Basit öğe kaydını göster

dc.contributor.authorGnanasekaran, Lalitha
dc.contributor.authorHemamalini, Rajagopal
dc.contributor.authorRajendran, Saravanan
dc.contributor.authorQin, Jiaqian
dc.contributor.authorYola, Mehmet Lütfi
dc.contributor.authorAtar, Necip
dc.contributor.authorGracia, Francisco
dc.date.accessioned2020-05-24T15:32:05Z
dc.date.available2020-05-24T15:32:05Z
dc.date.issued2019
dc.identifier.citationGnanasekaran, L., Hemamalini, R., Rajendran, S., Qin, J., Yola, M.L., Atar, N., Gracia, F. (2019). Nanosized Fe3O4 incorporated on a TiO2 surface for the enhanced photocatalytic degradation of organic pollutants. Journal of Molecular Liquids, 287, art. no. 110967. https://doi.org/10.1016/j.molliq.2019.110967
dc.identifier.issn0167-7322
dc.identifier.issn1873-3166
dc.identifier.urihttps://doi.org/10.1016/j.molliq.2019.110967
dc.identifier.urihttps://hdl.handle.net/20.500.12508/1200
dc.descriptionWOS: 000475998500046en_US
dc.description.abstractIn this work, precipitation and sol-gel mixed procedures were used to prepare a TiO2@Fe3O4 nanocomposite. The X-ray diffraction (XRD) and selected area electron diffraction (SAED) results unmistakably elucidated the tetragonal structure of TiO2 with the cubic structure of Fe3O4 . The particle size, interface, and surface area were determined by transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) measurements. The TEM image of the prepared TiO2@Fe3O4 clearly showed that the material is nano-spherical in shape. The BET surface area of the nanocomposite was measured to have a higher value (115.7 m(2)/g) than those of the TiO2 (65.2 m/g) and Fe3O4 (30.1 m(2)/g) pure systems because of the synergistic effect and interface between the two different oxides. The absorption edges of the TiO2@Fe3O4 nanocomposites were studied with the UV-abs spectrometer, and the results revealed that the material band gap is 2.70 eV. The chemical composition and dispersion of the nanocomposite system was assessed via energy dispersive X-ray spectroscopy (EDS) along with elemental mapping. The PL spectra of the prepared nanocomposite system indicated a delay of the electron-hole recombination process due to the presence of Fe3O4, thus inducing intermediate states into the TiO2 system. The favourable optical properties of the developed nanocomposites were exploited for the photocatalytic degradation of colourful dyes, such as methylene blue, and methyl orange, as well as of colourless phenol. In addition, their stability and photocatalytic mechanism are explained in detail. (C) 2019 Published by Elsevier B.V.en_US
dc.description.sponsorshipFONDECYT Government of ChileComision Nacional de Investigacion Cientifica y Tecnologica (CONICYT)CONICYT FONDECYT [11170414]en_US
dc.description.sponsorshipWe acknowledge Dr. K. Ravichandran, Department of Nuclear Physics, University of Madras, India for the lab facilities and his valuable contribution for the discussion. The author (S.R) acknowledge FONDECYT Government of Chile (Project No.: 11170414), for the support to carry out this projecten_US
dc.language.isoengen_US
dc.publisherElsevier Scienceen_US
dc.relation.isversionof10.1016/j.molliq.2019.110967en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectPhotocatalysten_US
dc.subjectDegradation
dc.subjectPhenol
dc.subjectMethyl orange
dc.subjectNanocomposites
dc.subject.classificationChemistry
dc.subject.classificationPhysical
dc.subject.classificationPhysics
dc.subject.classificationAtomic
dc.subject.classificationMolecular & Chemical
dc.subject.classificationTitanates | Photocatalytic Activity | Nanotubes
dc.subject.otherVisible-light degradation
dc.subject.otherMagnetic nanoparticles
dc.subject.otherZno nanoparticles
dc.subject.otherNanocomposites
dc.subject.otherCatalyst
dc.subject.otherPhotoluminescence
dc.subject.otherEnergy
dc.subject.otherSensor
dc.subject.otherDyes
dc.subject.otherSNO2
dc.subject.otherAzo dyes
dc.subject.otherBiodegradation
dc.subject.otherCitrus fruits
dc.subject.otherDegradation
dc.subject.otherDyes
dc.subject.otherElectron diffraction
dc.subject.otherEnergy dispersive spectroscopy
dc.subject.otherEnergy gap
dc.subject.otherHigh resolution transmission electron microscopy
dc.subject.otherIron oxides
dc.subject.otherMagnetite
dc.subject.otherNanocomposites
dc.subject.otherOptical properties
dc.subject.otherOrganic pollutants
dc.subject.otherParticle size
dc.subject.otherPhenols
dc.subject.otherPhotocatalysts
dc.subject.otherPhotocatalytic activity
dc.subject.otherSol-gels
dc.subject.otherSpectrometers
dc.subject.otherTitanium dioxide
dc.subject.otherBrunauer emmett tellers
dc.subject.otherChemical compositions
dc.subject.otherElectron hole recombination process
dc.subject.otherEnergy dispersive X ray spectroscopy
dc.subject.otherMethyl Orange
dc.subject.otherNanocomposite systems
dc.subject.otherPhoto catalytic degradation
dc.subject.otherSelected area electron diffraction
dc.subject.otherTiO2 nanoparticles
dc.titleNanosized Fe3O4 incorporated on a TiO2 surface for the enhanced photocatalytic degradation of organic pollutantsen_US
dc.typearticleen_US
dc.relation.journalJournal Of Molecular Liquidsen_US
dc.contributor.departmentMühendislik ve Doğa Bilimleri Fakültesi -- Biyomedikal Mühendisliği Bölümüen_US
dc.identifier.volume287en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.isteauthorYola, Mehmet Lütfi
dc.relation.indexWeb of Science - Scopus
dc.relation.indexWeb of Science Core Collection - Science Citation Index Expanded


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster