Basit öğe kaydını göster

dc.contributor.authorDemir, Mehmet Hakan
dc.contributor.authorYiğit, Faruk
dc.date.accessioned2020-05-24T15:31:46Z
dc.date.available2020-05-24T15:31:46Z
dc.date.issued2020
dc.identifier.citationDemir, M.H., Yigit, F. (2020). Uncoupled Modeling of the Effects of Coating Layer on the Growth Instability in Pure Metal Solidification. https://doi.org/10.1007/s40962-020-00470-xen_US
dc.identifier.issn1939-5981
dc.identifier.issn2163-3193
dc.identifier.urihttps://doi.org/10.1007/s40962-020-00470-x
dc.identifier.urihttps://hdl.handle.net/20.500.12508/1107
dc.descriptionWOS: 000531224100001en_US
dc.description.abstractThe mold coating is one of the factors to control the heat transfer rate and development of microstructure in metal solidification. In this study, effects of the coating layer on growth instability in solidification of pure metals are theoretically examined. Solidification process is modeled in two phases: In the first phase, the heat conduction with phase change between the molten metal and the solidified shell, and the heat transfer problems between the solidified shell and the coating layer and the coating layer and the mold need to be established. In the second phase, mechanical problem which includes deformations in the layers due to stress distributions should be modeled. Presented model extends previous studies by examining the effects of coating layer in the early stages of solidification under the assumption that the thermal and mechanical problems are uncoupled. In this model, the thermal problem affects the thermal stress distribution in the layers, but the mechanical problem does not affect the thermal problem. This assumption is valid only for the early stages of solidification since the coupling between the thermal and mechanical problems plays an important role in further stages of the process. The thermal capacitance of the solidified shell, the coating layer and the mold is assumed to be zero in order to have a predominantly analytical solution. These assumptions clearly place severe restrictions on the accuracy of the resulting predictions, but they can be justified on the grounds that the resulting analysis retains some generality and hence permits deductions to be made about the effect of changes of material properties and operating conditions on the stability of the system. The heat transfer part of the problem is solved analytically using a linear perturbation method. However, the mechanical part of the problem is solved numerically using a variable step variable order corrector and predictor algorithm which is suitable for stiff problems. Effects of process parameters such as thermal conductivities, coating thickness and thermal contact resistances at the surface between each layer on the growth of solidified shell thickness are investigated in detail. [GRAPHICS] .en_US
dc.language.isoengen_US
dc.publisherSpringer International Publishing Agen_US
dc.relation.isversionof10.1007/s40962-020-00470-xen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectUncoupled modelen_US
dc.subjectSolidificationen_US
dc.subjectPure metalen_US
dc.subjectPhase changeen_US
dc.subjectMechanical stressen_US
dc.subject.classificationMetallurgy & Metallurgical Engineeringen_US
dc.subject.classificationBoundary conditions | Heat conduction | Moving boundaryen_US
dc.subject.otherPlanar solidificationen_US
dc.subject.otherSinusoidal molden_US
dc.subject.otherThermoelastic instabilityen_US
dc.subject.otherTribological behavioren_US
dc.subject.otherHeat-Transferen_US
dc.subject.otherThicknessen_US
dc.subject.otherCoatingsen_US
dc.subject.otherHeat conductionen_US
dc.subject.otherHeat problemsen_US
dc.subject.otherLiquid metalsen_US
dc.subject.otherMetalsen_US
dc.subject.otherMoldsen_US
dc.subject.otherPerturbation techniquesen_US
dc.subject.otherShells (structures)en_US
dc.subject.otherSteel scrapen_US
dc.subject.otherStress concentrationen_US
dc.subject.otherSystem stabilityen_US
dc.subject.otherThermoanalysisen_US
dc.subject.otherThickness measurementen_US
dc.subject.otherHeat transfer problemsen_US
dc.subject.otherLinear perturbation methodsen_US
dc.subject.otherMechanical problemsen_US
dc.subject.otherMetal solidificationen_US
dc.subject.otherSolidification processen_US
dc.subject.otherSolidified shell thicknessen_US
dc.subject.otherThermal capacitanceen_US
dc.subject.otherThermal contact resistanceen_US
dc.subject.otherThermal conductivityen_US
dc.titleUncoupled Modeling of the Effects of Coating Layer on the Growth Instability in Pure Metal Solidificationen_US
dc.typearticleen_US
dc.relation.journalInternational Journal of Metalcastingen_US
dc.contributor.departmentMühendislik ve Doğa Bilimleri Fakültesi -- Mekatronik Mühendisliği Bölümüen_US
dc.contributor.authorID0000-0002-3934-2425en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.isteauthorDemir, Mehmet Hakanen_US
dc.relation.indexWeb of Science Core Collection - Science Citation Index Expandeden_US
dc.relation.indexWeb of Science - Scopusen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster