• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
teknoversite
View Item 
  •   DSpace Home
  • Fakülteler
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • Elektrik-Elektronik Mühendisliği
  • Makale Koleksiyonu
  • View Item
  •   DSpace Home
  • Fakülteler
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • Elektrik-Elektronik Mühendisliği
  • Makale Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A compact triband antipodal Vivaldi antenna with frequency selective surface inspired director for IoT/WLAN applications

Thumbnail

View/Open

Tam Metin / Full Text (1.086Mb)

Date

2021

Author

Güneş, Filiz
Evranos, İlhan Ömer
Belen, Mehmet Ali
Mahouti, Peyman
Palandöken, Merih

Metadata

Show full item record

Citation

Güneş, F., Evranos, İ.Ö., Belen, M.A. et al. (2021). A compact triband antipodal Vivaldi antenna with frequency selective surface inspired director for IoT/WLAN applications. Wireless Networks, 27 (5), pp. 3195-3205. https://doi.org/10.1007/s11276-021-02656-5

Abstract

In this paper, an antipodal triband Vivaldi antenna operating in 2.4/5.2/5.8 GHz bands has been presented for WLAN/IoT applications. The proposed antipodal Vivaldi antenna has meander line shaped slotted lines, which are structured on the edges of exponentially tapered antipodal metallic branches and frequency selective surface (FSS) inspired director in the front part of the exponentially tapered patches on both top and bottom sides of the substrate. The meander line shaped slots on the tapered antipodal metallic branches have been utilized to improve the impedance bandwidth whereas FSS inspired director has RF performance effect on the enhancement of the gain and suppression of the side lobe levels in WLAN/IoT frequency bands. This FSS inspired director has the structural geometries in the form of meta-material based FSS consisting of an array of the sub-wavelength rectangular patches. These FSS structures are designed by global and local optimization processes using fast and efficient meta-heuristic algorithms, honey bee mating optimization (HBMO) and Differential Evolutionary. The optimized antenna model has been prototyped with the use of 3D printed substrate material based on PLA Filament-Polar White RBX-PLA-WH002 having predetermined filling form factor to obtain the desired substrate permittivity in the operating frequency bands. The simulated results of the proposed antenna design are in good agreement with the measured results. Furthermore the experimental results verify that the propotyped antipodal Vivaldi antenna has better RF performance as compared with the counterpart alternative designs in the literature. It can be concluded that the proposed antipodal Vivaldi antenna is a promising candidate for WLAN/IoT applications with high RF performance and easy integration into the microwave circuits.

Source

Wireless Networks

Volume

27

Issue

5

URI

https://doi.org/10.1007/s11276-021-02656-5
https://hdl.handle.net/20.500.12508/1903

Collections

  • Araştırma Çıktıları | Scopus İndeksli Yayınlar Koleksiyonu [850]
  • Araştırma Çıktıları | Web of Science İndeksli Yayınlar Koleksiyonu [868]
  • Makale Koleksiyonu [167]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@İSTE

by OpenAIRE
Advanced Search

sherpa/romeo
Dergi Adı / ISSN Yayıncı

Exact phrase only All keywords Any

Başlık İle Başlar İçerir ISSN


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed SourcesThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed Sources

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Iskenderun Technical University || OAI-PMH ||

Iskenderun Technical University, İskenderun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Iskenderun Technical University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@İSTE:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.