
Q LEARNING REGRESSION NEURAL
NETWORK

M. Sarıgül∗, M. Avcı†

Abstract: In this work, a Nadaraya-Watson kernel based learning system which
owns general regression neural network topology is adapted to Q learning method
to evaluate a quick and efficient action selection policy for reinforcement learning
problems. By means of the proposed method Q value function is generalized and
learning speed of Q agent is accelerated. The training data of the developed neural
network are obtained by a standard Q learning agent on closed-loop simulation
system. The efficiency of the proposed method is tested on popular reinforcement
learning benchmarks and its performance is compared with other popular regres-
sion methods and Q-learning utilized methods. QLRNN increased the learning
performance and it learns faster than other methods on selected benchmarks. Test
results showed the efficiency and the importance of the proposed network.

Key words: reinforcement learning, q learning, q value function approximation,
general regression neural network, kernel based regression

Received: December 07, 2016 DOI: 10.14311/NNW.2018.28.023
Revised and accepted: October 16, 2018

1. Introduction

Reinforcement learning is a branch of machine learning that is interested in finding
an optimal policy that must be followed in transitions on certain states to maximize
the total amount of rewards as a result of the selected actions [1]. Q-Learning is one
of the most popular and successful reinforcement learning methods [2]. Since the
large state space problems have a huge amount of state-action pairs, Q learning is
not so effective in this kind real-world problems. This is called as “curse of dimen-
sionality” by Sutton [3]. In the mentioned case regression-based approaches have
been utilized. This led many regression methods to be adapted in reinforcement
learning.

The most common methods used for generalization are artificial neural net-
works. Neural networks have a wide range of uses such as modeling network traf-
fic [4, 5], predictive control for burning zone temperature [6], wind speed predic-
tion [7], modeling time series [8] and even modeling of flue aimed temperature of

∗Mehmet Sarıgül – Corresponding author; Iskenderun Technical University in Hatay, Computer
Engineering Department, Turkey, E-mail: mehmet.sarigul@iste.edu.tr
†Mutlu Avcı; Cukurova University in Adana, Biomedical Engineering Department, Turkey

E-mail: mavci@cu.edu.tr

c©CTU FTS 2018 415

mailto:mehmet.sarigul@iste.edu.tr
mailto:mavci@cu.edu.tr

Neural Network World 5/2018, 415–431

coke oven [9]. These structures have also been successfully used in the field of re-
inforcement learning. Anderson used one-layer and two-layer networks with error
backpropagation to generalize value function and showed his own two-layer network
was able to solve pole-balancing task for TD learning [10]. Boyan and Moore con-
cerned about the hardness of robust generalization of value function with a function
approximator such as a neural network [11]. They proposed Grow-Support to pre-
vent bad convergence in Dynamic Programming. Sutton suggested sparse-coarse-
coded function approximators (CMACs) to avoid poor performance [3]. Bradke
and Barto defined Least Square TD and Recursive Least Square TD algorithms
and they also defined a recursive version of LS TD algorithm [12]. They also pro-
vided convergence proofs of the algorithms. Boyan updated LSTD algorithm in a
way giving the ability to work with eligibility traces and named it as LSTD(λ) [13].
Brafman and Tennenholtz proposed a model based algorithm called RMAX [14].
Lagoudakis and Parr proposed Least Squares Policy Iteration method which able
to learn state-action value function for Q learning [15]. Ernst et al. suggested
offline working Fitted Q Iteration algorithm [16]. After completing each episode,
obtained values are used in the regression algorithm. State-action values obtained
by experience are kept in four-tuples form as (s, a, r, st+1), where, s is the transition
state, a is the selected action, r is reward and st+1 is the resulting state of action a.
Riedmiller, taking the inheritance of Fitted Q algorithm, proposed NFQ algorithm
representing Q-value function with a multilayer perceptron network [17]. In this
algorithm experienced values are kept in triple form as (s, a, st+1), where, s is the
transition state, a is the selected action and st+1 is the resulting state of action
a. Bonarini et al. proposed LEAP algorithm [18]. Puddle-world, mountain-car
and cart-pole problems were solved by using LEAP algorithm as given in Dutech
et al. [19]. XAI (eXplore and Allocate, Incrementally) is also a kernel based re-
gression method proposed by Langlois to be used in reinforcement learning [19].
Whiteson and Stone proposed NeuroEvoulotion of Augmenting Topologies (NEAT)
to approximate Q value function. NEAT-Q involves backpropagation to estimate
the value function [20]. Heinen and Engel suggested supposed IPNN(Incremental
Probabilistic Neural Network) by inspiring PNN and GRNN [21]. They applied it
for regression on reinforcement learning problems [22]. Recently, the use of artifi-
cial neural networks in this area has increased even more as the popularity of deep
learning structures has increased [23,24].

In this paper, proposed QLRNN is a Q learning adaptation approach with
Nadaraya-Watson kernel regression method on GRNN topology. Recently it has
become very popular to use artificial neural networks as a function approximator
with reinforcement learning methods. GRNN is a well-known and highly effec-
tive neural network structure. QLRNN has been developed to use this success for
reinforcement learning problems. It is aimed to find an effective action selection
policy rapidly for reinforcement learning problems. A standard Q agent runs on
the environment and collects expected values of state-action pairs. While obtaining
target values according to the existing experience of Q-agent, recent target values
are stored in the neurons of the pattern layer of the network. After a number of
episodes efficiency of the network is measured with the same problem. As QL-
RNN is an instance-based learning system, it can learn incrementally without an
extra training phase. Test results show that QLRNN is able to find an appropriate

416

Sarıgül M., Avcı M.: Q Learning Regression Neural Network

action selection policy quickly. Performance of QLRNN is compared with the pop-
ular methods such as LEAP(Learning Entities Adaptive Partitioning), NEAT-Q
(NeuroEvolution of Augmenting Topologies), RMAX, LSPI (Least Squares Policy
Iteration), XAI (eXplore and Allocate, Incrementally) and NFQ (Neural Fitted Q
Iteration) on the selected benchmarks. QLRNN contains major differences accord-
ing to the compared algorithms. LEAP algorithm divides the state-action space
into pieces called macrostates. Each macrostate is responsible for a particular area
and these areas do not overlap. In QLRNN, each neuron has a central point.
The effect of a neuron at a point in the space is determined by the kernel func-
tion. The fields can be overlapped. This led to a better generalization over the
state-action space. The NEAT-Q algorithm is suitable for network learning with
back-propagation. QLRNN uses a kernel-based approach with one-pass learning
which is a much faster approach then repetitive way. However, RMAX is a result-
oriented successful algorithm, but it is not possible to use it for large-scale problems
because of probability computation complexity for all states. Since QLRNN can
represent many states in space with a single neuron, it can be offered as a solu-
tion to more complicated problems. LSPI offers an iterative learning approach by
using policy iteration. LSPI trains a number of basis functions with sample data
generated by following a specific policy. The type and number of functions are de-
termined intuitively according to the problem. Even in the iterations, the type and
function of the functions can be changed. This makes the use of LSPI more compli-
cated. On the contrary, the kernel structure of QLRNN is specific. When QLRNN
is used, the number of neurons in the network is first determined and no changes
are needed throughout the training period. XAI is also a kernel-based method
uses gradient descent to train Gaussian kernels. XAI does not have a predefined
structure like QLRNN and needs an extra training procedure. QLRNN has also
one-pass learning advantage over XAI. NFQ uses a multi-layer perceptron neural
network trained with Rprop algorithm, a version of back-propagation. QLRNN is
different from NFQ in structure and training. Also, QLRNN has one-pass learning
advantage with respect to NFQ. QLRNN accelerates learning performance and it
learns faster than other popular methods on selected benchmarks. Test results
prove the efficiency and show the importance of the proposed network.

In the second part, fundamental approaches for QLRNN are explained in detail.
QLRNN topology and QLRNN algorithm are given in the third part. The fourth
section which is devoted to the test results and discussion is followed by the last
part, conclusion.

2. Fundamental approaches for QLRNN

QLRNN is a Q learning adaptation method using Nadaraya-Watson kernel on
GRNN topology to find an efficient action selection policy rapidly. Q learning
algorithm is updated to be able to establish the pattern layer of the proposed
neural network to be used generalizing Q value function.

417

Neural Network World 5/2018, 415–431

2.1 Q-Learning

One of the most important breakthroughs in reinforcement learning was the de-
velopment of Q-learning by Watkins [2]. In Q learning, the updating process is
done on the action values. Best action of the following state is used as the return
expectation in the update process. The update process of one-step Q-learning is
done according to the Eq. 1.

Q(st, at) = Q(st, at) + α[rt+1 + γmaxaQ(st+1, a)−Q(st, at)], (1)

where Q(st, at) is value of the current action. maxaQ(st+1, a) is value of the
following best action. rt+1 is the reward obtained in transition from st to st+1.
α is a constant that specifies action value changing rate. γ is another constant
specifying the effect of the next best action value on that of the previous one.

Algorithm 1 Q-learning algoritm.

Set all Q(s, a) randomly
Repeat (for each episode):
Set s as one of the initial states
Repeat (for each step of an episode)
Select action a according to state s using policy derived from Q
Take action a, observe r, next state st+1

Q(st, at) = Q(st, at) + α[rt+1 + γmaxaQ(st+1, a)−Q(st, at)]
s← st+1

Until s is terminal

In Q-learning algorithm for each episode, selected action values are updated
according to Eq. 1. After finding a successful policy, the evolution process is com-
pleted. Q learning algorithm is given in Algorithm 1. The weakness of the algorithm
is the need of Q-values storage for every state-action pair. This could reason a huge
amount of memory to be required for large dimensional real-world problems. Also,
large state-action space could be required a huge number of episodes to find a suc-
cessful policy. In this case, a generalization method is needed to suit a successful
policy for the problem.

2.2 General Regression Neural Network

GRNN was proposed by Specht [25] is a memory-based neural network which does
not require an iterative training. It simply keeps all training data as a pattern and
forecasts the value of an input data with help of them.

GRNN is a four-layered network. The first layer is the input layer containing
a neuron for each input value. The second layer is the pattern layer that keeps
all training data as a pattern by holding a neuron containing a vector of data for
each training data. When a new input data is entered into GRNN, it is subtracted
for each stored data in pattern neurons. Then squares of differences are summed
and the resulting value is passed through the Gaussian activation function. The
third layer which is called summation layer has two neurons named as numerator
and denominator. Numerator calculates a dot product between outputs of the

418

Sarıgül M., Avcı M.: Q Learning Regression Neural Network

pattern layer and a vector which contains the expected values of each training
data. Denominator calculates the sum of the outputs of the pattern layer. Finally,
the output layer calculates the quotient of numerator and denominator values and
finds the estimated value. Structure of the network is shown in Fig. 1. Equations
of GRNN are shown with Eq. 2 and 3.

D2
i = (x− xi)T(x− xi), (2)

Y (x) =

∑n
i=1 Yie

−D2
i

2σ2∑n
i=1 e

−D2
i

2σ2

, (3)

where x is the input vector, xi is the data vector kept in the i-th pattern layer
neuron, Di is the distance between these two vectors. Yi is the expected value of
the i-th pattern layer neuron’s data and Y (s) is the expected value for the input
vector given to the network.

Fig. 1 GRNN Structure.

3. Q Learning Regression Neural Network

QLRNN is a generalized regression neural network for reinforcement learning prob-
lems. It is designed to be used for generalizing Q value function with the instance
based working without an extra training phase. Other kernel-based regression
methods use a predefined learning algorithm to be able to converge the kernel
function parameters to be able to generalize the value function with it. On the
contrary QLRNN only needs as accurate as possible data in the pattern layer to be
able to predict the expected return of a state-action pair successfully. Firstly, an
agent is executed for a number episodes with standard Q-learning algorithm to col-
lect learning data. While the Q-Learning algorithm is producing data, QLRNN is
established with the selected state-action pairs and target values of them as shown
in Eq. 4.

target = r + γmaxat+1
Q(st+1, at+1), (4)

where r is reward of the current state, γ is discount factor, maxat+1
Q(st+1, at+1) is

the value of next state’s best action. To limit the pattern layer size of the network,
state-action space is divided into a finite number of pieces and then each piece of the

419

Neural Network World 5/2018, 415–431

space is represented by a pattern neuron. The Q agent which collects training data
also uses the same neurons as a look-up table. Only recent Q values of the pairs are
also stored in an array. There is no need for any extra storage for the values of the
standard Q learning algorithm. After each step of the training episode, observed
triples (s, a, target) are replaced on the pattern layer of the network. This process
is shown in Fig. 2. Agent decides its action with a predefined policy independent
from the network and it runs the selected action on the environment. QLRNN
algorithm can be called as an off-policy method for this reason.

Fig. 2 Training(left) and test(right) block diagrams of QLRNN.

After a bunch of episodes is experienced, Q agent is run on the same environ-
ment with the QLRNN network for a number of different variance values to test
the efficiency of the network. Current state parameters are passed through the
QLRNN and action with the highest return expectation is selected for each step.
This process is shown in Fig. 2.

3.1 QLRNN topology

In Fig. 3 QLRNN structure which is the same with that of GRNN is shown. All
state and action parameters are input parameters of the network. State parame-

Fig. 3 QLRNN Structure.

420

Sarıgül M., Avcı M.: Q Learning Regression Neural Network

ter(s) is/are p dimensional and action parameter/s is/are q dimensional. a action
parameter/s is/are shown as state parameters on the figure. Calculation through
network for n dimensional state space are given in Eq. 5 and 6 to simplify the
projection.

D2
i = (s− si)T(s− si), (5)

Y (s) =

∑n
i=1 Yie

−D2
i

2σ2∑n
i=1 e

−D2
i

2σ2

, (6)

where s is a vector that keeps all features of a state and action. σ is the bandwidth
of the kernels. The output of the neural network is the reward expectation for
action a on state s. D2

i is the square value of the weighted differences between the
current state and states kept in the pattern layer. Yi is the target value of the ith
pattern layer node. Y (s) is the expected return of the given state-action pair.

QLRNN is a four-layered network. Input layer includes a neuron for each state
and action parameter. Pattern layer keeps all training data as a pattern. It contains
a neuron containing state action values for each training data. When a state action
pair is entered into QLRNN, it is subtracted from each stored pair in pattern neu-
rons. After squares of differences are collected, the resulting value is passed through
the Gaussian activation function. Summation layer has two neurons named as nu-
merator and denominator. Numerator calculates a dot product between outputs
of the pattern layer and a vector which contains expected return values for each
training state-action pair. Denominator calculates the sum of the outputs of the
pattern layer. Finally, the output layer calculates the quotient of numerator and
denominator values and finds the estimated return value.

3.2 QLRNN learning algorithm

In QLRNN algorithm, the pattern layer is empty before the training phase and the
maximum number of nodes in the pattern layer must be decided by dividing the
state-action space into a finite number of pieces. Each piece will be represented by
a neuron on the pattern layer. If pieces are small-sized, the number of neurons will
increase and the pace of the QLRNN will slow down. On the other hand, if pieces
are large-sized, the number of neurons will decrease, the pace of the QLRNN will
rise up, however, this time QLRNN may not be able to converge a good solution.
Number of the pattern layer neurons must be decided carefully due to this fact.
After the decision of neuron numbers, Q agent uses a predefined policy such as
ε-greedy. This policy proposes selecting the best action with 1 − ε possibility or
to select a random action with ε possibility where 0 < ε ≤ 1. Q-agent is run on
the environment for a decided number of episodes. While these episodes are run,
lookup table values are updated with equation given in Eq. 1 and target values are
calculated according to Eq. 4. Standard Q agent generating training data uses the
pattern layer as a lookup table for state-action values. If state action pair is chosen
for the first time value of the pair will be taken zero. After each step of an episode
a neuron representing an unexisting state is added or existing representing neuron
is updated according to recent values of the state action pair. In other words,
the relevant neuron is added or updated on the pattern layer for each step of the

421

Neural Network World 5/2018, 415–431

episode. A pattern layer neuron keeps a tuple containing state, action and target
values. Calculation of target value is shown in Eq. 4. After a number of episodes,
QLRNN efficiency is measured on the problem directly. Agent starts from an
initial state. Reward expectation is calculated through QLRNN according to Eq. 5
and 6 for each possible action. The action owns the highest return expectation is
chosen. This process is repeated till episode is completed. The test is done with
a sufficient number of episodes. If QLRNN is efficient enough according to the
measuring criteria, all process will be completed otherwise Q agent will run on the
environment for another number of episodes to update the QLRNN. The whole
process is shown in Algorithm 2.

Algorithm 2 QLRNN algorithm.

Set all Q(s, a) = 0
Repeat forever:
Repeat (for n episode):
Set s as one of the initial states
Repeat (for each step of the episode)
Select action a according to s using policy derived from Q
Take action a, observe r, next state st+1

Q(s, a) = Q(s, a) + α[r + γmaxat+1Q(st+1, at+1)−Q(s, a)]
target = r + γ
maxat+1

Q(st+1, at+1)
If (s, a) is exist in the pattern layer of QLRNN
update pattern neuron with (s, a) and target values
else
add a new neuron to QLRNN with (s, a) and target values
s← st+1

until s is terminal
Measure QLRNN efficiency with k random episodes
If QLRNN is efficient break

Normalization process can be needed due to the range of the state and action
values. If normalization is done pattern layer neurons will keep the normalized
values. All state and action values must also be normalized before the value passes
over the QLRNN for estimating process. In this paper, min-max normalization is
implemented for all benchmarks.

In the Q learning algorithm, the Q function approaches optimality with each
iteration. Qt+1 will generate more accurate values than Qt. Convergence of Q
learning is showed with a method called ARP(action-replay process) in the original
article [2]. Since QLRNN is a representation of the current Q function, g(Q), it
will also approach optimality over time. g(Qt+1) will have a better solution than
g(Qt)) for the problem to be solved. In addition, the QLRNN output function is
defined within the entire space, even with a single neuron as it seen in Eq. 6. Thus,
for all possible input values, output value is defined, and QLRNN produces a valid
value at any point in the space.

The outermost loop used for testing purposes can be ignored, so the complexity
of the algorithm is computed as O(n2). The space complexity of the algorithm

422

Sarıgül M., Avcı M.: Q Learning Regression Neural Network

grows to be equivalent to the space complexity of the problem to be solved. To
give an example, three different values are needed to determine a point in a 3D
world. In a QLRNN to be used for such an environment, each neuron will hold 3
different values for a point.

4. Test results and discussion

Three different popular benchmarks were used for measuring the quality of QL-
RNN generalization. These benchmarks are the pole-balancing task, mountain-
car benchmark, and puddle-world which are commonly used for measuring the
performance of reinforcement learning algorithms. All training and testing op-
erations were done on Closed Loop Simulation System which was supported by
Riedmiller [26] and also used for testing NFQ algorithm.

4.1 The pole-balancing task

In the two-dimensional world, a cart with a pole onto is placed on a track. There
exist three actions with different forces (−50 N, 0 N, +50 N). The goal is to prevent
the pole to fall. There is only one negative reward (−1) which is gained when the
pole falls. There are two parameters associated with the problem: θ is the position
of the pole in radian, θv is the angular velocity of the pole. Value range of the
parameters are θε[−π2 ,

π
2] rad and θvε[−2.5, 2.5] rad/s for θ and θv respectively.

Transitions between states are determined by the nonlinear dynamics of the
system [27] and each action changes acceleration of the pole according to Eq. 7

θa(t) =
g sin θ(t)− cos θ(t)((F (t)+mlθv(t)

2 sin θ(t))
mc+m

)

l(4
3 −

m cos2 θ(t)
mc+m

)
. (7)

g = 9.8 m/s2 is the gravity, l = 0.5 m is the half-pole length, F (t) = F + η
is the force where η is the noise term valued in the range of [−10, 10]. m = 2 Kg
and mc = 8 Kg are the masses of the pole and the cart respectively. Position and
velocity the pole is changed by the Eqs. 8 and 9 after each time step which is
τ = 0.1 s. Benchmark parameters are completely the same as the benchmark used
for measuring NFQ and LSTD regression performances

θ(t) = θ(t) + τθv(t), (8)

θv(t) = θv(t) + τθa(t). (9)

Fig. 4 Pole-balance (inverted-pendulum) benchmark.

423

Neural Network World 5/2018, 415–431

Results

θ and θv were used as state parameters. State-action space was divided into (16 ·
10 · 3) pieces. 16 different interval for θ, in case each neuron represents a range
amount of π

16 for θ on the space. 10 different interval for θv, in case each neuron
represents a range amount of 0.5 for θv on the space. The last 3 different pieces
represent the 3 discrete actions. In this case, probable maximum number of pattern
nodes become 480. There are unreasonable states which cannot be visited, in case
where the number of nodes in the pattern layer was not above 200. Training
episodes start with θ = 0 and θv = 0 initial values. The maximum step size
of a training episode was limited to 3000. All parameters were normalized with
min-max normalization with a range of [−11]. Each movement represents a 0.1
second of motion in real time which results in 300 seconds (5 minutes) of overall
duration. After each training episodes, QLRNN performance was measured with
different variance values between 0.002 and 0.3 for different 1000 test episodes on
the benchmark. α = 0.5 and γ = 1 was set for the Q agent. ε-greedy exploration
was used with ε = 0.2.

25 different experiments have been done. It was obtained that QLRNN needs
averagely 23 episodes to learn a successful policy that keeps the pole balanced
for more than 300 seconds. Mean and standard deviation of successful results
are shown in Tab. I. It was presented by Lagoudakis and Parr [15], LSPI can
balance the pole about 285 seconds after 1000 episodes. Q learning with experience
replay, suggested in the same paper, requires averagely 700 episodes to learn a
successful policy. It was reported by Riedmiller NFQ algorithm needs averagely
200 episodes to find a successful policy [17]. However, each episode was repeated
over the network 50 times to train with backpropagation. In this case, training of
the network takes 10000 passes. Since QLRNN is not a type of backpropagation
network. After averagely 23 training episodes are run, neuron organization of the
neural network is done and ready to use. The comparison between the performance
of algorithms is shown in Tab. II.

Training Lenght for Successful Policy
Episodes Cycles

Mean Std. Dev. Mean Std. Dev.

22.840 7.284 289.040 128.723

Tab. I Pole-balancing task results.

4.2 Mountain car benchmark

The mountain car problem was firstly defined by Moore [28]. When Singh and
Sutton added the problem into “Reinforcement Learning: An Introduction” book
[1], it became more popular. The problem is about a powerless car must overcome
a hill. Since the gravity is stronger than the car’s engine; the car can not speed up
and reach the peak. The car is settled on a valley and must learn to keep potential
energy by driving up the opposite hill. After that, the car becomes able to reach
the peak of the rightmost hill.

424

Sarıgül M., Avcı M.: Q Learning Regression Neural Network

Training Length Pass over network Balancing Time
Episodes Cycles [s]

LSPI 1000.00 – – 285.00
LSPI with ER 700.00 – – 300.00

NFQ 200.00 1200.00 50.00 times 300.00
QLRNN 22.84 289.04 no need 300.00

Tab. II Pole-balancing task results.

There are two parameters associated with the problem: V is the velocity of
the car and P is the position of the car. Value range of the parameters are
V ε(−2.5,+2.5) and Pε(−1.0, 0.7) for V and P respectively. There exist two differ-
ent actions −4 and +4 which change position and velocity of the car according to
Eqs. 10 and 11. All parameters in the equations are kept the same with NFQ test
benchmark. In the case of a failure, the episode 5is terminated and rewarded by
−1. This occurs when the position of the car calculated less than −1.0. Otherwise,
each step is rewarded by −1 unless reaching the goal state

V = V + 0.001 ·Action + cos(3P) · (−0.0025), (10)

P = P + V. (11)

At the initial condition, a position is chosen randomly and velocity is set to
0. When the position becomes higher than 0.7, the episode is terminated with a
reward of 0.

Fig. 5 Mountain-Car Benchmark.

Results

State-action space was defined in the size of (17 · 10 · 2). 17 different interval for
the position parameter and 10 different intervals for the velocity parameter were
determined. The maximum number of pattern nodes become 396 for 2 discrete
actions. Some of the nodes were not created because of unvisited or irrational
state-action pairs during the episodes. Therefore the number of nodes in the pattern
layer became at most 300. Training episodes start with a random position and zero
velocity. The maximum step size of a training episode was limited to 50. After
each episode, QLRNN performance was measured with different variance values

425

Neural Network World 5/2018, 415–431

between 0.001 and 0.5 for random 1000 initial states on the benchmark. α = 0.5
and γ = 1 was set for the Q agent. ε-greedy exploration was chosen as ε = 0.2. All
parameters were normalized with min-max normalization with a range of [−11].

QLRNN was trained and performance of QLRNN was measured with given
parameters for 25 times. Test episodes were limited with the maximum number
of 300 steps. 500 training episode was used for each experiment. All successful
policies were determined. First and best Q-agent policies are shown in Tab. III.

First Successful Policy
Episodes Cycles Ave. Cost

Mean St.D. Mean St.D. Mean St.D.

31.28 27.53 1073.00 957.40 41.66 15.32

Best Successful Policy
Episodes Cycles Ave. Cost

Mean St.D. Mean St.D. Mean St.D.

171.24 162.53 5960.00 5561.00 29.18 3.09

Tab. III Mountain car benchmark results.

After a sufficient amount of episodes, it can be seen that average cost values
approach to the optimum. QLRNN was approximately 2 times faster than NFQ
for Mountain-Car benchmark with nearly the same average cost values as shown
in Tab. IV.

First Succesful Policy Best Succesful Policy

Episodes Cycles Average Cost Episodes Cycles Average Cost

NFQ 70.95 2777.00 41.05 296.60 10922.80 28.70

QLRNN 31.28 1073.16 41.66 171.24 5960.48 29.18

Tab. IV Mountain car benchmark results.

The Same benchmark was also run with the same parameters given by Dutech
et al. [19]. In this experiment 3 different actions (−1, 0, 1) and position range
between (−1.1, 0.5) were used. QLRNN was run for 500 training episodes. In this
case, QLRNN was able to find a successful policy with 53.05 episodes with a cost
of 111.21 averagely. Best policy found by QLRNN had an average cost of 85.47.
LEAP is not able to decrease the average cost under 100 within 10000 training
episodes. RMAX is able to find a policy with an average cost of 85.59 after more
than 1000 training episodes.

Mountain-car benchmark was also run with the same parameters given by
Whiteson and Stone [20]. This time 3 different actions (−1, 0, 1) and position range
between (−1.2, 0.5) were used. QLRNN was able to find a successful policy with
an average of 48.35 episode with an average cost of 116.11. Best policy found by
QLRNN had an average cost of 81.24 with 5.52 standard derivation which was near
to the optimal cost. NEAT-Q algorithm converges slower and not able to decrease
the cost under 100 in the cited paper. LSPI is also able to find nearly the optimal

426

Sarıgül M., Avcı M.: Q Learning Regression Neural Network

policy, however, LSPI averagely needs 200 episodes to generate a policy with a
cost of less than 100 while QLRNN needs averagely just 118 episodes. QLRNN
was also able to find an appropriate solution faster than XAI. Comparison of the
three algorithms can be seen in Fig. 6. Cost values of QLRNN were calculated by
averaging cost values of the best policy found till the end of the episodes.

Fig. 6 QLRNN performance on mountain car.

4.3 Puddle-world problem

This problem was defined by Sutton [3]. The aim of the task is to move a robot
in a continuous 2D area to a goal which is unknown by the robot with minimum
cost. The area is defined as [0, 1]2. There are two puddles located in the area as
shown in Fig. 7. The axes indicate the position on the 2D world on the figure.

Fig. 7 Puddle world benchmark.

427

Neural Network World 5/2018, 415–431

The puddles are oval shaped with a radius of 0.1 and they are stated at centerlines
(0.1, 0.75) to (0.45, 0.75) and (0.45, 0.4) to (0.45, 0.8). There are two state variables
and four discrete actions for each direction. Each action moves the robot by 0.05
to its direction. A random gaussian noise up to 0.01 is added to each direction on
each move. Starting position is chosen randomly in the area. The goal areas are
defined with x + y ≥ 0.95 + 0.95 = 1.9. Each time step is costed by −1. Actions
taken inside the puddles have an extra cost which is calculated by multiplying the
distance inside the puddle by −400.

Results

State-action space was defined in the size of 10 · 10 · 4. The maximum number of
pattern nodes became 400 for 4 discrete actions. Training episodes start with a
random position over the 2D area. The maximum step size of a training episode is
limited to 500. After each episode QLRNN performance is measured with different
variance values between 0.001 and 0.5 for random 1000 initial states on the bench-
mark. α and γ were set to 0.5 and 1 for the Q agent. ε-greedy exploration was
used with ε = 0.2. All parameters were normalized with min-max normalization
with a range of [−1, 1].

QLRNN was trained and performance of QLRNN was measured with given
parameters for 20 times. Test episodes were limited with a maximum number of
500 steps. 500 training episode was used for each experiment. All successful policies
were determined.

First Succesful Policy Cost≤ 40 Cost≤ 30 Best

Episodes Ave. Cost Episodes Episodes Ave. Cost

Mean St.D. Mean St.D. Mean St.D. Mean St.D. Mean St.D.

154.75 44.05 42.98 15.48 179.75 60.31 203.50 81.64 22.86 0.55

Tab. V Puddle world results.

QLRNN was able to find a successful policy which can lead the robot to the goal
with an average of 154.75 episodes with an average cost of 42.98. Average best cost
result of all trials was 22.86 which is nearly the optimal cost for the benchmark.
LEAP algorithm needs more than 1000 episodes to get the average cost under 50.
LSPI converges a solution with an average cost of 35.54 after 500 episodes. RMAX
can also able to find the optimal solution with an average cost of 22.85 but after
1000 training episodes averagely. XAI converges a solution with an average cost of
30 after more than 1000 training episodes. QLRNN can find a quick appropriate
solution and it is also able to find the optimal solution faster than other algorithms
for the puddle-world benchmark.

5. Conclusion

In this paper, a Nadaraya-Watson kernelled regression method with GRNN topol-
ogy is adapted to Q learning algorithm to generalize the value function and to
generate a successful action selection policy. Along the methodology, a roadmap is

428

Sarıgül M., Avcı M.: Q Learning Regression Neural Network

also given about how to organize the pattern layer of the instance based working
network. The high efficiency of regression is obtained by the utilization of GRNN
inherited network topology. On the other hand, the main drawbacks of GRNN are
also contained by QLRNN. These are mainly problematic of the selection of the ef-
ficient variance value for the corresponding data set and relatively high throughput
time for a new data due to the complex calculation. Estimated time consumption
is decreased by limiting the number of pattern layer nodes of the QLRNN.

Under a limited number of pattern layer neurons, QLRNN is also effective with
real-time learning. It is formed while Q agent is running on the environment with
a predetermined policy. After that its performance is tested on the same problem
directly. QLRNN does not require an extra training time due to its instance based
structure. In error-minimizing networks, a bunch of episodes must be stored as
training data and then they must be passed through the network for many epochs.
If the learning process is unsuccessful, a new or bigger data set must be tried for the
network. In contrast, QLRNN evolution process can be done by growing the states
kept in pattern layer. After a number of episodes used for establishing QLRNN,
additional episodes can also be used for improving the performance of the network.
Through this work, QLRNN is applied to solve popular problems of reinforcement
learning that are mountain car, pole balance, and puddle-world problems. Regres-
sion performance of QLRNN is compared with that of LSPI, NFQ, XAI, LEAP,
RMAX, NEAT-Q algorithms on the test benches. QLRNN learns faster than other
algorithms on selected problems. Comparisons are done by considering the number
of learning steps. In mountain car problem the learning is accelerated more than 2
times against NFQ algorithm. QLRNN learns much faster and more efficient than
LEAP, NEAT-Q, and RMAX on the same problem. While LSPI and XAI are able
to find better policies over the long run, QLRNN is able to find an appropriate
policy much faster than them on the mountain-car benchmark. In pole balance
problem QLRNN is faster approximately 30 times than LSPI and it is also faster
approximately 4 times than NFQ. In the puddle-world benchmark, QLRNN’s per-
formance and efficiency are much better than all compared algorithms. These test
results prove the efficiency and show the importance of the proposed network.

References

[1] SUTTON R.S., BARTO A.G. Introduction to reinforcement learning. MIT Press, 1998
doi: 10.1007/978-3-319-20010-1_14.

[2] WATKINS C.J.C.H., DAYAN P. Q-learning Machine learning. 1992, 8(3-4), pp. 279–292,
doi: 10.1007/springerreference_57860.

[3] SUTTON R.S. Generalization in reinforcement learning: Successful examples using sparse
coarse coding Advances in neural information processing systems. 1996, pp. 1038–1044.

[4] TIAN Z., LI S., WANG Y., WANG X. A network traffic hybrid prediction model optimized
by improved harmony search algorithm. Neural Network World, 2015, 25(6), pp. 669. doi: 10.
14311/NNW.2015.25.034

[5] KALAIE A., SHUJIANG L., YANHONG W., XIANGDONG W. Network traffic prediction
method based on improved ABC algorithm optimized EM-ELM. The Journal of China Uni-
versities of Posts and Telecommunications, 2018, 25(3), pp. 33–44, doi: 10.19682/j.cnki.
1005-8885.2018.0014.

[6] TIAN Z., LI S., WANG Y. TS fuzzy neural network predictive control for burning zone tem-
perature in rotary kiln with improved hierarchical genetic algorithm. International Journal

429

http://dx.doi.org/10.1007/978-3-319-20010-1_14
http://dx.doi.org/10.1007/springerreference_57860
http://dx.doi.org/10.14311/NNW.2015.25.034
http://dx.doi.org/10.14311/NNW.2015.25.034
http://dx.doi.org/10.19682/j.cnki.1005-8885.2018.0014
http://dx.doi.org/10.19682/j.cnki.1005-8885.2018.0014

Neural Network World 5/2018, 415–431

of Modelling, Identification and Control, 2016, 25.4, pp. 323-334, doi: 10.1504/IJMIC.2016.
076825.

[7] TIAN Z., WANG G., REN Y., LI S., WANG Y. An adaptive online sequential extreme
learning machine for short-term wind speed prediction based on improved artificial bee colony
algorithm. Neural Network World, 2018, 28.3, pp. 191-212, doi: 10.14311/NNW.2018.28.012.

[8] ZHONGDA T., SHUJIANG L., YANHONG W., YI S. A prediction method based on wavelet
transform and multiple models fusion for chaotic time series. Chaos, Solitons & Fractals,
2017, 98: pp. 158-172, doi: 10.1016/j.chaos.2017.03.018.

[9] TIAN Z., LI S., WANG Y. The Multi-Objective Optimization Model of Flue Aimed Tem-
perature of Coke Oven. Journal of Chemical Engineering of Japan, 2018, 51.8: pp. 683-694,
doi: 10.1252/jcej.17we159.

[10] ANDERSON C.W. Strategy learning with multilayer connectionist representations Pro-
ceedings of the Fourth International Workshop on Machine Learning,1987, pp. 103–114,
doi: 10.1016/b978-0-934613-41-5.50014-3.

[11] BOYAN J.A., MOORE A.W. Generalization in reinforcement learning: Safely approximating
the value function Advances in neural information processing systems. 1995, pp. 369–376.

[12] BRADTKE S.J., BARTO A.G. Linear least-squares algorithms for temporal difference learn-
ing Machine learning. 1996, 22(1-3), pp. 33–57, doi: 10.1007/978-0-585-33656-5_4.

[13] BOYAN J.A. Technical update: Least-squares temporal difference learning Machine Learn-
ing. 2002, 49(2-3), pp. 233–246, doi: 10.1007/978-0-585-33656-5_4.

[14] BRAFMAN R.I., TENNENHOLTZ M. R-max-a general polynomial time algorithm for near-
optimal reinforcement learning Journal of Machine Learning Research. 2002, 3(Oct), pp.
213–231.

[15] LAGOUDAKIS M.G., PARR R. Least-squares policy iteration The Journal of Machine
Learning Research. 2003, 4, pp. 1107–1149.

[16] ERNST D., GEURTS P., WEHENKEL L. Tree-based batch mode reinforcement learning
Journal of Machine Learning Research, 2005, pp. 503–556.

[17] RIEDMILLER M. Neural fitted Q iteration–first experiences with a data efficient neural
reinforcement learning method Machine Learning: ECML 2005, 2005, pp. 317–328, doi: 10.
1007/11564096_32.

[18] BONARINI A., LAZARIC A., RESTELLI M. Reinforcement learning in complex environ-
ments through multiple adaptive partitions Congress of the Italian Association for Artificial
Intelligence, 2007, pp. 531–542, doi: 10.1007/978-3-540-74782-6_46.

[19] DUTECH A., EDMUNDS T., KOK J., LAGOUDAKIS M., LITTMAN M., RIEDMILLER
M., RUSSELL B., SCHERRER B., SUTTON R., TIMMER S., others. Reinforcement
learning benchmarks and bake-offs II Advances in Neural Information Processing Systems
(NIPS). 2005, 17.

[20] WHITESON S., STONE P. Evolutionary function approximation for reinforcement learn-
ing The Journal of Machine Learning Research, 2006,7, pp. 877–917, doi: 10.1007/

978-3-642-13932-1_4.

[21] HEINEN M.R., ENGEL P.M. IPNN: An incremental probabilistic neural network for func-
tion approximation and regression tasks Neural Networks (SBRN), 2010 Eleventh Brazilian
Symposium. 2010, pp. 25–30, doi: 10.1109/sbrn.2010.13.

[22] HEINEN M.R., ENGEL P.M. An incremental probabilistic neural network for regression and
reinforcement learning tasks Artificial Neural Networks–ICANN 2010, 2010, pp. 170–179,
doi: 10.1007/978-3-642-15822-3_22.

[23] LAMPLE G., CHAPLOT D.S. Playing FPS Games with Deep Reinforcement Learning. In:
AAAI, 2017, pp. 2140-2146.

[24] SROUJI M., ZHANG J., SALAKHUTDINOV R. Structured Control Nets for Deep Rein-
forcement Learning. arXiv preprint arXiv:1802.08311, 2018.

[25] SPECHT D.F. A general regression neural network Neural Networks, IEEE Transactions
on, 1991,2(6), pp. 568–576, doi: 10.1016/s0893-6080(09)80013-0.

430

http://dx.doi.org/10.1504/IJMIC.2016.076825
http://dx.doi.org/10.1504/IJMIC.2016.076825
http://dx.doi.org/10.14311/NNW.2018.28.012
http://dx.doi.org/10.1016/j.chaos.2017.03.018
http://dx.doi.org/10.1252/jcej.17we159
http://dx.doi.org/10.1016/b978-0-934613-41-5.50014-3
http://dx.doi.org/10.1007/978-0-585-33656-5_4
http://dx.doi.org/10.1007/978-0-585-33656-5_4
http://dx.doi.org/10.1007/11564096_32
http://dx.doi.org/10.1007/11564096_32
http://dx.doi.org/10.1007/978-3-540-74782-6_46
http://dx.doi.org/10.1007/978-3-642-13932-1_4
http://dx.doi.org/10.1007/978-3-642-13932-1_4
http://dx.doi.org/10.1109/sbrn.2010.13
http://dx.doi.org/10.1007/978-3-642-15822-3_22
http://dx.doi.org/10.1016/s0893-6080(09)80013-0

Sarıgül M., Avcı M.: Q Learning Regression Neural Network

[26] Closed Loop Simulation System 2013 [accessed 2016-12-06]. Available from: http://ml.

informatik.uni-freiburg.de/research/clsquare

[27] WANG H.O., TANAKA K.G., MICHAEL F. An approach to fuzzy control of nonlinear
systems: stability and design issues Fuzzy Systems, IEEE Transactions on, 1996, 4(1), pp.
14–23, doi: 10.1109/91.481841.

[28] MOORE A.W., HALL T. Efficient memory-based learning for robot control, 1990.

431

http://ml.informatik.uni-freiburg.de/research/clsquare
http://ml.informatik.uni-freiburg.de/research/clsquare
http://dx.doi.org/10.1109/91.481841

