Basit öğe kaydını göster

dc.contributor.authorÜstün, İsmail
dc.contributor.authorÜneş, Fatih
dc.contributor.authorMert, İlker
dc.contributor.authorKarakuş, Cuma
dc.date.accessioned2022-12-07T08:13:11Z
dc.date.available2022-12-07T08:13:11Z
dc.date.issued2022en_US
dc.identifier.citationÜstün, İ., Üneş, F., Mert, İ., Karakuş, C. (2022). A comparative study of estimating solar radiation using machine learning approaches: DL, SMGRT, and ANFIS. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 44 (4), pp. 10322-10345. https://doi.org/10.1080/15567036.2020.1781301en_US
dc.identifier.urihttps://doi.org/10.1080/15567036.2020.1781301
dc.identifier.urihttps://hdl.handle.net/20.500.12508/2409
dc.description.abstractSolar energy has a key role in producing clean and emissions-free power compare to conventional methods. However, sustainable development also requires a reliable and predictable energy source. It also needs methods to measure and predict predictable supply. The main aim of the study is to improve reliable and precise solar radiation prediction models on monthly mean daily basis using various machine learning techniques. Simple Membership Function and Fuzzy Rule Generating Technique (SMGRT), which does not require error and trial for model adjustment, is the first-choice model in this study. Experience and observations about the model will greatly reduce the volume of processing for the fuzzy SMGRT model. On the other hand, Deep Learning (DL) and Adaptive Neuro-Fuzzy Inference System (ANFIS) have become increasingly popular in understanding nonlinear data structures and solving complex problems. Therefore, DL and ANFIS were also applied to estimate solar radiation. The data set used in the study were created using sunshine duration (s), extra-terrestrial solar radiation (H0), relative humidity (RH), cloudiness (C), air temperature (T) and soil temperature (ST) parameters. Estimation performance of models was evaluated by using several statistical indicators which are Mean Bias Error (MBE), Mean Square Error (MSE), Root Mean Square Error (RMSE), and Correlation Coefficient (R2). When the performances of the models were compared, it was seen that all three models obtained remarkable results. In addition, it was shown that the models performed well based on the metrics in the testing phase. The SMGRT model has slightly better performance than DL and ANFIS for different input combinations. SMGRT Model 1 (with inputs H0, s, and T) shows the best statistical performance (MBE = 0.156, MSE = 1.878, RMSE = 1.371, and R2 = 0.960) not only in SMGRT models but also in others.en_US
dc.language.isoengen_US
dc.publisherTaylor and Francis Ltd.en_US
dc.relation.isversionof10.1080/15567036.2020.1781301en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectANFISen_US
dc.subjectDeep learningen_US
dc.subjectMachine learningen_US
dc.subjectSMGRTen_US
dc.subjectSolar radiationen_US
dc.subject.classificationDiffuse Solar Radiation
dc.subject.classificationClear Sky
dc.subject.classificationPrediction
dc.subject.classificationEnergy & Fuels
dc.subject.classificationEngineering
dc.subject.classificationEnvironmental Sciences & Ecology
dc.subject.classificationElectrical Engineering, Electronics & Computer Science - Power Systems & Electric Vehicles - MPPT
dc.subject.otherDeep learning
dc.subject.otherErrors
dc.subject.otherFuzzy inference
dc.subject.otherFuzzy neural networks
dc.subject.otherFuzzy systems
dc.subject.otherLearning systems
dc.subject.otherMembership functions
dc.subject.otherSolar energy
dc.subject.otherSolar radiation
dc.subject.otherWell testing
dc.subject.otherAdaptive neuro-fuzzy inference
dc.subject.otherAdaptive neuro-fuzzy inference system
dc.subject.otherDeep learning
dc.subject.otherMachine-learning
dc.subject.otherMean bias errors
dc.subject.otherMeans square errors
dc.subject.otherNeuro-fuzzy inference systems
dc.subject.otherPerformance
dc.subject.otherRoot mean square errors
dc.subject.otherSMGRT
dc.subject.otherMean square error
dc.subject.otherArtificial-intelligence methods
dc.subject.otherFuzzy inference system
dc.subject.otherEmpirical-models
dc.subject.otherPrediction
dc.subject.otherAnn
dc.subject.otherPerformance
dc.subject.otherVariables
dc.titleA comparative study of estimating solar radiation using machine learning approaches: DL, SMGRT, and ANFISen_US
dc.typearticleen_US
dc.relation.journalEnergy Sources, Part A: Recovery, Utilization and Environmental Effectsen_US
dc.contributor.departmentMühendislik ve Doğa Bilimleri Fakültesi -- Makina Mühendisliği Bölümüen_US
dc.contributor.departmentMühendislik ve Doğa Bilimleri Fakültesi -- İnşaat Mühendisliği Bölümü
dc.identifier.volume44en_US
dc.identifier.issue4en_US
dc.identifier.startpage10322en_US
dc.identifier.endpage10345en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.isteauthorÜstün, İsmail
dc.contributor.isteauthorÜneş, Fatih
dc.contributor.isteauthorKarakuş, Cuma
dc.relation.indexWeb of Science - Scopusen_US
dc.relation.indexWeb of Science Core Collection - Science Citation Index Expanded


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster