• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
teknoversite
View Item 
  •   DSpace Home
  • Fakülteler
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • İnşaat Mühendisliği
  • Bildiri & Sunum Koleksiyonu
  • View Item
  •   DSpace Home
  • Fakülteler
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • İnşaat Mühendisliği
  • Bildiri & Sunum Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Evapotranspiration estimation using support vector machines and Hargreaves-Samani equation for St. Johns, FL, USA

Thumbnail

View/Open

Tam Metin / Full Text (669.6Kb)

Date

2017

Author

Üneş, Fatih
Kaya, Yunus Ziya
Mamak, Mustafa
Demirci, Mustafa

Metadata

Show full item record

Citation

Uneş, F., Kaya, Y. Z., Mamak, M., Demirci, M. (2017). Evapotranspiration estimation using support vector machines and Hargreaves-Samani equation for St. Johns, FL, USA. 10th International Conference on Environmental Engineering, ICEE 2017, enviro.2017.094. doi: 10.3846/enviro.2017.094

Abstract

Information about Evapotranspiration (ET) calculations are not clear enough even it is an important part of hydrological cycle. There are many parameters which effect ET directly or indirectly such as Solar Radiation (SR) and Air Temperature (AT). In this study authors focused on the modelling ET using Support Vector Machines (SVM) method because this method has abilities to solve nonlinear problems. For the training SVM 1158 daily AT, SR, Wind Speed (U) and Relative Humidity (RH) meteorological parameters are used and model is tested using 385 daily parameters. Data set is taken from St. Johns, Florida, USA weather station. To understand the abilities of SVM for ET prediction against Hargreaves-Samani formula, the test set is applied to this empirical equation. Determination coefficient of SVM with observed daily ET values is calculated as 0.913 and determination coefficient of Hargreaves-Samani formula with observed daily ET is found as 0.910. Comparison between both methods is done using Mean Square Error (MSE), Mean Absolute Error (MEA) and determination coefficient statistics. As a result it is seen that SVM method is trustier than Hargreaves-Samani formula for daily ET prediction. © 2017 Fatih Üneş, Yunus Ziya Kaya, Mustafa Mamak, Mustafa Demirci. Published by VGTU Press. This is an open-access article distributed under the terms of the Creative Commons Attribution (CC BY-NC 4.0) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Source

10th International Conference on Environmental Engineering, ICEE 2017

URI

https://doi.org/10.3846/enviro.2017.094
https://hdl.handle.net/20.500.12508/510

Collections

  • Araştırma Çıktıları | Scopus İndeksli Yayınlar Koleksiyonu [1420]
  • Bildiri & Sunum Koleksiyonu [5]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@İSTE

by OpenAIRE
Advanced Search

sherpa/romeo
Dergi Adı / ISSN Yayıncı

Exact phrase only All keywords Any

Başlık İle Başlar İçerir ISSN


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed SourcesThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed Sources

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Iskenderun Technical University || OAI-PMH ||

Iskenderun Technical University, İskenderun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Iskenderun Technical University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@İSTE:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.