• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
teknoversite
Öğe Göster 
  •   DSpace Ana Sayfası
  • Fakülteler
  • İşletme ve Yönetim Bilimleri Fakültesi
  • Yönetim Bilişim Sistemleri
  • Makale Koleksiyonu
  • Öğe Göster
  •   DSpace Ana Sayfası
  • Fakülteler
  • İşletme ve Yönetim Bilimleri Fakültesi
  • Yönetim Bilişim Sistemleri
  • Makale Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Phishing Detection System Using Extreme Learning Machines with Different Activation Function based on Majority Voting

Thumbnail

Göster/Aç

Tam Metin / Full Text (1.421Mb)

Tarih

2022

Yazar

Uçar, Murat

Üst veri

Tüm öğe kaydını göster

Künye

Uçar, M. (2022). Phishing Detection System Using Extreme Learning Machines with Different Activation Function based on Majority Voting. Politeknik Dergisi. https://doi.org/10.2339/politeknik.1098037

Özet

Phishing is a type of software-based cyber-attack carried out to steal private information such as login credentials, user passwords, and credit card information. When the security reports published in recent years are examined, it is seen that there are millions of phishing spoofing web pages. Therefore, in this study, it is aimed to develop an effective phishing detection model. In the study, an extreme learning machine based model using different activation functions such as sine, hyperbolic tangent function, rectified linear unit, leaky rectified linear unit and exponential linear unit was proposed and comparative analyses were made. In addition, the performances of the models when combined with the majority vote were also evaluated and it was seen that the highest accuracy value of 97.123% was obtained when the three most successful activation functions were combined with the majority vote. Experimental results show the effectiveness and applicability of the model proposed in the study.
 
Kimlik avı, oturum açma kimlik bilgileri, kullanıcı şifreleri, kredi kartı bilgileri gibi özel bilgileri çalmak amacıyla gerçekleştirilen yazılım tabanlı bir siber saldırı türüdür. Son yıllarda yayınlanan güvenlik raporları incelendiğinde milyonlarca kimlik avı sahteciliği yapan web sayfasının olduğu görülmektedir. Bu nedenle bu çalışmada etkili bir kimlik avı tespit modelinin geliştirilmesi amaçlanmıştır. Çalışmada sinüs, hiperbolik tanjant fonksiyonu, doğrultulmuş doğrusal birim, sızıntılı doğrultulmuş doğrusal birim ve üstel doğrusal birim gibi farklı aktivasyon fonksiyonlarının kullanıldığı aşırı öğrenme makineleri tabanlı bir model önerilmiş ve karşılaştırmalı analizler yapılmıştır. Ayrıca modellerin çoğunluk oyu ile birleştirildiğindeki performansları da değerlendirilmiş ve en yüksek doğruluk değerinin %97.123 ile en başarılı üç aktivasyon fonksiyonun çoğunluk oyu ile birleştirildiğinde elde edildiği görülmüştür. Deneysel sonuçlar, çalışmada önerilen modelin etkinliğini ve uygulanabilirliğini göstermektedir
 

Kaynak

Journal of Polytechnic
Politeknik Dergisi

Bağlantı

https://doi.org/10.2339/politeknik.1098037
https://hdl.handle.net/20.500.12508/2311
https://dergipark.org.tr/en/pub/politeknik/issue/33364/1098037

Koleksiyonlar

  • Araştırma Çıktıları | Web of Science İndeksli Yayınlar Koleksiyonu [1457]
  • Makale Koleksiyonu [16]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Yönerge | Rehber | İletişim |

DSpace@İSTE

by OpenAIRE
Gelişmiş Arama

sherpa/romeo
Dergi Adı / ISSN Yayıncı

Exact phrase only All keywords Any

Başlık İle Başlar İçerir ISSN


Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim ŞekliİSTE Yazarına Göreİndekslendiği Kaynaklara GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim ŞekliİSTE Yazarına Göreİndekslendiği Kaynaklara Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Rehber|| Yönerge || Kütüphane || İskenderun Teknik Üniversitesi || OAI-PMH ||

İskenderun Teknik Üniversitesi, İskenderun, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
İskenderun Teknik Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@İSTE:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.