} > 10$ kabulünü sağlamasına rağmen 1Hz ve 1.5Hz doğal frekanslarda sistem cevabı nispeten daha yavaş olmakta ve çok küçük K_p değerleri sonuçlandığından bu çalışma noktaları göz önünde bulundurulmamıştır. Sönüm oranının 1 (2.5Hz durumu hariç) ve 1.1 değerlerinde kabul sağlanmadığından dolayı bu değerler de elenmiştir. Sonuç olarak, bu çalışma için 'en iyi' doğal frekans değerlerinin 2Hz ve 2.5Hz olduğu Tablo 1'den anlaşılmaktadır.

 Tablo 1. Doğal frekansın değiştirilmesi durumunda matematiksel hesaplamalar

fn (Hz)	ζ	K _D (s)	Kp	Ki (1/s)	Ti (s)	(Ki / Kp)
1	0.7	0.1	0.0275	3.9478	0.2533	143.3705
1.5	0.7	0.1	0.4674	8.8826	0.1126	19.0060
2	0.7	0.1	0.9072	15.7914	0.0633	17.4071
2.5	0.7	0.1	1.3470	24.6740	0.0405	18.3177
1	0.8	0.1	0.1532	3.9478	0.2533	25.7693
1.5	0.8	0.1	0.6559	8.8826	0.1126	13.5436
2	0.8	0.1	1.1585	15.7914	0.0633	13.6308
2.5	0.8	0.1	1.6612	24.6740	0.0405	14.8534
1	0.9	0.1	0.2789	3.9478	0.2533	14.1569
1.5	0.9	0.1	0.8444	8.8826	0.1126	10.5201
2	0.9	0.1	1.4098	15.7914	0.0633	11.2008
2.5	0.9	0.1	1.9753	24.6740	0.0405	12.4911
1	1	0.1	0.4045	3.9478	0.2533	9.7592
1.5	1	0.1	1.0328	8.8826	0.1126	8.6002
2	1	0.1	1.6612	15.7914	0.0633	9.5062
2.5	1	0.1	2.2895	24.6740	0.0405	10.7771
1	1.1	0.1	0.5302	3.9478	0.2533	7.4461
1.5	1.1	0.1	1.2213	8.8826	0.1126	7.2729
2	1.1	0.1	1.9125	15.7914	0.0633	8.2570
2.5	1.1	0.1	2.6036	24.6740	0.0405	9.4767

Sönüm Oranının Değiştirilmesi

Doğal frekansın değistirildiği bir önceki bölümde yapılan hesaplamalar sonucunda sönüm oranının 1.1 değeri elenmişti. Bu bölümde, doğal frekans ve türevsel kazanç parametreleri nominal değerlerinde sabit tutulurken valnızca sönüm oranı 0.7 ile 1 değerleri arasında değiştirilmiştir. Sönüm oranı değişikliği belirlenen muhtemel 'en iyi' doğal frekans değerleri (2Hz ile 2.5Hz) icin hassasiyet testine tabi tutulmustur. Çalışma noktası belirlenmesinde kullanılan matematiksel hesaplamalar Tablo 2'de verilmiştir.

Tablo 2. Sönüm oranının değiştirilmesi durumunda matematiksel hesaplamalar

ζ	fn (Hz)	K _D (s)	Kp	Ki (1/s)	T _i (s)	(Ki / Kp)
0.7	2	0.1	0.9072	15.7914	0.0633	17.4071
0.8	2	0.1	1.1585	15.7914	0.0633	13.6308
0.9	2	0.1	1.4098	15.7914	0.0633	11.2008
1	2	0.1	1.6612	15.7914	0.0633	9.5062
0.7	2.5	0.1	1.3470	24.6740	0.0405	18.3177
0.8	2.5	0.1	1.6612	24.6740	0.0405	14.8534
0.9	2.5	0.1	1.9753	24.6740	0.0405	12.4911
1	2.5	0.1	2.2895	24.6740	0.0405	10.7771

İkinci dereceden bir sistemin birim basamak cevabının asım değeri, sönüm oranı kücüldükce artar. Kontrol sistemlerinde asım değerinin olabildiğince küçük olması sağlanmaya çalışılır. 0.7 ve 0.8 sönüm oranı değerleri nispeten aşım değeri büvük olan sistem cevabi ile sonuclanacağından bu calısmada dikkate alınmamıştır. Dolayısıyla muhtemel 'en iyi' sönüm oranı değerleri 0.9 ve 1 olarak belirlenmiştir. Sabit doğal frekans ve türevsel kazanç değerlerinde sönüm oranı arttıkça sadece oransal kazanç (K_p) artar ve integral kazanç (K_i) değerinde herhangi bir değişiklik meydana getirmez. Sonuc olarak, sistem cevap hızı sönüm oranındaki değişiklikten etkilenmez.

Türevsel Kazanç K_D'nin Değiştirilmesi

Önceki iki bölümde belirlenen muhtemel 'en ivi' doğal frekans ve sönüm oranı değerleri dikkate alınarak türevsel kazanç değeri 0.1s ile 0.4s aralığında değiştirilmiştir. Matematiksel hesaplamalar Tablo 3'te verilmiştir. K_D'nin arttırılmasıyla K_p ve K_i değerleri artar ama integral zaman sabiti (T_i) azalır. T_i'nin azalması, sistem cevabının hızlı olduğunu göstermektedir. Ancak, K_D'nin büyük seçilmesi veya K_D'yi daha çok arttırmak sistemin gürültüye karşı daha hassas ve daha kırılgan olmasına neden olacaktır. Ayrıca, güç kontrolünde çok hızlı sistem cevabı beklenmediğinden K_D değerinin makul olacak sekilde kücük secilmesi gereklidir.

 Tablo 3. Türevsel kazancın değiştirilmesi durumunda matematiksel hesaplamalar

K _D (s)	ζ	fn (Hz)	Kp	Ki (1/s)	Ti (s)	(K _i / K _p)
0.1	0.9	2	1.4098	15.7914	0.0633	11.2008
0.2	0.9	2	3.6718	31.5827	0.0317	8.6015
0.3	0.9	2	5.9337	47.3741	0.0211	7.9839
0.4	0.9	2	8.1957	63.1655	0.0158	7.7072
0.1	0.9	2.5	1.9753	24.6740	0.0405	12.4911
0.2	0.9	2.5	4.8028	49.3480	0.0203	10.2749
0.3	0.9	2.5	7.6302	74.0220	0.0135	9.7012
0.4	0.9	2.5	10.4576	98.6960	0.0101	9.4377
0.1	1	2.5	2.2895	24.6740	0.0405	10.7771
0.2	1	2.5	5.4311	49.3480	0.0203	9.0862
0.3	1	2.5	8.5727	74.0220	0.0135	8.6347
0.4	1	2.5	11.7143	98.6960	0.0101	8.4253

Yapılan hassasiyet analizi sonucunda PID ayar parametreleri için muhtemel 'en iyi' çalışma noktaları Tablo 4'te özet halinde sunulmuştur.

Tablo 4. Güç kontrolü ayar parametreleri için muhtemel 'en iyi' çalışma noktaları

	ζ	fn	KD
a)	0.9	2Hz	0.1s
b)	0.9	2.5Hz	0.1s
c)	1	2.5Hz	0.1s
d)	0.9	2.5Hz	0.2s

Simülasyon Sonuçları

CBAG kullanılan rüzgar cevrim sistemi, Tablo 4'te belirtilen muhtemel 'en iyi' çalışma edilmek PSCAD noktaları test amacıvla programinda gelistirilmistir. 4.5 MW'lık referans aktif güç değerine t=2s anında 0.1MW kücük adım değisimi uygulanarak Tablo 4'te verilen muhtemel 'en iyi' çalışma noktaları için TF, STF ve SoATF durumlarında stator aktif güç eğrileri çıkartılmıştır. Referans stator aktif güç eğrisi P_{s set}, ölçülen stator aktif güç eğrisi Ps; TF, STF ve SoATF durumlarında elde edilen stator aktif güç eğrileri sırasıyla Ps TF, Ps STF ve Ps SoATF ile gösterilmiştir. Bu çalışmada kullanılan generatör parametreleri Tablo 5'te verilmistir. Sekil 3.a, b ve c'de bulunan stator aktif güç eğrileri Şekil 3.d'dekilere göre daha çok osilasyona sahiptir. Maksimum asım, en Ps TF (MW

fazla Şekil 3.d'de gösterilen STF durumundaki stator güç eğrisinde olmasına rağmen bu aşım değeri %2.58'dir.

Tablo 5. ÇBAG parametreleri (Ozakturk, 2012).

, ,	/
Nominal Görünür Güç (Srated)	4.5 MVA
Stator Gerilimi (V _s)	1 kV
Stator kaçak indüktansı (Ls_k)	0.09241 pu
Rotor kaçak indüktansı (Lr_k)	0.09955 pu
Mıknatıslanma indüktansı ((L _m)	3.95279 pu
Trafo sargısının pozitif sekans kaçak	0.08 pu
indüktansı (Lt)	
Stator direnci (R _s)	0.00488 pu
Rotor direnci (R _r)	0.00549 pu

Ayrıca STF, TF ile SoATF arasında bir geçiş transfer fonksivonu olduğundan fiziksel sistemi temsil etmez; ancak 'en kötü' durumun değerlendirilmesinde faydalı olabilir. Sekil 3.d'deki TF durumunda elde edilen stator güç eğrisi karakteristiği, ölcülen stator güc eğrisi karakteristiğine en yakın olandır. Yine, Şekil 3.d'deki stator aktif güç eğrileri yaklasık olarak 0.45 saniyede -diğerlerine nazaran daha hızlı bir süredekararlı duruma ulasmaktadır. Dolayısıyla, bu avantajlar dikkate alındığında PID avar parametreleri icin 'en ivi' calısma noktası Şekil 3.d'deki gibi ζ=0.9, fn=2.5Hz, K_D=0.2s olarak belirlenmistir. Sağlamlık analizi bu 'en iyi' çalışma noktasına uygulanacaktır.

Şekil 3. Stator aktif güç eğrileri

Sağlamlık Analizi

Sağlamlık testinde, stator gerilimine \pm %20 değisim uvgulanmıştır. Her bir stator gerilim icin stator indüktansı değeri (L_s) ile mıknatıslanma indüktansı (Lm) ±%10 oranında değistirilmiştir. Stator indüktansı: stator kacak indüktansı. mıknatıslanma indüktansı ve statorun bağlandığı transformatör sargisinin pozitif sekans kacak indüktansı toplamina esittir. Stator indüktans değeri aşağıdaki denklem vardımıyla hesaplanabilir:

$$L_s = L_{s\ k} + L_m + L_t \tag{8}$$

Dolayısıyla, sağlamlık analizi stator indüktans değerinin mıknatıslanma indüktans değerinden büyük olduğu durumlarda uygulanabilir. Aksi takdirde (örneğin L_m=1.1pu veya L_s=0.9pu durumlarında) gerekli stator indüktansını sağlamak için PSCAD programında oluşturulan CBAG sistemine negatif stator kaçak indüktans değeri girmek gerekecektir ki böyle bir islem, fiziksel olarak mümkün olmadığından mıknatıslanma indüktansının stator indüktansından daha büyük olduğu durumlar elenmiştir. Tablo 6'da uygulanabilir olmayan noktaları gölgelendirilmis calisma olarak gösterilmistir.

Tablo 6. Sağlamlık analizi için stator ve mıknatıslanma indüktans çalışma noktaları

Lss			
Lm	0.9L _{ss}	Lss	1.1L _{ss}
	3.71268pu	4.1252pu	4.53772pu
0.9Lm			
	3.55/511pu	3.55/511pu	3.55/511pu
	3.71268pu	4.1252pu	4.53772pu
Lm			
	3.95279pu	3.95279pu	3.95279pu
	3.71268pu	4.1252pu	4.53772pu
1.1Lm			
	4.348069pu	4.348069pu	4.348069pu

Vs=0.8pu iken Ls ve Lm'nin ±%10 Değiştirilmesi

Stator gerilimi %20 düşürülerek indüktanstaki değişimler sisteme yansıtılmıştır. Uygulanan değişikliklerden sonra 6 adet yeni sönüm oranı hesaplanmış olup Tablo 7'de gösterilmiştir. L_s/L_m oranının sabit olduğu (köşegen) durumlarda sönüm oranlarının birbirine eşit olduğu görülmektedir. Bağıntı (7), L_s/L_m oranının sabit olduğu sürece stator gerilim değerinin azaltılması sönüm oranını arttırdığını ifade etmektedir. Bir başka deyişle, stator gerilimi azaldıkça sistem cevabı daha çok sönümlü hale gelmektedir. Sabit bir stator gerilimi için L_s/L_m oranının büyümesi sönüm oranını arttırmaktadır.

Tablo 7. V_s=0.8pu durumunda sönüm oranlarının hesaplanması

Lss Lm	0.9Lss	Lss	1.1L _{ss}
0.9Lm	ζ1=0.934	ζ2=0.953	ζ3=0.972
Lm	Х	ζ4=0.934	ζ5=0.951
1.1Lm	Х	Х	ζ ₆ =0.934

Tablo 7'de görüldüğü gibi hesaplanan 3 adet sönüm oranı (köşegen) birbirine eşit olup diğer sönüm oranı değerlerine çok yakındır. En büyük fark ζ_1 (veya $\zeta_4=\zeta_6$) ile ζ_3 arasında meydana gelmiştir. Bu fark, %4.07 gibi çok küçük ve ihmal edilebilir bir değerdir. Bu hesaplanan sönüm oranları dikkate alınarak sistem, PSCAD programında simüle edilmiş ve simülasyon çıktıları Şekil 4'te sunulmuştur. Birbirine eşit olan 3 köşegen sönüm oranları ayrı bir grafikte birlikte gösterilmiştir.

kil 4. V_s=0.8pu olması durumunda hassasiye analizi simülasyon çıktıları

M. Özaktürk

Hesaplanan sönüm oranlarına karsılık gelen stator aktif güc eğrileri efektif olarak avnı olduğu Sekil 4.a'da görülmektedir, fakat (2, (3 ve ζ_5 sönüm oranları durumlarında güç eğrileri diğerlerine göre biraz daha fazla osilasvonlu bir vapıya sahiptir. Şekil 4.b'den görülebileceği üzere kösegen sönüm oranları (ζ_1 , ζ_4 ve ζ_6) durumlarında güc eğrileri birbirleriyle aynı karakteristiğe sahip ve osilasvon ihmal edilebilecek ölçüde azdır. Kaskat alt döngü kontrolörlerini de iceren bütün sistem PSCAD' de simüle edildiğinden güc kontrolü bu alt kontrolörler ile etkilesim halindedir ve böylece stator güç eğrileri daha büyük sönüm oranı durumlarında (ζ_2 , ζ_3 ve ζ_5) daha fazla osilasyonlu olmaktadır. Bir diğer sebep ise nominal stator geriliminden daha az gerilim değeri için daha fazla sönümlenmis halde sistem cevabinin zorlanmasıdır.

V_s=1pu iken L_s ve L_m'nin ±%10 Değiştirilmesi

Stator gerilimi nominal değerinde (1pu) iken stator ve mıknatıslanma indüktans değerlerinde meydana gelen değişimlerin etkisi incelenmiştir. Bu durumda hesaplanan sönüm oranı değerleri Tablo 8'de verilmiştir.

L _{ss} L _m	0.9Lss	L _{ss}	1.1L _{ss}
0.9Lm	ζη=0.9	ζ ₈ =0.915	ζ9=0.93
Lm	Х	ζ _{nom} =0.9	ζ10=0.914
1.1Lm	Х	Х	ζ11=0.9

Tablo 8'den görülebileceği üzere indüktans değerlerinin değişmesine rağmen L_s/L_m oranı 1 olduğu müddetçe köşegen sönüm oranı değerleri ($\zeta_7=\zeta_{nom}=\zeta_{11}=0.9$) birbirlerine eşit olmaktadır. Diğer sönüm oranları (ζ_8 , ζ_9 ve ζ_{10}) nispeten biraz daha büyük değerlerde hesaplanmıştır. Bir önceki bölümde hesaplanan sönüm oranları arasındaki en büyük fark %4.07'den %3.33'e düşmüştür. Çünkü, stator gerilimi nominal değerinde (1pu) ve sistem cevabında meydana gelen osilasyonun belirgin ölçüde azaltılması için yeterli seviyededir. Hesaplanan sönüm oranları dikkate alınarak sistem PSCAD programında simüle edilmiş ve simülasyon çıktıları Şekil 5'te sunulmuştur. Birbirine eşit olan 3 köşegen sönüm oranları durumunda elde edilen güç eğrileri yine efektif olarak aynı karakteristik özelliğe sahiptir.

Şekil 5. V_s=1pu olması durumunda hassasiyet analizi simülasyon çıktıları

V_s=1.2pu iken L_s ve L_m'nin ±%10 Değiştirilmesi

Son olarak, stator gerilimi %20 artırılarak indüktans değerlerinde değişikliklerin sistem cevabı üzerindeki etkisi incelenmiştir. Hesaplanmış yeni sönüm oranı değerleri Tablo 9'da sunulmuştur. Sönüm oranının en küçük ile en büyük değerleri arasındaki fark %2.96'ya düşmüştür.

Lss Lm	0.9Lss	Lss	1.1Lss
0.9Lm	ζ12=0.877	ζ ₁₃ =0.89	ζ ₁₄ =0.903
Lm	Х	ζ15=0.877	$\zeta_{16}=0.889$
1.1Lm	Х	Х	ζ ₁₇ =0.877

PSCAD simülasyon çıktıları Şekil 6'da verilmiştir. En az sönümlü sistem cevabı (en fazla aşım değeri) stator geriliminin 1.2pu değerinde olduğu durumda gerçekleşmiştir. Ancak, maksimum aşım değeri %2.44 olmakla birlikte bu değer çok küçüktür. Köşegen sönüm oranlarına karşılık gelen sistem cevabı yine ayrı bir grafik olarak da gösterilmiştir. Aynı sönüm oranları durumunda stator güç eğrisi karakteristiği de aynı olmaktadır.

Şekil 6. V_s=1.2pu olması durumunda hassasiyet analizi simülasyon çıktıları

Bu calısmada gerceklestirilen sağlamlık analizi, ±%20 gerilimindeki değişmeler stator durumunda. mıknatıslanma stator ve indüktanslarında meydana gelebilecek ±%10 değişikliklere karşı sistemin dayanaklı olacağını açıklamaktadır. Bütün sistemin karmaşık bir yapıda olduğu dikkate alınırsa özellikle 0.8pu stator gerilimi durumunda sistem cevabının daha çok osilasyon içermesi makul görülebilir. Yine de iyi bir sistem kontrolü sağlama açısından bakıldığında ζ_2 , ζ_3 ve ζ_5 durumlarına ekstra dikkat ve önem gösterilmelidir.

Sağlamlık analizi neticesinde genel bir değerlendirme yapıldığında bu çalışmadaki sistemin belirtilen fiziksel değişimlere karşı yeterince dayanıklı olduğu sonucu ortaya çıkmaktadır.

Sonuçlar ve Tartışma

Güç döngüsünün band genişliği ve sönüm oranını kontrol edebilmek amacıvla PID denetleyici kullanılmış ve güç döngüsü kontrol tasarımının efektif olarak çalıştığı gösterilmiştir. Güc kontrol blok diyagramından faydalanılarak ilgili kabuller cercevesinde sistemin transfer fonksiyonu, basitleştirilmiş transfer fonksiyonu ile ikinci dereceden yaklaşık transfer fonksiyonu elde edilmiştir. Güç kontrolü için 'en iyi' ayar parametrelerini belirlemek amacıyla sırasıyla doğal frekans, sönüm oranı ve türevsel kazanc değistirilerek hassasivet değerleri analizi yapılmıştır. 'En iyi' ayar parametrelerinden oluşan çalışma noktalarına sağlamlık analizi uygulanmıştır. Böylece; stator gerilimi, stator ve mıknatıslanma indüktanslarındaki değişimlere karsı kontrol sisteminin dayanıklı olduğu doğrulanmıştır. Bu makalede gerçekleştirilen teorik calısmanın PSCAD simülasvon sonucları ile tutarlı ve uyumlu olduğu görülmüştür.

Kaynaklar

- Abad. G., Lopez, J., Rodriguez, M. A., Marroyo, L., Iwanski, G., (2011). Doubly Fed Induction Machine: Modeling and Control for Wind Energy Generation, Wiley-IEEE Press, USA.
- Anaya-Lara, O., Jenkins, N., Ekanayake, J., Cartwright, P., Hughes, M., (2009). *Wind Energy Generation-Modelling and Control*, John Wiley & Sons., UK.
- Aström, K. J., Hagglund T., (1995). *PID Controllers: Theory, Desing and Tuning*, 2nd edition, Instrument Society of America, USA.
- Boldea, I., (2005). Variable Speed Generators, CRC Press, USA.
- Burton, T., Jenkins, N., Sharpe, D., Bossanyi, E., (2011). *Wind Energy Handbook*, John Wiley & Sons, UK.
- Ekanayake, J. B., Holdsworth, L., XueGuang, W., Jenkins, N., (2003). Dynamic Modeling of Doubly Fed Induction Generator Wind Turbines, *IEEE Transactions on Power Systems*, 18 (2), 803-809.
- Hansen, A.D., Hansen, L. H., (2007). Wind Turbine Concept Market Penetration over 10 Years (1995-2004), Wind Energy, 10 (1), 81-97.

M. Özaktürk

- Hansen, A. D., Iov, F., Blaabjerg, F., Hansen, L. H (2004). Review of Contemporary Wind Turbine Concepts and Their Market Penetration, *Wind Engineering*, 28 (3), 247-263.
- Hansen, A. D., Sorensen, P., Iov, F., Blaabjerg, F., (2004). Control of Variable Speed Wind Turbines with Doubly-Fed Induction Generators, *Wind Engineering*, 28 (4), 411-434.
- Hopfensperger, B., Atkinson, D. J., Lakin, R. A., (2000). Stator-flux-oriented Control of a Doubly-Fed Induction Machine with and without Position Encoder, *IEE Proceedings on Electric Power Applications*, 147 (4), 241-250.
- Muller, S., Deicke, M., De Doncker, R. W., (2002). Doubly Fed Induction Generator Systems for Wind Turbines, *IEEE Industry Applications Magazine*, 8 (3), 26-33.

- Ozakturk, M., (2012). Power electronic systems design co-ordination for doubly-fed induction generator wind turbines, *Doktora tezi*, University of Manchester, UK.
- Pena, R., Clare, J. C., Asher, G. N., (1996). Doubly Fed Induction Generator Using back-to-back PWM Converters and its Application to Variable-Speed Wind-Energy Generation, *IEE Proceedings on Electric Power Applications*, 143 (3), 231-241.
- Sevim, C., (2013). Küresel Enerji Stratejileri ve Jeopolitik, Seçkin Yayıncılık.
- Slootweg, J. G., Polinder, H., Kling, W. L., (2001). Dynamic Modelling of a Wind Turbine with Doubly Fed Induction Generator, *Power Engineering Society Summer Meeting*, 644-649.
- Xu, L., Cartwright, P., (2006). Direct Active and Reactive Power Control of DFIG for Wind Energy Generation, *IEEE Transactions on Energy Conversion*, 21 (3), 750-758.

Application of sensitivity and robustness analysis to the power loop control of DFIG based wind turbines

Extended abstract

In this paper, the stator power equations are utilised to derive the plant model of the power loop and its controller; and the enhancement of the power loop control of doubly-fed induction generator (DFIG) based wind turbines is accomplished. The main electrical components of a typical DFIG based wind turbine, which are back to back bidirectional partly rated converters, a DC-link capacitor placed between these converters, and protection devices of power electronic components, e.g. a rotor crowbar or/and a DC-link brake chopper, are depicted.

DFIGs can provide maximum power extraction and are suitable for variable speed operation (the speed range is \pm 33% around the synchronous speed). The converter topology used in this study is a threephase voltage source converter (VSC) consisting of insulated gate bipolar transistors (IGBTs) controlled by a pulse width modulation (PWM) switching technique.

The traditional control approach for the power loop of the DFIG wind turbine systems is to use PI control. However due to the nature of the plant model considered in this research, using a PI controller for the power loop yields a first order transfer function that allows setting only the bandwidth, but unfortunately not the damping. Therefore, to be able to set the damping as well, the PI controller is replaced with a PID controller. However, the tuning process of the PID controller is more complicated than that of the PI controller, and selecting the derivative time constant, proportional and integral gains needs to be done very carefully.

The relevant transfer functions of the power loop are extracted. The sensitivity analysis is applied to these transfer functions where the current loop of the rotor side converter (RSC) and both the current and voltage loops of the grid side converter (GSC) control are tuned for the fixed values of the natural undamped frequency (ω_n in rad/s or f_n in Hz) and the damping ratio (ζ).

In the control sensitivity analysis, each time one of the power loop PID tuning parameters is varied while other two parameters stay fixed at their predefined values. The values of damping ratio, natural undamped frequency and K_D (derivative time constant) are selected as 0.7, 0.8, 0.9, 1, 1.1; 1Hz, 1.5Hz, 2Hz, 2.5Hz and 0.1s, 0.2s, 0.3s, 0.4s. respectively. The first step of the sensitivity analysis is to vary the natural undamped frequency from 1Hz to 2.5Hz in case of fixed damping ratio (ζ) and K_D . Secondly, the damping ratio is varied between 0.7 and 1.1 while keeping the natural undamped frequency and K_D . Finally, the K_D is varied from 0.1s to 0.4s for the fixed values of natural undamped frequency and damping ratio. Thus, the reasonable search space for tuning parameters and gains for the PID controller used as the power loop controller is investigated. In doing so, the 'best' operating points of the tuning parameters for the power control considered in this research are determined.

Based on the 'best' operating points of the tuning parameters, the robustness analysis is then conducted by applying $\pm 20\%$ change to the stator voltage and $\pm 10\%$ change to the stator selfinductance and mutual inductance. Thus, the control system design is validated to be robust under the physical changes of the stator voltage, stator selfinductance, and the mutual inductance. The work done in this paper is consistent with the simulation results obtained by PSCAD.

Keywords: Doubly-fed induction generator (DFIG), Sensitivity analysis, Robustness analysis, Power control, Wind türbine.

ühendislikdergi

