dc.contributor.author | Özmen, Özkan | |
dc.contributor.author | Sinanoğlu, Cem | |
dc.contributor.author | Çalışkan, Abdullah | |
dc.contributor.author | Badem, Hasan | |
dc.date.accessioned | 2020-05-24T15:31:49Z | |
dc.date.available | 2020-05-24T15:31:49Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Özmen, Ö., Sinanoğlu, C., Caliskan, A., Badem, H.(2020).
Prediction of Leakage from an Axial Piston Pump Slipper with Circular Dimples Using Deep Neural Networks
Chinese Journal of Mechanical Engineering (English Edition), 33 (1), art. no. 28,.
https://doi.org/10.1186/s10033-020-00443-5 | en_US |
dc.identifier.issn | 1000-9345 | |
dc.identifier.issn | 2192-8258 | |
dc.identifier.uri | https://doi.org/10.1186/s10033-020-00443-5 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12508/1121 | |
dc.description | WOS: 000522640200001 | en_US |
dc.description.abstract | Oil leakage between the slipper and swash plate of an axial piston pump has a significant effect on the efficiency of the pump. Therefore, it is extremely important that any leakage can be predicted. This study investigates the leakage, oil film thickness, and pocket pressure values of a slipper with circular dimples under different working conditions. The results reveal that flat slippers suffer less leakage than those with textured surfaces. Also, a deep learning-based framework is proposed for modeling the slipper behavior. This framework is a long short-term memory-based deep neural network, which has been extremely successful in predicting time series. The model is compared with four conventional machine learning methods. In addition, statistical analyses and comparisons confirm the superiority of the proposed model. | en_US |
dc.description.sponsorship | Erciyes University Scientific Research Projects Coordination UnitErciyes University [FDK-2016-6986] | en_US |
dc.description.sponsorship | Supported by Erciyes University Scientific Research Projects Coordination Unit (Grant No. FDK-2016-6986). | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Springer | en_US |
dc.relation.isversionof | 10.1186/s10033-020-00443-5 | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Slipper | en_US |
dc.subject | Leakage | en_US |
dc.subject | Circular dimpled | en_US |
dc.subject | Long short-term memory | en_US |
dc.subject | Deep neural network | en_US |
dc.subject.classification | Engineering | en_US |
dc.subject.classification | Mechanical | en_US |
dc.subject.classification | Reciprocating pumps | Pistons | Piston pumps | en_US |
dc.subject.other | Frictional power loss | en_US |
dc.subject.other | Design | en_US |
dc.subject.other | Bearing | en_US |
dc.subject.other | Pressure | en_US |
dc.subject.other | Brain | en_US |
dc.subject.other | Deep learning | en_US |
dc.subject.other | Leakage (fluid) | en_US |
dc.subject.other | Learning systems | en_US |
dc.subject.other | Long short-term memory | en_US |
dc.subject.other | Pistons | en_US |
dc.subject.other | Reciprocating pumps | en_US |
dc.subject.other | Textures | en_US |
dc.subject.other | Axial piston pump | en_US |
dc.subject.other | Circular dimpled | en_US |
dc.subject.other | Conventional machines | en_US |
dc.subject.other | Oil film thickness | en_US |
dc.subject.other | Oil leakage | en_US |
dc.subject.other | Pressure values | en_US |
dc.subject.other | Slipper | en_US |
dc.subject.other | Textured surface | en_US |
dc.title | Prediction of Leakage from an Axial Piston Pump Slipper with Circular Dimples Using Deep Neural Networks | en_US |
dc.type | article | en_US |
dc.relation.journal | Chinese Journal Of Mechanical Engineering | en_US |
dc.contributor.department | Mühendislik ve Doğa Bilimleri Fakültesi -- Biyomedikal Mühendisliği Bölümü | en_US |
dc.identifier.volume | 33 | en_US |
dc.identifier.issue | 1 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.contributor.isteauthor | Çalışkan, Abdullah | en_US |
dc.relation.index | Web of Science Core Collection - Science Citation Index Expanded | en_US |
dc.relation.index | Web of Science - Scopus | en_US |