• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
teknoversite
Öğe Göster 
  •   DSpace Ana Sayfası
  • Fakülteler
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • Bilgisayar Mühendisliği
  • Makale Koleksiyonu
  • Öğe Göster
  •   DSpace Ana Sayfası
  • Fakülteler
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • Bilgisayar Mühendisliği
  • Makale Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Yaprak Sınıflandırmak için Yeni Bir Evrişimli Sinir Ağı Modeli Geliştirilmesi

Thumbnail

Göster/Aç

Tam Metin / Full Text (1.022Mb)

Tarih

2021

Yazar

Camgözlü, Yunus
Kutlu, Yakup

Üst veri

Tüm öğe kaydını göster

Künye

Camgözlü, Y. & Kutlu, Y. (2021). Yaprak Sınıflandırmak için Yeni Bir Evrişimli Sinir Ağı Modeli Geliştirilmesi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 8 (2), 567-574. https://doi.org/10.35193/bseufbd.887643

Özet

Doğanın bir parçası olan bitkiler çevremize güzellik katmanın yanı sıra alternatif tıp gibi farklı sebep için de kullanılmaktadır. Bu gibi uzmanlık gerektiren durumlarda halk arasında yayılan yanlış bilgilerle zehirli bitkilerin şifalı olduğu düşünülerek kullanılması ölüme kadar gidebilecek sorunlara yol açmaktadır. Bu çalışmada yapay zeka teknikleri kullanılarak yaprak görüntülerindeki yaprak türlerinin belirlendiği bir sistem aracılığıyla bu sorunlara çözüm sağlanması amaçlanmaktadır. Son zamanlarda yaygın olarak kullanılan yapay zeka tekniklerinden biri olan evrişimli sinir ağı kullanılmıştır. Çok katmanlı yapısı, birçok parametreye sahip olması ve çok fazla ön işlem gerektirmeden öznitelik öğrenebilmesi, birçok çalışmada kullanılmasının nedenlerinden biridir. Bu çalışmada, sabit bir arka plana sahip yaprak görüntülerinden oluşan 5 farklı veri seti ile evrişimli sinir ağının eğitimi ayrı ayrı yapılmış ve bu eğitim sonucu parametrelerin eğitime olan etkisi incelenmiştir. Bu veri setlerinin birleştirilmesiyle elde edilen 270 türden oluşan birleştirilmiş bir veri seti oluşturulmuştur. Evrişimli sinir ağı ile genel amaçlı bir yaprak sınıflandırma modeli elde edilmiştir. Sınıflandırma işlemi ile elde edilen sonuçlar literatürdeki çalışmalar ile karşılaştırılmıştır.
 
Plants, which are a part of nature, are used for different reasons, such as alternative medicine as well as adding beauty to our environment. In such cases requiring expertise, the misinformation spread among the public and the use of poisonous plants considering that they are medicinal causes problems that can go up to death. In this study, it is aimed to solve these problems through a system that determines the species of leaves in leaf images using artificial intelligence techniques. Convolutional Neural Network (CNN), one of the most widely used artificial intelligence techniques, has been used recently. Its multi-layer structure, having many parameters and being able to learn features without requiring too much pre-processing is one of the reasons why it is used in many studies. In this study, the training of the convolutional neural network was carried out separately with 5 different data sets consisting of leaf images with a fixed background, and the effect of these training parameters on training was investigated. A combined data set consisting of 270 species obtained by combining these data sets was created. A general purpose leaf classification model is obtained with convolutional neural network. The results obtained by the classification process were compared with the studies in the literature.
 

Kaynak

Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi

Cilt

8

Sayı

2

Bağlantı

https://doi.org/10.35193/bseufbd.887643
https://dergipark.org.tr/tr/pub/bseufbd/issue/66254/887643
https://hdl.handle.net/20.500.12508/2526

Koleksiyonlar

  • Araştırma Çıktıları | TR-Dizin İndeksli Yayınlar Koleksiyonu [666]
  • Makale Koleksiyonu [82]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Yönerge | Rehber | İletişim |

DSpace@İSTE

by OpenAIRE
Gelişmiş Arama

sherpa/romeo
Dergi Adı / ISSN Yayıncı

Exact phrase only All keywords Any

Başlık İle Başlar İçerir ISSN


Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim ŞekliİSTE Yazarına Göreİndekslendiği Kaynaklara GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim ŞekliİSTE Yazarına Göreİndekslendiği Kaynaklara Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Rehber|| Yönerge || Kütüphane || İskenderun Teknik Üniversitesi || OAI-PMH ||

İskenderun Teknik Üniversitesi, İskenderun, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
İskenderun Teknik Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@İSTE:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.