THE BOOLE POLYNOMIALS ASSOCIATED WITH THE p-ADIC GAMMA FUNCTION

Ugur Duran and Mehmet Acikgoz

Abstract

We set some correlations between Boole polynomials and p-adic gamma function in conjunction with p-adic Euler contant. We develop diverse formulas for p-adic gamma function by means of their Mahler expansion and fermionic p-adic integral on \mathbb{Z}_{p}. Also, we acquire two fermionic p-adic integrals of p-adic gamma function in terms of Boole numbers and polynomials. We then provide fermionic p-adic integral of the derivative of p-adic gamma function and a representation for the p-adic Euler constant by means of the Boole polynomials. Furthermore, we investigate an explicit representation for the aforesaid constant covering Stirling numbers of the first kind.

1. Introduction

Let $\mathbb{N}:=\{1,2,3, \cdots\}$ and $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$. Throughout this paper, \mathbb{Z} denotes the set of integers, \mathbb{R} denotes the set of real numbers and \mathbb{C} denotes the set of complex numbers. Let p be chosen as an odd fixed prime number. The symbols $\mathbb{Z}_{p}, \mathbb{Q}_{p}$ and \mathbb{C}_{p} denote the ring of p-adic integers, the field of p-adic numbers and the completion of an algebraic closure of \mathbb{Q}_{p}, respectively. The normalized absolute value according to the theory of p-adic analysis is given by $|p|_{p}=p^{-1}$ (for details $\mathbf{1} \mathbf{1 2}$; see also the related references cited therein).

The fermionic p-adic integral on \mathbb{Z}_{p} of a function

$$
f \in C\left(\mathbb{Z}_{p}\right)=\left\{f \mid f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p} \text { be a continuous function }\right\}
$$

is defined [5, $\mathbf{1 2}$] as follows:

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}} f(x) d \mu_{-1}(x)=\lim _{N \rightarrow \infty} \frac{1}{p^{N}} \sum_{k=0}^{p^{N}-1}(-1)^{k} f(k) \tag{1.1}
\end{equation*}
$$

[^0]By (1.1), the following integral equation holds true, see [1, 2, 5, 7:

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}} f(x+1) d \mu_{-1}(x)+\int_{\mathbb{Z}_{p}} f(x) d \mu_{-1}(x)=2 f(0) \tag{1.2}
\end{equation*}
$$

which intensely holds usability in introducing assorted generalizations of many special polynomials such as Euler, Genocchi, Frobenius-Euler and Changhee polynomials, see [1, 2, 4, 12.

The familiar Boole polynomials $\mathrm{Bl}_{n}(x)$ of the first kind are defined by means of the following generating function (7):

$$
\begin{equation*}
\sum_{n=0}^{\infty} \operatorname{Bl}_{n}(x \mid \omega) \frac{t^{n}}{n!}=\frac{1}{1+(1+t)^{\omega}}(1+t)^{x}=\int_{\mathbb{Z}_{p}}(1+t)^{x+\omega y} d \mu_{-1}(y) \tag{1.3}
\end{equation*}
$$

When $\omega=1$, we have $\mathrm{Bl}_{n}(x \mid 1):=2^{-1} \mathrm{Ch}_{n}(x)$ which are the Changhee polynomials given by the following generating function to be [6]

$$
\begin{equation*}
\sum_{n=0}^{\infty} \mathrm{Ch}_{n}(x) \frac{t^{n}}{n!}=\frac{2}{2+t}(1+t)^{x} \tag{1.4}
\end{equation*}
$$

In the case $x=0$ in the (1.4), one can get $\mathrm{Ch}_{n}(0):=\mathrm{Ch}_{n}$ standing for n-th Changhee number [3, 8 .

The Boole polynomials of the first kind can be represented by

$$
\begin{equation*}
\operatorname{Bl}_{n}(x \mid \omega)=2^{-1} \int_{\mathbb{Z}_{p}}(x+\omega y)_{n} d \mu_{-1}(y) \tag{1.5}
\end{equation*}
$$

where $(x)_{n}$ is a falling factorial given by $\mathbf{1}, \mathbf{3}, \mathbf{8}, \mathbf{9}$

$$
\begin{equation*}
(x)_{n}=x(x-1)(x-2) \cdots(x-n+1) . \tag{1.6}
\end{equation*}
$$

In the special case, $\mathrm{Bl}_{n}(0 \mid \omega):=\mathrm{Bl}_{n}(\omega)$ is called n-th Boole number.
The Boole polynomials of the second kind are defined by means of the following fermionic p-adic integral, see [6]:

$$
\begin{equation*}
\sum_{n=0}^{\infty} \widehat{\mathrm{Bl}}_{n}(x \mid \omega) \frac{t^{n}}{n!}=\frac{1}{2} \int_{\mathbb{Z}_{p}}(1+t)^{x-\omega y} d \mu_{-1}(y)=\frac{(1+t)^{\omega}}{1+(1+t)^{\omega}}(1+t)^{x} \tag{1.7}
\end{equation*}
$$

which also means

$$
\begin{equation*}
\widehat{\mathrm{B}}_{n}(x \mid \omega)=2^{-1} \int_{\mathbb{Z}_{p}}(x-\omega y)_{n} d \mu_{-1}(y) \tag{1.8}
\end{equation*}
$$

When $x=0$, we have $\widehat{\mathrm{Bl}}_{n}(0 \mid \omega):=\widehat{\mathrm{Bl}}_{n}(\omega)$ which is called the Boole numbers of the second kind [6].

In recent years, the Boole and the Changhee polynomials with their several generalizations studied and developed by a lot of mathematicians possess various applications in p-adic analysis, see $[2,4,6,7]$ and also references cited therein.

Formula (1.6) satisfies the following identity:

$$
\begin{equation*}
(x)_{n}=\sum_{k=0}^{n} S_{1}(n, k) x^{k} \tag{1.9}
\end{equation*}
$$

where $S_{1}(n, k)$ denotes the Stirling numbers of the first kind $\mathbf{1}, \mathbf{2}, 4, \mathbf{6}$.
The following relation holds true for $n \geqslant 0$:

$$
\int_{\mathbb{Z}_{p}}\binom{x+\omega y}{n} d \mu_{-1}(y)=\sum_{m=0}^{n} \omega^{m} S_{1}(n, m) E_{m}\left(\frac{x}{\omega}\right),
$$

where $E_{m}(x / \omega)$ denotes m-th Euler polynomials with the value x / ω defined by [6]

$$
\sum_{n=0}^{\infty} E_{n}(y) \frac{t^{n}}{n!}=\int_{\mathbb{Z}_{p}}(x+y)^{n} d \mu_{-1}(x)=\frac{2}{e^{t}+1} e^{y t}
$$

Note that when $y=0$, we have $E_{n}(0):=E_{n}$ called n-th Euler number (see 6]).
In this paper, we investigate several relations for p-adic gamma function by means of their Mahler expansion and fermionic p-adic integral on \mathbb{Z}_{p}. We also derived two fermionic p-adic integrals of p-adic gamma function in terms of Boole polynomials and numbers. Moreover, we discover fermionic p-adic integral of the derivative of p-adic gamma function. We acquire a representation for the p-adic Euler constant by means of the Boole polynomials. We finally develop a novel, explicit and interesting representation for the p-adic Euler constant covering Stirling numbers of the first kind.

2. The Boole polynomials related to \boldsymbol{p}-adic gamma function

Throughout this paper, we suppose that $t \in \mathbb{C}_{p}$ with $|t|_{p}<p^{1 / 1-p}$. In this part, we perform to derive some relationships among the two types of Boole polynomials, p-adic gamma function and p-adic Euler constant by making use of the Mahler expansion of the p-adic gamma function.

The p-adic gamma function (see $[3,4,11$) is given by

$$
\Gamma_{p}(x)=\lim _{n \rightarrow x}(-1)^{n} \prod_{\substack{j<n \\(p, j)=1}} j \quad\left(x \in \mathbb{Z}_{p}\right)
$$

where n approaches x through positive integers.
The p-adic Euler constant γ_{p} is given by

$$
\begin{equation*}
\gamma_{p}:=-\frac{\Gamma_{p}^{\prime}(1)}{\Gamma_{p}(0)}=\Gamma_{p}^{\prime}(1)=-\Gamma_{p}^{\prime}(0) \tag{2.1}
\end{equation*}
$$

The p-adic gamma function in conjunction with its various generalizations and p adic Euler constant have been investigated and studied by many mathematicians, [3, 4, 11; see also the references cited in each of these earlier works.

For $x \in \mathbb{Z}_{p}$, the symbol $\binom{x}{n}$ is given by

$$
\binom{x}{0}=1 \text { and }\binom{x}{n}=\frac{x(x-1) \cdots(x-n+1)}{n!} \quad(n \in \mathbb{N}) .
$$

Let $x \in \mathbb{Z}_{p}$ and $n \in \mathbb{N}$. The functions $x \rightarrow\binom{x}{n}$ form an orthonormal base of the space $C\left(\mathbb{Z}_{p} \rightarrow \mathbb{C}_{p}\right)$ with respect to the Euclidean norm $|\cdot|_{\infty}$. The mentioned
orthonormal base satisfy the formula

$$
\begin{equation*}
\binom{x}{n}^{\prime}=\sum_{j=0}^{n-1} \frac{(-1)^{n-j-1}}{n-j}\binom{x}{j} \quad(\text { see [9] and [1] }) . \tag{2.2}
\end{equation*}
$$

Kurt Mahler, German mathematician, provided an extension for continuous maps of a p-adic variable using the special polynomials as binomial coefficient polynomial $\mathbf{9}$] in 1958 as follows.

Theorem 2.1. [9] Every continuous function $f: \mathbb{Z}_{p} \rightarrow \mathbb{C}_{p}$ can be written in the form

$$
f(x)=\sum_{n=0}^{\infty} a_{n}\binom{x}{n}
$$

for all $x \in \mathbb{Z}_{p}$, where $a_{n} \in \mathbb{C}_{p}$ and $a_{n} \rightarrow 0$ as $n \rightarrow \infty$.
The base $\left\{\binom{*}{n}: n \in \mathbb{N}\right\}$ is termed as Mahler base of the space $C\left(\mathbb{Z}_{p} \rightarrow \mathbb{C}_{p}\right)$, and the components $\left\{a_{n}: n \in \mathbb{N}\right\}$ in $f(x)=\sum_{n=0}^{\infty} a_{n}\binom{x}{n}$ are called Mahler coefficients of $f \in C\left(\mathbb{Z}_{p} \rightarrow \mathbb{C}_{p}\right)$. The Mahler expansion of the p-adic gamma function Γ_{p} and its Mahler coefficients are given in [11 as follows.

Proposition 2.1. For $x \in \mathbb{Z}_{p}$, let $\Gamma_{p}(x+1)=\sum_{n=0}^{\infty} a_{n}\binom{x}{n}$ be Mahler series of Γ_{p}. Then its coefficients satisfy the following expression:

$$
\sum_{n \geqslant 0}(-1)^{n+1} a_{n} \frac{x^{n}}{n!}=\frac{1-x^{p}}{1-x} \exp \left(x+\frac{x^{p}}{p}\right) .
$$

The fermionic p-adic integral on \mathbb{Z}_{p} of the p-adic gamma function via Eq. and Proposition 2.1 is as follows.

Theorem 2.2. The following identity holds true for $n \in \mathbb{N}$:

$$
\int_{\mathbb{Z}_{p}} \Gamma_{p}(\omega x+1) d \mu_{-1}(x)=2 \sum_{n=0}^{\infty} \frac{a_{n}}{n!} \mathrm{Bl}_{n}(\omega),
$$

where a_{n} is given by Proposition 2.1,
Proof. For $x, \omega \in \mathbb{Z}_{p}$, by Proposition [2.1] we get

$$
\int_{\mathbb{Z}_{p}} \Gamma_{p}(\omega x+1) d \mu_{-1}(x)=\sum_{n=0}^{\infty} a_{n} \int_{\mathbb{Z}_{p}}\binom{\omega x}{n} d \mu_{-1}(x)
$$

and using (1.5), we acquire

$$
\int_{\mathbb{Z}_{p}} \Gamma_{p}(\omega x+1) d \mu_{-1}(x)=\sum_{n=0}^{\infty} \frac{2 a_{n}}{n!} \mathrm{Bl}_{n, 1}(\omega),
$$

which gives the asserted result.
We here present another fermionic p-adic integral of the p-adic gamma function related to the Boole polynomials as follows.

THE BOOLE POLYNOMIALS ASSOCIATED WITH THE p-ADIC GAMMA FUNCTION 109

Theorem 2.3. Let $x, y, \omega \in \mathbb{Z}_{p}$. We have

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}} \Gamma_{p}(x+\omega y+1) d \mu_{-1}(y)=2 \sum_{n=0}^{\infty} \frac{a_{n}}{n!} \operatorname{Bl}_{n}(x \mid \omega), \tag{2.3}
\end{equation*}
$$

where a_{n} is given by Proposition 2.1.
Proof. For $x, y, \omega \in \mathbb{Z}_{p}$, by the relation $\binom{x+\omega y}{n}=\frac{(x+\omega y)_{n}}{n!}$ and Proposition 2.1. we get

$$
\begin{aligned}
\int_{\mathbb{Z}_{p}} \Gamma_{p}(x+\omega y+1) d \mu_{-1}(y) & =\int_{\mathbb{Z}_{p}} \sum_{n=0}^{\infty} a_{n} \frac{(x+\omega y)_{n}}{n!} d \mu_{-1}(y) \\
& =\sum_{n=0}^{\infty} a_{n} \frac{1}{n!} \int_{\mathbb{Z}_{p}}(x+\omega y)_{n} d \mu_{-1}(y)
\end{aligned}
$$

which is the desired result (2.3) via (1.3).
A relation between $\Gamma_{p}(x)$ and $\widehat{\mathrm{Bl}}_{n}(x \mid \omega)$ is stated by the following theorem.
Theorem 2.4. For $x, y, \omega \in \mathbb{Z}_{p}$, we have

$$
\int_{\mathbb{Z}_{p}} \Gamma_{p}(x-\omega y+1) d \mu_{-1}(y)=2 \sum_{n=0}^{\infty} a_{n} \frac{\widehat{\mathrm{~B}} l_{n}(x \mid \omega)}{n!}
$$

where a_{n} is given by Proposition 2.1,
Proof. For $x, y, \omega \in \mathbb{Z}_{p}$, by the relation $\binom{x-\omega y}{n}=\frac{(x-\omega y)_{n}}{n!}$ and Proposition 2.1, we get

$$
\begin{aligned}
\int_{\mathbb{Z}_{p}} \Gamma_{p}(x-\omega y+1) d \mu_{-1}(y) & =\int_{\mathbb{Z}_{p}} \sum_{n=0}^{\infty} a_{n} \frac{(x-\omega y)_{n}}{n!} d \mu_{-1}(y) \\
& =\sum_{n=0}^{\infty} a_{n} \frac{1}{n!} \int_{\mathbb{Z}_{p}}(x-\omega y)_{n} d \mu_{-1}(y)
\end{aligned}
$$

which is the desired result thanks to (1.8).
A consequence of Theorem 2.4 is given by the following corollary.
Corollary 2.1. Upon setting $x=0$ in Theorem 2.4 gives the following relation for Γ_{p} and $\widehat{\mathrm{Bl}}_{n}(\omega)$:

$$
\int_{\mathbb{Z}_{p}} \Gamma_{p}(-\omega y+1) d \mu_{-1}(y)=2 \sum_{n=0}^{\infty} a_{n} \frac{\widehat{\mathrm{~B}} l_{n}(\omega)}{n!}
$$

where a_{n} is given by Proposition 2.1.
Here is the fermionic p-adic integral of the derivative of the p-adic gamma function.

Theorem 2.5. For $x, y, \omega \in \mathbb{Z}_{p}$, we have

$$
\int_{\mathbb{Z}_{p}} \Gamma_{p}^{\prime}(x+\omega y+1) d \mu_{-1}(y)=2 \sum_{n=0}^{\infty} \sum_{j=0}^{n-1} a_{n} \frac{(-1)^{n-j-1} \mathrm{Bl}_{j}(x \mid \omega)}{(n-j) j!}
$$

Proof. In view of Proposition [2.1] we obtain

$$
\begin{aligned}
\int_{\mathbb{Z}_{p}} \Gamma_{p}^{\prime}(x+\omega y+1) d \mu_{-1}(y) & =\int_{\mathbb{Z}_{p}} \sum_{n=0}^{\infty} a_{n}\binom{x+\omega y}{n}^{\prime} d \mu_{-1}(y) \\
& =\sum_{n=0}^{\infty} a_{n} \int_{\mathbb{Z}_{p}}\binom{x+\omega y}{n}^{\prime} d \mu_{-1}(y)
\end{aligned}
$$

and using (2.2), we derive

$$
\begin{aligned}
\int_{\mathbb{Z}_{p}} \Gamma_{p}^{\prime}(x+\omega y+1) d \mu_{-1}(y) & =\sum_{n=0}^{\infty} \sum_{j=0}^{n-1} a_{n} \frac{(-1)^{n-j-1}}{n-j} \int_{\mathbb{Z}_{p}}\binom{x+\omega y}{j} d \mu_{-1}(y) \\
& =2 \sum_{n=0}^{\infty} \sum_{j=0}^{n-1} a_{n} \frac{(-1)^{n-j-1}}{n-j} \frac{\mathrm{Bl}_{j}(x \mid \omega)}{j!}
\end{aligned}
$$

The immediate result of Theorem 2.5 is given as follows.
Corollary 2.2. For $y \in \mathbb{Z}_{p}$, we have

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}} \Gamma_{p}^{\prime}(\omega y+1) d \mu_{-1}(y)=2 \sum_{n=0}^{\infty} \sum_{j=0}^{n-1} a_{n} \frac{(-1)^{n-j-1} \mathrm{Bl}_{j}(\omega)}{(n-j) j!} \tag{2.4}
\end{equation*}
$$

We now provide a new and interesting representation of the p-adic Euler constant by means of Boole polynomials of the second kind.

Theorem 2.6. We have

$$
\begin{equation*}
\gamma_{p}=\sum_{n=0}^{\infty} \sum_{j=0}^{n-1} a_{n}(-1)^{n-j} \frac{\mathrm{Bl}_{j}(\omega-1 \mid \omega)-\mathrm{Bl}_{j}(-1 \mid \omega)}{(n-j) j!} \tag{2.5}
\end{equation*}
$$

Proof. Taking $f(y)=\Gamma_{p}^{\prime}(\omega y)$ in (1.2) yields the following result

$$
\int_{\mathbb{Z}_{p}} \Gamma_{p}^{\prime}(\omega y+\omega-1+1) d \mu_{-1}(y)+\int_{\mathbb{Z}_{p}} \Gamma_{p}^{\prime}(\omega y) d \mu_{-1}(y)=2 \Gamma_{p}^{\prime}(0) .
$$

Using (2.1), (2.4) and Theorem 2.5 along with some basic calculations, we have $2 \sum_{n=0}^{\infty} \sum_{j=0}^{n-1} a_{n} \frac{(-1)^{n-j-1} \mathrm{Bl}_{j}(\omega-1 \mid \omega)}{(n-j) j!}+2 \sum_{n=0}^{\infty} \sum_{j=0}^{n-1} a_{n} \frac{(-1)^{n-j-1} \mathrm{Bl}_{j}(-1 \mid \omega)}{(n-j) j!}=-2 \gamma_{p}$, which implies the asserted result.

We give the following explicit formula for the p-adic Euler constant.

Theorem 2.7. The following explicit formula is valid:

$$
\begin{aligned}
\gamma_{p}=\sum_{n=0}^{\infty} & \sum_{j=0}^{n-1} \frac{a_{n}}{(n-j) j!} \sum_{m=0}^{\infty}(-1)^{m+n-j} \\
& \cdot \sum_{k=0}^{n} S_{1}(n, k)\left((-1-\omega m)^{k}-(-1-\omega-\omega m)^{k}\right)
\end{aligned}
$$

Proof. By (1.7), we get

$$
\begin{aligned}
\sum_{n=0}^{\infty} \widehat{\mathrm{Bl}}_{n}(x \mid \omega) \frac{t^{n}}{n!} & =\frac{1}{1+(1+t)^{\omega}}(1+t)^{x+\omega}=\sum_{m=0}^{\infty}(-1)^{m}(1+t)^{x+\omega+\omega m} \\
& =\sum_{m=0}^{\infty}(-1)^{m}(1+t)^{x+\omega+\omega m}=\sum_{m=0}^{\infty}(-1)^{m} \sum_{n=0}^{\infty}\binom{x+\omega+\omega m}{n} t^{n} \\
& =\sum_{n=0}^{\infty}\left(\sum_{m=0}^{\infty}(-1)^{m}(x+\omega+\omega m)_{n}\right) \frac{t^{n}}{n!}
\end{aligned}
$$

which gives, from (1.9), that

$$
\widehat{\mathrm{Bl}}_{n}(x \mid \omega)=\sum_{m=0}^{\infty}(-1)^{m} \sum_{k=0}^{n} S_{1}(n, k)(x+\omega+\omega m)^{k}
$$

In view of (1.5) and (1.8), we easily obtain that

$$
\widehat{\mathrm{Bl}}_{n}(x \mid \omega)=\mathrm{Bl}_{n}(x \mid-\omega)
$$

So, we derive that

$$
\mathrm{Bl}_{n}(x \mid \omega)=\sum_{m=0}^{\infty}(-1)^{m} \sum_{k=0}^{n} S_{1}(n, k)(x-\omega-\omega m)^{k}
$$

Thus, we have

$$
\begin{equation*}
\operatorname{Bl}_{n}(-1 \mid \omega)=\sum_{m=0}^{\infty}(-1)^{m} \sum_{k=0}^{n} S_{1}(n, k)(-1-\omega-\omega m)^{k} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{Bl}_{n}(\omega-1 \mid \omega)=\sum_{m=0}^{\infty}(-1)^{m} \sum_{k=0}^{n} S_{1}(n, k)(-1-\omega m)^{k} . \tag{2.7}
\end{equation*}
$$

By combining (2.5), (2.6) and (2.7), we arrive at the desired result.

3. Conclusions and Observations

In this work, we first have handled some multifarious relations for the p-adic gamma function and the Boole polynomials of both sides. We also have acquired the fermionic p-adic integral of the derivative of p-adic gamma function. We then have obtained a new representation for the p-adic Euler constant via the Boole polynomials of both kinds. Lastly, we have investigated an interesting identity for the mentioned constant.

References

1. U. Duran, M. Acikgoz, On (ρ, q)-Euler numbers and polynomials associated with (ρ, q) Volkenborn integrals, Int. J. Number Theory 14(1) 2018, 241-253.
2. F. G. Gurkan, M. Acikgoz, E. Agyuz, A study on the new mixed-type polynomials related to Boole polynomials, Afr. Mat. 28 2017, 279-290.
3. Ö. Ç. Havare, H. Menken, The Volkenborn integral of the p-adic gamma function, Int. J. Adv. Appl. Funct. 5(2) 2018, 56-59.
4. _ A note on p-adic gamma function and q-Changhee polynomials, J. Math. Comput. Sci. 18 2018, 11-17.
5. T. Kim, A note on p-adic invariant integral in the rings of p-adic integers, Adv. Stud. Contemp. Math., Kyungshang 13(1) 2006, 95-99.
6. D. S. Kim, T. Kim, A note on Boole polynomials, Integral Transforms Spec. Funct. 25(8) 2014, 627-633.
7. T. Kim, D. S. Kim, Barnes-type Boole polynomials, Contrib. Discrete Math. 11(1) 2016, 7-15.
8. Y.S. Kim, q-analogues of p-adic gamma functions and p-adic Euler constants, Commun. Korean Math. Soc. 13(4) 1998, 735-741.
9. K. Mahler, An interpolation series for continuous functions of a p-adic variable, J. Reine Angew. Math. 199 1958, 23-34.
10. Y. Morita, A p-adic analogue of the Γ-function, J. Fac. Sci., Univ. Tokyo, Sect. I A $22(2)$, 1975, 255-266.
11. A. M. Robert, A course in p-adic analysis, Springer-Verlag New York, Inc., 2000.
12. K. Shiratani, S. Yamamoto, On a p-adic interpolation function for Euler numbers and its derivatives, Mem. Fac. Sci., Kyushu Univ., Ser. A 39(1) 1985, 113-125.

Department of Basic Sciences of Engineering
(Received 1105 2018)
Iskenderun Tecnical University
Hatay
Turkey
mtdrnugur@gmail.com
Department of Mathematics University of Gaziantep
Gaziantep
Turkey
acikgoz@gantep.edu.tr

[^0]: 2010 Mathematics Subject Classification: Primary 05A10, 05A30; Secondary 11B65, 11S80, 33B15.

 Key words and phrases: p-adic numbers, p-adic gamma function, p-adic Euler constant, Mahler expansion, Boole polynomials, Stirling numbers of the first kind.

 Communicated by Žarko Mijajlović.

