• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
teknoversite
Öğe Göster 
  •   DSpace Ana Sayfası
  • Fakülteler
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • Bilgisayar Mühendisliği
  • Makale Koleksiyonu
  • Öğe Göster
  •   DSpace Ana Sayfası
  • Fakülteler
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • Bilgisayar Mühendisliği
  • Makale Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep Learning-based Mammogram Classification for Breast Cancer

Thumbnail

Göster/Aç

Tam Metin / Full Text (257.9Kb)

Tarih

2020

Yazar

Altan, Gökhan

Üst veri

Tüm öğe kaydını göster

Künye

Altan, G. (2020). Deep Learning-based Mammogram Classification for Breast Cancer. International Journal of Intelligent Systems and Applications in Engineering, 8(4), 171 - 176.

Özet

Deep Learning (DL) is a rising field of researches in last decade by exposing a hybrid analysis procedure including advanced level image processing and many efficient supervised classifiers. Robustness of the DL algorithms to the big data enhances the analysis capabilities of machine learning models by feature learning on heterogeneous image database. In this paper, Convolutional Neural Network (CNN) architecture was proposed on simplified feature learning and fine-tuned classifier model to separate cancer-normal cases on mammograms. Breast Cancer is a prevalent and mortal disease appeared resultant mutating of normal tissue into tumor pathology. Mammograms are the common and effective tools for the diagnosis of breast cancer. DL-based computer-assisted systems have capability of detailed analysis for even small pathology that may lead the curing progress for a complete assessment. The proposed DL based model aimed at assessing the applicability of various feature-learning models and enhancing the learning capacity of the DL models for an operative breast cancer diagnosis using CNN. The mammograms were fed into the DL to evaluate the classification performances in accordance with various CNN architectures. The proposed Deep model achieved high classification performance rates of 92.84%, 95.30%, and 96.72% for accuracy, sensitivity, specificity, and precision, respectively.

Kaynak

International Journal of Intelligent Systems and Applications in Engineering

Cilt

8

Sayı

4

Bağlantı

https://hdl.handle.net/20.500.12508/1818

Koleksiyonlar

  • Araştırma Çıktıları | TR-Dizin İndeksli Yayınlar Koleksiyonu [666]
  • Makale Koleksiyonu [82]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Yönerge | Rehber | İletişim |

DSpace@İSTE

by OpenAIRE
Gelişmiş Arama

sherpa/romeo
Dergi Adı / ISSN Yayıncı

Exact phrase only All keywords Any

Başlık İle Başlar İçerir ISSN


Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim ŞekliİSTE Yazarına Göreİndekslendiği Kaynaklara GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim ŞekliİSTE Yazarına Göreİndekslendiği Kaynaklara Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Rehber|| Yönerge || Kütüphane || İskenderun Teknik Üniversitesi || OAI-PMH ||

İskenderun Teknik Üniversitesi, İskenderun, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
İskenderun Teknik Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@İSTE:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.