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Abstract. Voltage harmonics, sag, and swell are
the most harmful disturbances in distribution sys-
tems. This paper introduces a novel effective controller
method for simultaneous compensation of both voltage
sag/swell and voltage harmonics by using multifunc-
tional dynamic voltage restorer. In proposed controller
method called FFT with integrated ISRF, ISRF de-
tects the magnitudes of voltage sag/swell quickly and
precisely, and FFT extracts the selective components
of voltage harmonics very effectively. The proposed
method integrates the superior properties of ISRF and
FFT methods. FFT integrated ISRF is applied for the
first time to provide the compensation of both sag/swell
and selective harmonics together. The proposed system
has ability to compensate symmetrical/asymmetrical
sag/swell and symmetrical/asymmetrical selective har-
monics which are 5th, 7th, 11th, and 13th. The con-
trolled system is modelled in PSCAD/EMDTC and
compared with conventional methods. The performance
results verify that the proposed method compensates
voltage disturbances effectively in the system.
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1. Introduction

Voltage, current, frequency deviations, and waveform
distortions that lead to equipment failure, monetary
loss, and different negative consequences are known as
power quality problems in distribution systems. Sag,
swell, and voltage harmonics are the most crucial power
quality problems. Voltage sag is a short term drop in
the amplitude of grid voltage. Short circuit faults and
starting up of large loads cause voltage sag problems in
distribution systems [1] and [2]. Swell is an increase in
the amplitude of grid voltage. Voltage swell is not as
widespread as voltage sag, but it could be more harm-
ful and destructive [3]. Voltage harmonics distortion
defined as a distortion of the fundamental sinusoidal
voltage waveform alternating at 50/60 Hz and repeats
in every cycle [4]. While sag/swell causes the damage
of electronic equipment and failure of systems, volt-
age harmonics induce overheating and losses in cables,
transformers, and motors. There are various custom
power devices to cope with these problems in distribu-
tion systems. Among these devices, Dynamic Voltage
Restorer (DVR) is the most effective device to compen-
sate these power quality problems. DVR is an inverter
based structure which is located between sensitive load
and grid in the system. The main components in a con-
ventional DVR are inverter, dc-link capacitor, filter,
and injection transformer [5], [6] and [7]. DVR injects
controlled voltage in series to mitigate the influence of
voltage disturbances on sensitive loads.

The main functionality of a conventional DVR is
to compensate only sag/swell problems in the system
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[8]. In the literature, DVRs have been recently applied
to compensate both sag/swell and voltage harmonics,
which are also named as multifunctional DVRs. Ta-
ble 1 shows the compensation capabilities of multi-
functional DVRs in [9], [10], [11], [12], [13], [14], [15],
[16], [17], [18], [19] and [20]. Besides, these studies em-
ploy several reference generation methods to compen-
sate multiple voltage disturbances at the same time.
Among these studies, [11] and [15] examine the mit-
igation of only symmetrical voltage harmonics with
sag/swell compensation. In addition, Instantaneous
power theory and Perceptron based control algorithm
are used for alleviation of symmetrical/asymmetrical
sag/swell and only symmetrical voltage harmonics. In
[12], the most common topology called as SRF theory
which transforms 3-ϕ voltages to d-q components is
used for symmetrical sag/swell and voltage harmonics.
The asymmetrical problems of sag/swell and voltage
harmonics are compensated in [20] by using ISRF.

This paper presents a novel reference generation
method based on Fast Fourier Transform (FFT) with
integrated Improved Synchronous Reference Frame
(ISRF) in order to compensate sag/swell with selec-
tive voltage harmonics via multifunctional DVR. The
ISRF method applied in this study is more accurate
and fast among sag/swell detection techniques. In ad-
dition, FFT is very effective approach to extract the
components of voltage harmonics. This method shows
superior properties of ISRF and FFT. The proposed
FFT with integrated ISRF method is applied for the
first time to compensate both sag/swell and asymmet-
rical selective voltage harmonics, simultaneously.

Tab. 1: Compensation capabilities of multifunctional DVRs in
literature studies and the proposed study.

Compensation Capability Study
Symmetrical voltage sag/swell [10]

Symmetrical/asymmetrical
voltage sag/swell [9], [14], [16] and [19]

Symmetrical/asymmetrical
voltage sag and symmetrical

voltage harmonics
[13], [17] and [18]

Symmetrical voltage
sag/swell and symmetrical

voltage harmonics
[12]

Symmetrical/asymmetrical
voltage sag/swell and only

symmetrical harmonics
[11] and [15]

Symmetrical/asymmetrical
voltage sag/swell and all

components of
symmetrical/asymmetrical

voltage harmonics

[20]

Symmetrical/asymmetrical
voltage sag/swell and

symmetrical/asymmetrical
selective voltage harmonics

proposed study

In the proposed study:

• The main contribution of this study is the elimina-
tion of symmetrical/asymmetrical sag/swell and
symmetrical/asymmetrical voltage harmonics, si-
multaneously.

• ISRF is selected for compensation of sag/swell
due to the fast speed detection property.
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Fig. 1: Proposed reference signal generation based on FFT with integrated ISRF method and Dynamic Voltage Restorer.
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• Harmonic compensation is achieved by using FFT
method instead of ISRF.

• FFT achieves compensation of both symmetrical
and asymmetrical voltage harmonics.

• The system has ability to compensate up to 30 %
sag/swell with the attenuation of selective voltage
harmonics which are 5th, 7th, 11th, and 13th.

2. FFT Integrated ISRF

DVRs, which are connected between grid and sensitive
load, are implemented to inject controlled voltage in
series to prevent adverse influence of voltage issues on
sensitive loads [20], [21], [22] and [23]. Figure 1 shows
the proposed reference generation method for multi-
functional DVR.

The control strategy is a fairly critical issue in DVR.
The primary purpose of the control system is to com-
pensate sag/swell problems and to attenuate the effects
of voltage harmonics in distorted grid voltages. Volt-
age detection is one of the most important subjects
in a control system. Many voltage detection methods
are presented with different control algorithms in liter-
ature. Sag/swell and harmonics must be compensated
rapidly and accurately.

The flow chart of FFT with integrated ISRF is pre-
sented in Fig. 2. According to the proposed controller,
grid voltages are firstly measured and converted to per
unit (pu) values. In the next step, the per unit sig-
nals are used to generate the magnitudes of fundamen-
tal component and selective harmonics signals by us-
ing ISRF and FFT methods, respectively. Then, the
mathematical processes are performed to produce ref-
erence signals for sag/swell and harmonics. Finally,
reference signal is obtained and compared with carrier
signal in Pulse Width Modulation (PWM), and switch-
ing signals for IGBTs in inverter are generated to inject
controlled voltage in series for compensation.

2.1. Sag/Swell Detection: ISRF

Conventional SRF theory or dq-transformation cannot
achieve detection of voltage disturbances under asym-
metrical condition. In order to eliminate the drawback
of conventional SRF, different approaches have been
developed. Conventional dq-transformation is not fea-
sible for a single phase voltage measurement because of
3-ϕ information that is used at the same time. There-
fore, this transform process causes inaccurate voltage
detection under asymmetrical (unbalanced) conditions.
In this study, ISRF method is used to detect sag/swell
signals in asymmetrical conditions, as shown in Fig. 3.
In this study, ISRF eliminates the requirement of other
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Fig. 2: Flowchart of FFT integrated ISRF for mitigation of multiple voltage disturbances 
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Fig. 2: Flowchart of FFT integrated ISRF for mitigation of
multiple voltage disturbances.

phases to generate magnitude information for single-
phase. In proposed method, dq transform is realized
for each phases, separately. To apply dq transform for
each phase voltage, three symmetric virtual signals can
be produced by a single voltage (for example phase-a)
[20], which is transformed into dq transform given in
Eq. (1), Eq. (2) and Eq. (3). Virtual signals for second
input (In2) and third input (In3) in dq transform are
generated applying mathematical equations on actual
input (In1). These processes are separately executed
for all phases.

In conventional dq transformation, the input volt-
ages must be equal to 2π

3 rad phase difference to detect
voltage signals accurately. There is a relationship be-
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Fig. 3: ISRF method for a single phase.

tween interconnection of phases in a 3-ϕ system. Re-
lationship between symmetrical 3-ϕ voltages are ex-
pressed by Eq. (1), Eq. (2) and Eq. (3):

In1 = Vs∠ (0) , (1)

In2 = Vs∠

(
2π

3

)
, (2)

In3 = Vs∠

(
2π

3

)
. (3)

In ISRF method, virtual signals are generated by using
only single phase information [20], as shown in Fig. 3.
This operation is performed separately for all phases
in multiple frame. According to Eq. (1), Eq. (2) and
Eq. (3), the application of these signals in dq transform
gives slow response for detection of voltage sag/swell.
In order to achieve faster detection, virtual signals for
In2 and In3 are reproduced by using a single voltage.
These signals are expressed in Eq. (4) and Eq. (5).
π is equal to −1 in phasor form and 4π

3 is obtained
by the multiplication of π

3 and −1. In this way, In2

is generated virtually by delay of π
3 . In a balanced

system, the sum of phasor voltages is zero (In1+In2+
In3 = 0). As a result, In3 is defined as the negative of
the sum of In1 and In2.
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In ISRF, In1 and its virtual signals (In2 and In3) are
firstly transformed into α and β components for each
phase in multiple frames.Vα,nVβ,n
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In the next step, α-β components are converted to dq
components according Eq. (7).(

Vd,n
Vq,n

)
=

(
cos (ωt) sin (ωt)
− sin (ωt) cos (ωt)

)(
Vα,n
Vβ,n

)
,

n = a, b, c.

(7)

In dq reference frame, d- and q- components are or-
thogonal signals and used to define the magnitude of
a single phase voltage via proposed controller. The
square root of sum of squares of d- and q- components
in Eq. (8) gives the magnitude for a single-phase volt-
age.

Magss,n =
√
V 2
d,n + V 2

q,n, n = a, b, c. (8)

In sag/swell detection, magnitude of voltage sag/swell
in pu (Magss) is extracted from ISRF. Measured mag-
nitude signal (Magss) is extracted from 1 pu to calcu-
late the depth of sag/swell (SSdepth).

SSdepth = 1−Magss. (9)

2.2. Detection of Selective Voltage
Harmonics: FFT

Several harmonic detection methods have been ap-
plied in power quality applications in literature. In
this study, FFT based harmonic detection technique
in [24] is used to obtain the harmonics of the grid volt-
age. The FFT, which consists of small Discrete Fourier
Transform (DFT) components has a rapid response due
to less complex calculations. Among FFT techniques,
Cooley-Tukey is the most commonly applied algorithm
[25] and [26], as illustrated in Fig. 4. The DFT form
of the grid voltage is defined as

V [k] =

N−1∑
n=0

v(n)Wnk, k = 0, 1, 2, . . . , N − 1, (10)

where k is the harmonic frequency index, N is the num-
ber of sampling points, W k = e−j2πk/N . The Eq. (10)
can be written in polar form as

V [k] = Vm (k) ejθ(k), (11)

where Vm and θ indicate the magnitude and phase an-
gle of k-th harmonic, respectively.
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In Cooley-Tukey algorithm, the voltage samples are
categorized as odd samples (2n+ 1) and even samples
(2n) [26]. Thus, Eq. (10) can be rewritten as

V [k] =

N
2 −1∑
n=0

v(2n)W 2nk+W k

N
2 −1∑
n=0

v(2n+1)W 2nk, (12)

where W 2nk
N = e−j

2π
N 2nk = e−j

2π
N/2

nk =Wnk
N/2.
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Fig. 4: N/2-point DFTs approach of FFT.

By substituting Wnk
N/2 by W 2nk

N , the Eq. (12) be-
comes
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The N/2-point DFTs can be reduced by N/4-point
DFTs in order to reduce the computational cost. If
the sample number is selected as the power of 2 (N =
2r), then it can be degraded until 2-point DFTs which
is known as radix-2 FFT algorithm. Therefore, the
calculations are decreased, and FFT becomes faster.
In this study, 1024 points are exploited in 1-period. As
a result, radix-2 FFT algorithm is applied as illustrated
in Fig. 5.

2.3. Reference Signal Generation

Figure 6 shows reference signal generation method us-
ing ISRF and FFT, simultaneously. While ISRF is
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Fig. 5: Radix-2 FFT with 1024 samples of the grid voltage.

employed to calculate the depth of sag/swell, FFT ex-
tracts the 5th, 7th, 11th, and 13th harmonic compo-
nents.

