• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
teknoversite
View Item 
  •   DSpace Home
  • Fakülteler
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • Metalurji ve Malzeme Mühendisliği
  • Makale Koleksiyonu
  • View Item
  •   DSpace Home
  • Fakülteler
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • Metalurji ve Malzeme Mühendisliği
  • Makale Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Surface integrity characteristics in wire-EDM of HfTaTiVZr refractory high entropy alloy

Thumbnail

View/Open

Tam Metin / Full Text (11.91Mb)

Date

2022

Author

Ceritbinmez, Ferhat
Günen, Ali
Akhtar, Mst Alpona
Patel, Kunjal
Mukherjee, Sundeep
Yünlü, Lokman
Kanca, Erdoğan

Metadata

Show full item record

Citation

Ceritbinmez, F., Günen, A., Akhtar, M.A., Patel, K., Mukherjee, S., Yünlü, L., Kanca, E. (2022). Surface integrity characteristics in wire-EDM of HfTaTiVZr refractory high entropy alloy, Advances in Materials and Processing Technologies. https://doi.org/10.1080/2374068X.2022.2130869

Abstract

Refractory high entropy alloys (RHEAs) with multiple principal elements constitute a new paradigm in alloy design and have gained recent interest for advanced technical applications due to their unique properties and mechanical stability at high temperatures. However, the refractory metals that make up these alloys are pretty expensive, and they cause RHEAs to exhibit low plasticity behaviour at room temperature. The high stability properties of RHEAs from room temperature to high temperatures limit their machinability with traditional cutting methods. Therefore, it is vitally important to economically machine these alloys while preserving their mechanical properties and minimising waste. For this purpose, in this study, the machinability of a HfTaTiVZr RHEA was evaluated with wire electric discharge machining (WEDM). The surface morphology, crack formation, and mechanical characteristics of the surface layer were investigated as a function of three different cutting conditions: rough cutting, semi-finishing, and finishing. The RHEA was precision cut in three passes by reducing the volume of material in each pass, resulting in better surface quality with the optimal cutting speed and metal removal rate. However, rough cutting gave better results than semi-finish and finished cutting processes in preserving mechanical properties.

Source

Advances in Materials and Processing Technologies

URI

https://doi.org/10.1080/2374068X.2022.2130869
https://hdl.handle.net/20.500.12508/2343

Collections

  • Araştırma Çıktıları | Scopus İndeksli Yayınlar Koleksiyonu [1057]
  • Araştırma Çıktıları | Web of Science İndeksli Yayınlar Koleksiyonu [1070]
  • Makale Koleksiyonu [106]
  • Makale Koleksiyonu [159]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@İSTE

by OpenAIRE
Advanced Search

sherpa/romeo
Dergi Adı / ISSN Yayıncı

Exact phrase only All keywords Any

Başlık İle Başlar İçerir ISSN


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed SourcesThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed Sources

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Iskenderun Technical University || OAI-PMH ||

Iskenderun Technical University, İskenderun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Iskenderun Technical University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@İSTE:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.