Basit öğe kaydını göster

dc.contributor.authorMalloy, James
dc.contributor.authorMantey, Kevin
dc.contributor.authorMaximenko, Yulia
dc.contributor.authorBahçeci, Ersin
dc.contributor.authorMorgan, Huw
dc.contributor.authorYamani, Zain
dc.contributor.authorBoparai, Jack
dc.contributor.authorPuthalath, Krithik
dc.contributor.authorNayfeh, Munir Hasan
dc.date.accessioned12.07.201910:50:10
dc.date.accessioned2019-07-12T22:06:08Z
dc.date.available12.07.201910:50:10
dc.date.available2019-07-12T22:06:08Z
dc.date.issued2018
dc.identifier.citationMalloy, J., Mantey, K., Maximenko, Y., Bahceci, E., Morgan, H., Yamani, Z., Boparai, J., Puthalath, K., Nayfeh, M.H. (2018). Experimental and theoretical study of ultraviolet-induced structural/optical instability in nano silicon-based luminescence. Journal of Applied Physics, 124 (4), art. no. 044501. https://doi.org/10.1063/1.5027307en_US
dc.identifier.issn0021-8979
dc.identifier.issn1089-7550
dc.identifier.urihttps://doi.org/10.1063/1.5027307
dc.identifier.urihttps://hdl.handle.net/20.500.12508/649
dc.descriptionWOS: 000440607800023en_US
dc.description.abstractNano silicon is emerging as an active element for UV applications due to quantum confinement-induced widening of the Si bandgap, amenability to integration on Si, and less sensitivity to temperature. NanoSi-based UV applications include deep space exploration, high temperature propulsion, solar photovoltaics, and particle detection in high energy accelerators. However, the viability of the technology is limited by a complex nanoSi optical quenching instability. Here, we examined the time dynamics of UV-induced luminescence of sub 3-nm nanoSi. The results show that luminescence initially quenches, but it develops a stability at similar to 50% level with a time characteristic of minutes. Upon isolation, partial luminescence recovery/reversibility occurs with a time characteristics of hours. To discern the origin of the instability, we perform first principles atomistic calculations of the molecular/electronic structure in 1-nm Si particles as a function of Si structural bond expansion, using time dependent density functional theory, with structural relaxation applied in both ground and excited states. For certain bond expansion/relaxation, the results show that the low-lying triplet state dips below the singlet ground state, providing a plausible long-lasting optical trap that may account for luminescence quenching as well as bond cleavage and irreversibility. Time dynamics of device-operation that accommodates the quenching/recovery time dynamics is suggested as a means to alleviate the instability and allow control of recovery, which promises to make it an effective alternative to UV-enhanced Si or metal-based wide-bandgap sensing technology. Published by AIP Publishing.en_US
dc.language.isoengen_US
dc.publisherAmerican Institute of Physics Inc.en_US
dc.relation.isversionof10.1063/1.5027307en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subject.classificationPhysicsen_US
dc.subject.classificationApplieden_US
dc.subject.classificationSilicon | Quantum Dot | Photoluminescenceen_US
dc.subject.otherThin-filmen_US
dc.subject.otherElectronic-structureen_US
dc.subject.otherAmorphous-siliconen_US
dc.subject.otherUv photodetectorsen_US
dc.subject.otherSurface-statesen_US
dc.subject.otherOxideen_US
dc.subject.otherCalculationsen_US
dc.subject.otherChemical bondsen_US
dc.subject.otherDensity functional theoryen_US
dc.subject.otherDynamicsen_US
dc.subject.otherEnergy gapen_US
dc.subject.otherGround stateen_US
dc.subject.otherHigh temperature applicationsen_US
dc.subject.otherInterplanetary flighten_US
dc.subject.otherLuminescenceen_US
dc.subject.otherMetal recoveryen_US
dc.subject.otherQuenchingen_US
dc.subject.otherSiliconen_US
dc.subject.otherSolar power generationen_US
dc.subject.otherSpace researchen_US
dc.subject.otherStabilityen_US
dc.subject.otherAtomistic calculationsen_US
dc.subject.otherDeep-space explorationen_US
dc.subject.otherHigh-energy acceleratoren_US
dc.subject.otherLuminescence quenchingen_US
dc.subject.otherSensitivity to temperaturesen_US
dc.subject.otherSinglet ground stateen_US
dc.subject.otherTime characteristicsen_US
dc.subject.otherTime dependent density functional theoryen_US
dc.subject.otherSilicon alloysen_US
dc.titleExperimental and theoretical study of ultraviolet-induced structural/optical instability in nano silicon-based luminescenceen_US
dc.typearticleen_US
dc.relation.journalJournal of Applied Pyhsicsen_US
dc.contributor.departmentMühendislik ve Doğa Bilimleri Fakültesi -- Metalurji ve Malzeme Mühendisliği Bölümüen_US
dc.contributor.authorID0000-0002-7719-6051en_US
dc.identifier.volume124en_US
dc.identifier.issue4en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.isteauthorBahçeci, Ersinen_US
dc.relation.indexWeb of Science - Scopusen_US
dc.relation.indexWeb of Science Core Collection - Science Citation Index Expandeden_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster