• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
teknoversite
View Item 
  •   DSpace Home
  • Fakülteler
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • Elektrik-Elektronik Mühendisliği
  • Makale Koleksiyonu
  • View Item
  •   DSpace Home
  • Fakülteler
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • Elektrik-Elektronik Mühendisliği
  • Makale Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ground plane design configuration estimation of 4.9 GHz reconfigurable monopole antenna for desired radiation features using artificial neural network

Thumbnail

View/Open

Tam Metin / Full Text (5.800Mb)

Date

2021

Author

Alkurt, Fatih Özkan
Özdemir, Merve Erkınay
Akgöl, Oğuzhan
Karaaslan, Muharrem

Metadata

Show full item record

Citation

Alkurt, F.O., Erkinay Ozdemir, M., Akgol, O., Karaaslan, M. (2021). Ground plane design configuration estimation of 4.9 GHz reconfigurable monopole antenna for desired radiation features using artificial neural network. International Journal of RF and Microwave Computer-Aided Engineering https://doi.org/10.1002/mmce.22734

Abstract

This paper presents a system based on artificial neural network (ANN) that predicts ground plane design for desired radiation properties of a monopole antenna with operation band of 4.8 to 5 GHz. The operating frequency can be adapted to any other frequency regimes. Initially, a 180 x 180 mm2 ground plane, which is composed of a copper layer, is designed and integrated to a radiative pole that creates monopole antenna configuration. The ground plane is divided into 18 rows and 18 columns as 18 x 18 matrix so that each unit cell has a square shape having 10 mm side length. Moreover, 152 different ground plane configurations are created by using logic 1 s and 0 s. Multi-layered feed forward ANN is used along with Scale Conjugate Gradient learning algorithm to design ground plane of the monopole antenna. Simulated 152 random ground plane arrays and obtained radiation patterns are used to train ANN for the ground plane design. If a user wants to manipulate radiation, artificial neural network gives the optimum ground plane design for the desired radiation direction and gain with 91.03% accuracy. Finally, one test antenna is fabricated and experimentally measured to support the results of the simulated one. The proposed ANN model approach can be easily used for antenna applications in the antenna industry.

Source

International Journal of RF and Microwave Computer-Aided Engineering

URI

https://doi.org/10.1002/mmce.22734
https://hdl.handle.net/20.500.12508/1722

Collections

  • Araştırma Çıktıları | Scopus İndeksli Yayınlar Koleksiyonu [1426]
  • Araştırma Çıktıları | Web of Science İndeksli Yayınlar Koleksiyonu [1468]
  • Makale Koleksiyonu [274]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@İSTE

by OpenAIRE
Advanced Search

sherpa/romeo
Dergi Adı / ISSN Yayıncı

Exact phrase only All keywords Any

Başlık İle Başlar İçerir ISSN


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed SourcesThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed Sources

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Iskenderun Technical University || OAI-PMH ||

Iskenderun Technical University, İskenderun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Iskenderun Technical University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@İSTE:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.