• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
teknoversite
View Item 
  •   DSpace Home
  • Meslek Yüksekokulları
  • İskenderun Meslek Yüksekokulu
  • Bilgisayar Programcılığı
  • Makale Koleksiyonu
  • View Item
  •   DSpace Home
  • Meslek Yüksekokulları
  • İskenderun Meslek Yüksekokulu
  • Bilgisayar Programcılığı
  • Makale Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Classification of EEG Signals in DepressedPatients

Thumbnail

View/Open

Tam Metin / Full Text (725.8Kb)

Date

2020

Author

Eraldemir, Server Göksel
Kılıç, Ümit
Keleş, Mümine Kaya
Demirkol, Mehmet Emin
Yıldırım, Esen
Tamam, Lut

Metadata

Show full item record

Citation

Eraldemir, S. G., Kılıç, Ü., Kaya Keleş, M., Demirkol, M. E., Yıldırım, E. & Tamam, L. (2020). Classification of EEG Signals in Depressed Patients. Balkan Journal of Electrical and Computer Engineering, 8 (1), 103-107. https://doi.org/10.17694/bajece.631951

Abstract

Electroencephalography (EEG) are electrical signals that occur in every activity of the brain. Investigation of normal and abnormal changes that take place in the human brain using EEG signals is a widely used method in recent years. The World Health Organization (WHO) states that one of the most important health problems in today's society is depressive disorders. Nowadays, various scales are used in the diagnosis of depressive disorder in individuals. These scales are based on the declaration of the individual. In recent studies, EEG has been used as a biomarker for the diagnosis of depression. In this study, EEG signals from 30 patients with clinical depressive disorder have been recorded. EEG signals have been collected for 1 minute with eyes open and closed. The collected data have been divided into attributes by continuous wavelet transform which is used in many studies in processing non-stationary signals such as EEG. Obtained attributes have been classified with kNN classification method. As a result, it was observed that EEG signals, collected from subjects with depression while eyes are open and closed, can be classified with an accuracy of 91.30%.

Source

Balkan Journal of Electrical and Computer Engineering

Volume

8

Issue

1

URI

https://doi.org/10.17694/bajece.631951
https://dergipark.org.tr/tr/pub/bajece/issue/52149/631951
https://hdl.handle.net/20.500.12508/2541

Collections

  • Araştırma Çıktıları | TR-Dizin İndeksli Yayınlar Koleksiyonu [666]
  • Makale Koleksiyonu [1]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@İSTE

by OpenAIRE
Advanced Search

sherpa/romeo
Dergi Adı / ISSN Yayıncı

Exact phrase only All keywords Any

Başlık İle Başlar İçerir ISSN


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed SourcesThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed Sources

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Iskenderun Technical University || OAI-PMH ||

Iskenderun Technical University, İskenderun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Iskenderun Technical University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@İSTE:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.