Reference signal of sag/swell (Refss) is in phase with
grid-side voltage. In order to determine Refss, the
depth value of sag/swell is multiplied by a sine function
in-phase with grid-side voltage. In this way, reference
signal of sag/swell is determined as

Refss(n) = (1−Magss)∠
(
θ − π

2

)
, n = a, b, c, (17)

where θn is instantaneous phase angle.

To generate reference signal of voltage harmonics,
FFT extracts the selective components (5th, 7th, 11th,
and 13th) of voltage harmonics for each phase, sepa-
rately:

Refhar(n) =
∑
N⊂M

Maghar,N sin (wt+ θN ) , (18)

where M = 5, 7, 11, 13.

In order to compensate voltage harmonics, the in-
verse voltage is supplied to the grid. As a result, ref-
erence signal is the summation of Refss and negative
Refhar:

Reference(n) = Refss(n)−Refhar(n) = (19)

(1−Magss) sin (wt+ θ)−
∑
N⊂M

Maghar,N sin (wt+ θN ) ,

where M indicates 5, 7, 11, and 13.

The final reference signal is compared with carrier
signals in Sinusoidal PWM to generate controlled volt-
ages for compensation process.

3. Case Studies

In this section, performance results of the proposed
method based on ISRF and FFT are presented for
application in multifunctional DVR system. The sys-
tem includes a sensitive load which has a capacity of
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Fig. 6: Proposed reference signal generation for voltage sag/swell and selective voltage harmonics.

1 MVA. It is fed from 690 Vrms (peak value of phase
voltage is 560 V) 3-ϕ supply. The system parameters
are given in Tab. 2. The proposed DVR is designed to
compensate up to 30 % 3-ϕ sag and selective voltage
harmonics (5th, 7th, 11th, and 13th) at different grid-
side THD values. The system and proposed controller
model is implemented in PSCAD/EMTDC to compen-
sate sag/swell and selective voltage harmonics at the
grid side.

Tab. 2: System parameters.

Parameter Value

Source
Fundamental Frequency 50 Hz

Source Voltage 690 V (line-line,
rms voltage)

DVR

Compensation Rating 30 %
Power Rating 300 kVA

Transformer Turn ratio 10/3
DC-link Voltage 800 V

Filter Inductor (Lf) 0.1 mH
Filter Capacitor (Cf) 30 µF
Filter Resistance (Rf) 0.05 Ω

Different case studies are analysed using
PSCAD/EMDTC to verify the controller method.
These case studies are:

• Case I: Performance comparison of SRF and ISRF
for asymmetrical sag detection.

• Case II: Simultaneous compensation of:

– symmetrical selective voltage harmonics and
symmetrical sag,

– symmetrical selective voltage harmonics and
asymmetrical swell.

• Case III: Simultaneous compensation of:

– asymmetrical selective voltage harmonics
and asymmetrical sag,

– asymmetrical selective voltage harmonics
and asymmetrical swell.

Firstly, the performance results of ISRF and conven-
tional SRF are compared for asymmetrical sag cases.
As shown in Fig. 7, ISRF is applicable for asymmetrical
sag conditions while conventional SRF cannot achieve
accurate detection (Case I). ISRF detects sags fast and
accurately within 1.3 ms, 2.4 ms, and 0.3 ms for phase-
a, phase-b, and phase-c, respectively.
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Fig. 7: Performance comparison of SRF and ISRF.

Table 3 and Tab. 4 shows the THD values be-
fore/after compensation for Case II and Case III,
respectively. Harmonic compensation capabilities of
ISRF and FFT was compared. In Case II, the sys-
tem was used for compensation of symmetrical volt-
age harmonics and symmetrical sag/asymmetrical sin-
gle phase swell at same time. In Case II-A, 3-ϕ sag
occurs at 0.3 s for 5 periods, and the peak value of 3-ϕ
voltages is reduced to 392 (0.7 pu) from 560 V (1 pu)
in addition to voltage harmonics compensation. DVR
compensates 0.3 pu sag, and THD values of load volt-
ages are diminished to 2.14 %, 2.21 %, and 2.03 % from
11.38 % for phase-a, phase-b, and phase-c, respectively.
Figure 8(a) shows voltage waveforms of grid-side, in-
jected, and load-side voltages. In Case II-B, single
phase voltage swell condition occurs during five peri-
ods. The peak value of grid side voltage increases to
672 V (1.2 pu) from 560 V (1 pu) at phase-c. The com-
pensation of 20 % single phase swell and symmetrical
selective voltage harmonics are presented in Fig. 8(b).
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Tab. 3: THD and harmonic values of case studies before/after
compensation-symmetrical condition.

Symmetrical Condition (%)
Before

Compensation ISRF FFT

Phase A

THD 11.36 2.97 2.14
5th 8.29 1.49 1.29
7th 5.97 2.22 0.12
11th 3.78 1.03 0.22
13th 3.25 0.76 0.31

Phase B

THD 11.36 2.88 2.21
5th 8.29 1.61 0.96
7th 5.97 1.95 0.25
11th 3.78 1.06 0.27
13th 3.25 0.83 0.68

Phase C

THD 11.36 3.22 2.03
5th 8.29 1.83 1.33
7th 5.97 2.06 0.72
11th 3.78 0.49 0.29
13th 3.25 0.75 0.49

Tab. 4: THD and harmonic values of case studies before/after
compensation-asymmetrical condition.

Asymmetrical Condition (%)
Before

Compensation ISRF FFT

Phase A

THD 9.81 2.42 1.49
5th 7.2 1.68 0.77
7th 5.24 1.21 0.54
11th 3.24 0.63 0.23
13th 2.52 0.49 0.3

Phase B

THD 7.98 2.14 1.62
5th 5.94 1.26 0.81
7th 4.15 1.33 0.42
11th 2.53 0.73 0.42
13th 2.16 0.29 0.22

Phase C

THD 10.08 2.95 1.78
5th 7.93 1.62 1.22
7th 5.61 1.47 0.79
11th 3.6 0.88 0.49
13th 3.07 0.68 0.47

In Fig. 9, individual harmonic spectrum before/after
compensation is presented for Case II.

Case III-A and Case III-B present asymmetrical volt-
age harmonics (THDA = 9.81 %, THDB = 7.98 %,
and THDC = 10.8%) which distort voltage waveforms.
Two phase asymmetrical sag and asymmetrical voltage
harmonics condition (Case III-A) at grid-side is pre-
sented in Fig. 10(a). In single phase fault, voltage value
of phase-a decreases to 0.7 pu from 1 pu during the pe-
riod of 0.9–1.0 s. Besides, different THD values appear
at grid-side: 9.81 % at phase-a, 7.98 % at phase B,
and 10.8 % at phase-c, respectively. In this case, both
asymmetrical selective voltage harmonics and asym-
metrical single phase sag is compensated at the same
time. THD value at load-side is reduced to 1.49 %
at phase-a, 1.62 % at phase-b, and 1.78 % at phase-c,
respectively. In Case III-B, 3-ϕ asymmetrical voltage
swell occurs from 1.3 s to 1.4 s, as shown in Fig. 10(b).
The peak value of grid side voltage increases to 672 V
(1.2 pu), 700 V (1.25 pu), 644 V (1.15 pu) from 560 V
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Fig. 8: Waveforms of grid-side, injected, and load-side voltages.
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Fig. 9: THD values under balanced voltage harmonics be-
fore/after compensation for Case II.

(1 pu) at phase-a, phase-b, and phase-c, respectively.
In Fig. 11, individual harmonic spectrum before/after
compensation is presented for Case III.

4. Conclusion

In this study, a novel reference generation method
based on ISRF and FFT is introduced for detec-
tion of sag/swell and extraction of voltage harmon-
ics. Symmetrical/asymmetrical sag/swell and sym-
metrical/asymmetrical selective voltage harmonics are
compensated by using the proposed method. Perfor-
mance results of 30 % sag and 25 % voltage swell
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Fig. 10: Waveforms of grid-side, injected and load-side volt-
ages.
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Fig. 11: THD values under unbalanced voltage harmonics be-
fore/after compensation for Case III.

compensation are analyzed in addition to asymmet-
rical selective voltage harmonics (5th, 7th, 11th, and
13th). THD level in system is reduced nearly to 2 %
from 12.36 % with the proposed controller. The case
studies verify that the proposed method performs very
effectively and compensates voltage disturbances in the
system.
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