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Abstract: In the present work, a new extension of the two-variable Fubini polynomials is introduced
by means of the polyexponential function, which is called the two-variable type 2 poly-Fubini
polynomials. Then, some useful relations including the Stirling numbers of the second and the
first kinds, the usual Fubini polynomials, and the higher-order Bernoulli polynomials are derived.
Also, some summation formulas and an integral representation for type 2 poly-Fubini polynomials
are investigated. Moreover, two-variable unipoly-Fubini polynomials are introduced utilizing the
unipoly function, and diverse properties involving integral and derivative properties are attained.
Furthermore, some relationships covering the two-variable unipoly-Fubini polynomials, the Stirling
numbers of the second and the first kinds, and the Daehee polynomials are acquired.

Keywords: polyexponential function; Fubini polynomials; poly-Fubini polynomials; unipoly func-
tion; Stirling numbers

1. Introduction

Throughout the paper, we use N := {1, 2, 3, · · · } and N0 = N∪ {0}. Let C denote the
set of complex numbers, R denote the set of real numbers, and Z denote the set of integers.

The usual Euler En(x) and Bernoulli polynomials Bn(x) are defined via the following
exponential generating functions (cf. [1–6]):

2
ez + 1

exz =
∞

∑
n=0

En(x)
zn

n!
(|z| < π) and

z
ez − 1

exz =
∞

∑
n=0

Bn(x)
zn

n!
(|z| < 2π). (1)

The two-variable Fubini polynomials are defined as follows (cf. [1,2,4,7–10]):

exz

1− y(ez − 1)
=

∞

∑
n=0

Fn(x, y)
zn

n!
. (2)

Substituting x = 0 in (2), we have Fn(0, y) := Fn(y) called the usual Fubini polynomials
given by

1
1− y(ez − 1)

=
∞

∑
n=0

Fn(y)
zn

n!
. (3)

It is easy to see from (1) and (2) that

Fn

(
x,−1

2

)
= En(x).

Upon letting y = 1 in (3), we get the Fubini numbers as follows
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1
2− ez =

∞

∑
n=0

Fn
zn

n!
. (4)

For more detailed information of the Fubini polynomials with applications,
see [1,2,4,7–10].

The Bernoulli polynomials of the second kind are defined as follows (cf. [5,11,12]):

z
log(1 + z)

(1 + z)x =
∞

∑
n=0

bn(x)
zn

n!
(5)

The Bernoulli polynomials of order α ∈ N are defined by (cf. [5,6,11–13])(
z

ez − 1

)α

exz =
∞

∑
n=0

B(α)
n (x)

zn

n!
. (6)

By (5) and (6),
B(n)

n (x + 1) := bn(x). (7)

The polyexponential function Eik(x) is introduced by Kim-Kim [12] as follows

Eik(x) =
∞

∑
n=1

xn

(n− 1)!nk , (k ∈ Z) (8)

as inverse the polylogarithm function Lik(z) (cf. [6,13–15]) given by

Lik(z) =
∞

∑
n=1

zn

nk , |z| < 1. (9)

Using the polyexponential function Eik(x), Kim-Kim [12] considered type 2 poly-Bernoulli
polynomials, given by

Eik(log(1 + z))
ez − 1

exz =
∞

∑
n=0

β
(k)
n (x)

zn

n!
, (k ∈ Z) (10)

and attained several properties and formulas for these polynomials. Upon setting x = 0
in (10), β

(k)
n (0) := β

(k)
n are called type 2 poly-Bernoulli numbers.

We also notice that Ei1(z) = ez − 1. Hence, when k = 1, the type 2 poly-Bernoulli
β
(k)
n (x) polynomials reduce to the Bernoulli polynomials Bn(x) in (1).

Some mathematicians have considered and examined several extensions of special
polynomials via polyexponential function, cf. [5,11,13,16,17] and see also the references
cited therein. For example, Duran et al. [11] defined type 2 poly-Frobenius-Genocchi
polynomials by the following Maclaurin series expansion (in a suitable neighborhood of
z = 0):

Eik(log(1 + (1− u)z))
ez − u

exz =
∞

∑
n=0

G(F,k)
n (x; u)

zn

n!
(k ∈ Z)

and Lee et al. [17] introduced type 2 poly-Euler polynomials given by

Eik(log(1 + 2z))
z(ez + 1)

exz =
∞

∑
n=0
E (k)n (x)

zn

n!
.

Kim-Kim [12] also introduced unipoly function uk(x|p) attached to p being any arithmetic
map which is a complex or real-valued function defined on N as follows:

uk(x|p ) =
∞

∑
n=1

p(n)
nk xn, (k ∈ Z). (11)
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It is readily seen that

uk(x|1 ) =
∞

∑
n=1

xn

nk = Lik(x)

is the ordinary polylogarithm function in (9). By utilizing the unipoly function uk(x|p),
Kim-Kim [12] defined unipoly-Bernoulli polynomials as follows:

∞

∑
n=0

B(k)
n,p(x)

zn

n!
=

uk(1− e−z|p )
1− e−z exz. (12)

They derived diverse formulas and relationships for these polynomials, see [12].
The Stirling numbers of the first kind S1(n, k) and the second kind S2(n, k) are

given below:

(log(1 + z))k

k!
=

∞

∑
n=0

S1(n, k)
zn

n!
and

(ez − 1)k

k!
=

∞

∑
n=0

S2(n, k)
zn

n!
. (13)

From (13), for n ≥ 0, we obtain

(x)n =
n

∑
k=0

S1(n, k)xk and xn =
n

∑
k=0

S1(n, k)(x)k, (14)

where (x)0 = 1 and (x)n = x(x− 1)(x− 2) · · · (x− n + 1), cf. [1–4,6–9,12–15].
From (3) and (13), we get

Fn(y) =
n

∑
k=0

S2(n, k)k!yk. (15)

In the following sections, we introduce a new extension of the two-variable Fubini
polynomials by means of the polyexponential function, which we call two-variable type
2 poly-Fubini polynomials. Then, we derive some useful relations including the Stirling
numbers of the first and the second kinds, the usual Fubini polynomials, and the Bernoulli
polynomials of higher-order. Also, we investigate some summation formulas and an
integral representation for type 2 poly-Fubini polynomials. Moreover, we introduce two-
variable unipoly-Fubini polynomials via unipoly function and acquire diverse properties
including derivative and integral properties. Furthermore, we provide some relationships
covering the Stirling numbers of the first and the second kinds, the two-variable unipoly-
Fubini polynomials, and the Daehee polynomials.

2. Two-Variable Type 2 Poly-Fubini Polynomials and Numbers

Inspired and motivated by the definition of type 2 poly-Bernoulli polynomials in (10)
given by Kim-Kim [12], here, we introduce two-variable type 2 poly-Fubini polynomials
by Definition 1 as follows.

Definition 1. For k ∈ Z, we define two-variable type 2 poly-Fubini polynomials via the following
exponential generating function (in a suitable neighborhood of z = 0) as given below:

Eik(log(1 + z))
z(1− y(ez − 1))

exz =
∞

∑
n=0

F(k)
n (x; y)

zn

n!
. (16)

Upon setting x = 0 in (16), we have F(k)
n (0; y) := F(k)

n (y) which we call type 2
poly-Fubini polynomials possessing the following generating function:
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Eik(log(1 + z))
z(1− y(ez − 1))

=
∞

∑
n=0

F(k)
n (y)

zn

n!
. (17)

We note that, for k = 1, the two-variable type 2 poly-Fubini polynomials reduce to the
usual two-variable Fubini polynomials in (2) because of Ei1(z) = ez − 1.

Now, we develop some relationships and formulas for two-variable type 2 poly-Fubini
polynomials as follows.

Theorem 1. The following relationship

F(k)
n (x; y) =

n

∑
l=0

(
n
l

)
F(k)

n−l(y)(u)xl (18)

holds for k ∈ Z and n ≥ 0.

Proof. By (16) and (17), we consider that

∞

∑
n=0

F(k)
n (x; y)

zn

n!
=

Eik(log(1 + z))
z(1− y(ez − 1))

exz

=
∞

∑
n=0

xnzn

n!

∞

∑
n=0

F(k)
n (y)

zn

n!

=
∞

∑
n=0

(
n

∑
l=0

(
n
l

)
F(k)

n−l(y)(u)xl

)
zn

n!
,

which gives the asserted result (18).

A relationship involving Stirling numbers of the first kind, the two-variable Fubini
polynomials, and two-variable type 2 poly-Fubini polynomials is stated by the follow-
ing theorem.

Theorem 2. For k ∈ Z and n ≥ 0, we have

F(k)
n (x; y) =

n

∑
l=0

l

∑
m=0

(
n
l

)
S1(l + 1, m + 1)

(m + 1)k−1
Fn−l(x; y)

l + 1
. (19)

Proof. From (13) and (17), we observe that

∞

∑
n=0

F(k)
n (x; y)

zn

n!
=

exz

z(1− y(ez − 1))

∞

∑
m=1

(log(1 + z))m

(m− 1)!mk

=
exz

z(1− y(ez − 1))

∞

∑
m=0

(log(1 + z))m+1

(m + 1)k
1

m!

=
∞

∑
n=0

Fn(x; y)
zn

n!

∞

∑
n=0

∞

∑
n=m

1
n + 1

S1(n + 1, m + 1)

(m + 1)k−1
zn

n!

=
∞

∑
n=0

(
n

∑
l=0

l

∑
m=0

(
n
l

)
S1(l + 1, m + 1)

(m + 1)k−1
Fn−l(x; y)

l + 1

)
zn

n!
,

which means the desired result (19).

Some special cases of Theorem 2 are examined below.

Corollary 1. For k ∈ Z and n ≥ 0, we get
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F(k)
n (y) =

n

∑
l=0

l

∑
m=0

(
n
l

)
S1(l + 1, m + 1)

l + 1
Fn−l(y)

(m + 1)k−1 .

Corollary 2. For k = 1 and n ≥ 0, we acquire

Fn(x; y) =
n

∑
l=0

l

∑
m=0

(
n
l

)
Fn−l(x; y)

l + 1
S1(l + 1, m + 1).

The following differentiation property holds (cf. [12])

d
dx

Eik(log(1 + x)) =
1

(1 + x) log(1 + x)
Eik−1(log(1 + x). (20)

and also, the following integral representations are valid for k > 1:

Eik(log(1 + x)) =
∫ x

0

1
(1 + z) log(1 + z)

×
∫ z

0

1
(1 + z) log(1 + z)

· · ·
∫ z

0

z
(1 + z) log(1 + z)︸ ︷︷ ︸

(k−2) times

dzdz...dz

= x
∞

∑
m=0

∑
m1+···+mk−1=m

(
m

m1, · · · , mk−1

)

×
B(m1)

m1

m1 + 1
B(m2)

m2

m1 + m2 + 1
· · ·

B(mk−1)
mk−1

m1 + · · ·+ mk−1 + 1
xm

m!
. (21)

Theorem 3. The following relationship

F(k)
n (y) =

n

∑
m=0

(
n
m

)
∑

m1+···+mk−1=m

(
m

m1, · · · , mk−1

)

×
B(m1)

m1

m1 + 1
B(m2)

m2

m1 + m2 + 1
· · ·

B(mk−1)
mk−1

m1 + · · ·+ mk−1 + 1
Fn−m(y)

holds for n ∈ N0 and k > 1.

Proof. From (17) and (21), for k > 1, we can write

∞

∑
n=0

F(k)
n (y)

zn

n!
=

Eik(log(1 + z))
z(1− y(ez − 1))

=
z

z(1− y(ez − 1))

∞

∑
m=0

∑
m1+···+mk−1=m

(
m

m1, · · · , mk−1

)

×
B(m1)

m1

m1 + 1
B(m2)

m2

m1 + m2 + 1
· · ·

B(mk−1)
mk−1

m1 + · · ·+ mk−1 + 1
xm

m!
,

Theorem 4. The following relationship

F(k)
n (y) =

1
1 + y

(
y

n

∑
m=0

(
n
m

)
F(k)

n−m(y) +
n

∑
m=0

1
(m + 1)k−1

S1(n + 1, m + 1)
n + 1

)
(22)

holds for n ≥ 0.
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Proof. From (17), we attain

Eik(log(1 + z))
z

=
∞

∑
n=0

F(k)
n (y)

zn

n!
(1− y(ez − 1))

=
∞

∑
n=0

F(k)
n (y)

zn

n!
− y

∞

∑
n=0

n

∑
m=0

(
n
m

)
F(k)

n−m(y)
zn

n!
+ y

∞

∑
n=0

F(k)
n (y)

zn

n!

=
∞

∑
n=0

(
(1 + y)F(k)

n (y)− y
n

∑
m=0

(
n
m

)
F(k)

n−m(y)

)
zn

n!

and, also, we have

Eik(log(1 + z)) =
1
z

∞

∑
m=1

(log(1 + z))m

mk
1

(m− 1)!

=
1
z

∞

∑
m=0

(log(1 + z))m+1

(m + 1)k
1

m!
=

1
z

∞

∑
m=0

(log(1 + z))m+1

(m + 1)k−1
1

(m + 1)!

=
1
z

∞

∑
m=0

∞

∑
n=m+1

S1(n, m + 1)
(m + 1)k−1

zn

n!
,

which implies the asserted result (22).

For s ∈ C and k ∈ Z with k ≥ 1, let

ηk(s) :=
1

Γ(s)

∫ ∞

0

zs−1

z(1− y(ez − 1))
Eik(log(1 + z))dz, (23)

where Γ(s) is the classical gamma function given below:

Γ(s) =
∫ ∞

0
zs−1ezdz (<(s) > 0).

From (23), we see that ηk(s) is a holomorphic map for <(s) > 0, since Eik(log(1 + z)) ≤
Ei1(log(1 + z)) with z ≥ 0. Thus, we have

ηk(s) =
1

Γ(s)

∫ 1

0

zs−2

1− y(ez − 1)
Eik(log(1 + z))dz +

1
Γ(s)

∫ ∞

1

zs−2

1− y(ez − 1)
Eik(log(1 + z))dz. (24)

We see that the second integral in (24) converges absolutely for any s ∈ C and hence,
the second term on the right hand side vanishes at non-positive integers. Therefore,
we obtain

lim
s→−m

∣∣∣∣ 1
Γ(s)

∫ ∞

1

zs−2

1− y(ez − 1)
Eik(log(1 + z))dz

∣∣∣∣ ≤ 1
Γ(−m)

M = 0,

since
Γ(s)Γ(1− s) =

π

sin(πs)
. (25)

Also, for <(s) > 0, the first integral in (24) can be written as

1
Γ(s)

∫ 1

0

zs−1

z(1− y(ez − 1))
Eik(log(1 + z))dz =

1
Γ(s)

∞

∑
n=0

F(k)
n (y)

n!

∫ 1

0
zn+s−1dz

=
1

Γ(s)

∞

∑
n=0

F(k)
n (y)

n!
1

n + s
, (26)

which defines an entire function of s. Therefore, we derive that ηk(s) can be continued to
an entire map of s.
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Theorem 5. For k ∈ N, the map ηk(s) has an analytic continuation to a map of s ∈ C, and the
special values at non-positive integers are as follows

ηk(−m) = (−1)mF(k)
m (y), (m ∈ N0). (27)

Proof. By means of (24)–(26), we acquire

ηk(−m) = lim
s→−m

1
Γ(s)

∫ 1

0

zs−1

z(1− y(ez − 1))
Eik(log(1 + z))dz

= · · ·+ · · ·+ 0 + lim
s→−m

1
Γ(s)

F(k)
m

m!(m + s)
+ 0 + 0 + · · ·

= lim
s→−m

1
m + s

Γ(1− s) sin(πs)
π

F(k)
m (y)
m!

=
Γ(1 + m)

m!
cos(πm)F(k)

m (y) = (−1)mF(k)
m (y),

which is the desired relation in (27).

Now, we state a summation formula for F(k)
n (x; y) as given below.

Theorem 6. The following formula

F(k)
n (x1 + x2; y) =

n

∑
m=0

(
n
m

)
F(k)

n−m(x1; y)xm
2 . (28)

holds for k ∈ Z and n ≥ 0.

Proof. By (17), we observe that

∞

∑
n=0

F(k)
n (x1 + x2; y)

zn

n!
=

(
Eik(log(1 + z))
z(1− y(ez − 1))

)
e(x1+x2)z

=

(
∞

∑
n=0

F(k)
n (x1; y)

zn

n!

)(
∞

∑
m=0

xm
2

zm

m!

)

=
∞

∑
n=0

(
n

∑
m=0

(
n
m

)
F(k)

n−m(x1; y)xm
2

)
zn

n!
,

which means the claimed result (28).

Theorem 7. The following formula

yF(k)
n (x + 1; y) = (1 + y)F(k)

n (x; y)−
n

∑
l=0

l

∑
m=0

(
n
l

)
1

(m + 1)k−1
S1(l + 1, m + 1)

l + 1
xn−l (29)

is valid for k ∈ Z and n ≥ 0.

Proof. By (14) and (17), we consider that
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∞

∑
n=0

(
F(k)

n (x + 1; y)− F(k)
n (x; y)

) zn

n!
= exz(ez − 1)

Eik(log(1 + z))
z(1− y(ez − 1))

=

(
exz

1− y(ez − 1)
− exz

)
Eik(log(1 + z))

yz

=
1
y

(
∞

∑
n=0

F(k)
n (x; y)−

n

∑
l=0

l

∑
m=0

(
n
l

)
xn−l

l + 1
S1(l + 1, m + 1)
(m + 1)k−1

)
zn

n!
,

which means the desired result (29).

Theorem 8. The following formula

n

∑
m=0

(
n
m

)
F(k)

n−m(x1; y1)F(k)
m (x2; y2) =

y2F(k)
n (x1 + x2; y2)− y1F(k)

n (x1 + x2; y1)

y2 − y1
(30)

holds for k ∈ Z and n ≥ 0.

Proof. By means of (17), we acquire

Υ =
∞

∑
n=0

F(k)
n (x1; y1)

zn

n!

∞

∑
n=0

F(k)
n (x2; y2)

zn

n!
=

Eik(log(1 + z))
z(1− y1(ez − 1))

ex1z Eik(log(1 + z))
z(1− y2(ez − 1))

ex2z

=
Eik(log(1 + z))

z

(
ex1z

1− y1(ez − 1)
ex2z

1− y2(ez − 1)

)
=

Eik(log(1 + z))
z

(
y2

y2 − y1

e(x1+x2)z

1− y2(ez − 1)
− y1

y2 − y1

e(x1+x2)z

1− y1(ez − 1)

)

=
∞

∑
n=0

(
y2F(k)

n (x1 + x2; y2)− y1F(k)
n (x1 + x2; y1)

y2 − y1

)
zn

n!

and

Υ =
∞

∑
n=0

(
n

∑
m=0

(
n
m

)
F(k)

n−m(x1; y1)F(k)
m (x2; y2)

)
zn

n!
,

which means the claimed result (30).

Theorem 9. The following relationship

F(k)
n (y) =

n

∑
l=0

n−l

∑
m=0

l

∑
r=0

(
n
l

)
S1(n− l + 1, m + 1)S2(l, r)

n− l + 1
yrr!

(m + 1)k−1 (31)

holds for k ∈ Z and n ≥ 0.

Proof. Using (18), we get

∞

∑
n=0

F(k)
n (y)

zn

n!
=

Eik(log(1 + z))
z

∞

∑
m=0

ym
∞

∑
l=m

m!S2(l, m)
zl

l!

=

(
∞

∑
n=0

n

∑
m=0

S1(n + 1, m + 1)
(m + 1)k−1

zn

(n + 1)!

)(
∞

∑
l=0

l

∑
r=0

yrr!S2(l, r)
zl

l!

)

=
∞

∑
n=0

(
n

∑
l=0

n−l

∑
m=0

l

∑
r=0

(
n
l

)
S2(l, r)

S1(n− l + 1, m + 1)
n− l + 1

yrr!
(m + 1)k−1

)
zn

n!
,

which means the desired result (31).
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Theorem 10. The following correlation

n

∑
m=0

F(k)
m (y)S2(n, m) =

n

∑
q=0

q

∑
i=0

i

∑
p=0

(
q
i

)(
n
q

)
Fp(y)S2(i, p)Bq−i

1
(n− q + 1)k (32)

hold for k ∈ Z and n ≥ 0.

Proof. Using (18), replacing z by ez − 1, we acquire that

∞

∑
n=0

F(k)
n (y)

(ez − 1)n

n!
=

1
1− y(eez−1 − 1)

z
ez − 1

Eik(z)
z

=
∞

∑
p=0

Fp(y)
∞

∑
p=i

S2(i, p)
zi

i!

∞

∑
q=0

Bq
zq

q!

∞

∑
n=0

zn

n!(n + 1)k

=
∞

∑
i=0

(
i

∑
p=0

Fp(y)S2(i, p)

)
zi

i!

∞

∑
q=0

Bq
zq

q!

∞

∑
n=0

zn

n!(n + 1)k

=
∞

∑
n=0

(
n

∑
q=0

q

∑
i=0

i

∑
p=0

(
n
q

)(
q
i

)
Fp(y)S2(i, p)Bq−i

1
(n− q + 1)k

)
zn

n!

and

∞

∑
m=0

F(k)
m (y)

(ez − 1)m

m!
=

∞

∑
m=0

F(k)
m (y)

∞

∑
n=m

S2(n, m)
zn

n!
=

∞

∑
n=0

(
n

∑
m=0

F(k)
m (y)S2(n, m)

)
zn

n!
,

which provides the asserted result (32).

3. Two-Variable Unipoly-Fubini Polynomials

Using the unipoly function uk(z|p) in (11), we introduce two-variable unipoly-Fubini
polynomials attached to p via the following generating function:

uk(log(1 + z)|p)
z(1− y(ez − 1))

exz =
∞

∑
n=0

F(k)
n,p (x; y)

zn

n!
. (33)

Upon setting x = 0 in (33), we have F(k)
n,p (0; y) := F(k)

n,p (y) which we call unipoly-Fubini
polynomials attached to p as follows

uk(log(1 + z)|p)
z(1− y(ez − 1))

=
∞

∑
n=0

F(k)
n,p (y)

zn

n!
. (34)

We now investigate some properties of two-variable unipoly-Fubini polynomials
attached to p as follows.

Theorem 11. The following relationship

F(k)
n,p (x; y) =

n

∑
l=0

(
n
l

)
F(k)

n−l,p(y)xl (35)

holds for k ∈ Z and n ≥ 0.

Proof. By (33) and (34), we consider thatwhich gives the asserted result (35).

Theorem 12. The following derivative rule

d
dx

F(k)
n,p (x; y) = nF(k)

n−1,p(x; y) (36)
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holds for k ∈ Z and n ≥ 1.

Proof. From (33), we observe that

∞

∑
n=1

d
dx

F(k)
n,p (x; y)

zn

n!
=

1
z(1− y(ez − 1))

uk(log(1 + z)|p) d
dx

exz =
∞

∑
n=0

F(k)
n,p (x; y)

zn+1

n!
,

which means the desired result (36).

Theorem 13. The following integral representation

∫ β

α
F(k)

n,p (x; y)dx =
F(k)

n+1,p(β; y)− F(k)
n+1,p(α; y)

n + 1
(37)

holds for n ≥ 0 and k ∈ Z.

Proof. By Theorem 12, we derive that

∫ β

α
F(k)

n,p (x; y)dx =
1

n + 1

∫ β

α

d
dx

F(k)
n+1,p(x; y)dx =

F(k)
n+1,p(α; y)− F(k)

n,p (β; y)

n + 1
,

which means the asserted result (37).

Taking p(n) = 1
Γ(n) in (11) gives

uk

(
log(1 + z)| 1

Γ

)
=

∞

∑
m=1

(log(1 + z))m

mk(m− 1)!
,

by which we get

∞

∑
n=0

F(k)
n, 1

Γ
(x; y)

zn

n!
=

1
z(1− y(ez − 1))

exzuk

(
log(1 + z)| 1

Γ

)
(38)

=
exz

z(1− y(ez − 1))

∞

∑
m=1

(log(1 + z))m

mk(m− 1)!
.

Especially, for k = 1 in (38), we obtain

∞

∑
n=0

F(1)
n, 1

Γ
(x; y)

zn

n!
=

exz

z(1− y(ez − 1))

∞

∑
m=1

(log(1 + z))m

m!
=

∞

∑
n=0

Fn(x; y)
zn

n!
,

which gives the following equality

F(1)
n, 1

Γ
(x; y) = Fn(x; y). (39)

Theorem 14. The following correlation

F(k)
n,p (x; y) =

n

∑
l=0

l

∑
m=0

(
n
l

)
m!p(m + 1)
(m + 1)k−1

Fn−l(x; y)
l + 1

S1,λ(l + 1, m + 1) (40)

holds for n ≥ 0 and k ∈ Z. Moreover, for p(n) = 1
Γ(n) ,

F(k)
n, 1

Γ
(x; y) =

n

∑
l=0

l

∑
m=0

(
n
l

)
S1(l + 1, m + 1)

l + 1
Fn−l(x; y)
(m + 1)k−1 . (41)

Proof. From (33), we have
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∞

∑
n=0

F(k)
n,p (x; y)

zn

n!
=

exz

z(1− y(ez − 1))

∞

∑
m=1

(log(1 + z))m

mk p(m)

=
exz

z(1− y(ez − 1))

∞

∑
m=0

(log(1 + z))m+1

(m + 1)k p(m + 1)

=
exz

z(1− y(ez − 1))

∞

∑
m=0

m!p(m + 1)
(m + 1)k−1

∞

∑
l=m+1

S1(l, m + 1)
zl

l!

=
∞

∑
n=0

Fn(x; y)
zn

n!

∞

∑
m=0

p(m + 1)(m + 1)!
(m + 1)k

∞

∑
l=m

S1(l + 1, m + 1)
l + 1

zl

l!

=
∞

∑
n=0

(
n

∑
l=0

l

∑
m=0

(
n
l

)
m!p(m + 1)
(m + 1)k−1

Fn−l(x; y)
l + 1

S1(l + 1, m + 1)

)
zn

n!
,

which is the desired result (40).

Theorem 15. For n ≥ 0 and k ∈ Z, we have

F(k)
n,p (x; y) =

n

∑
l=0

l

∑
m=0

(
n
l

)
F(k)

n−l,p(y)S2(l, m)(x)m. (42)

Proof. By (33), we attain

∞

∑
n=0

F(k)
n,p (x; y)

zn

n!
= (ez − 1 + 1)x uk(log(1 + z)|p)

z(1− y(ez − 1))

=

(
∞

∑
m=0

(x)m
(ez − 1)m

m!

)
uk(log(1 + z)|p)
z(1− y(ez − 1))

=

(
∞

∑
l=0

l

∑
m=0

(x)mS2(l, m)
zl

l!

)(
∞

∑
n=0

F(k)
n,p (y)

zn

n!

)

=
∞

∑
n=0

(
n

∑
l=0

l

∑
m=0

(
n
l

)
F(k)

n−l,p(y)S2(l, m)(x)m

)
zn

n!
,

which provides the claimed result (42).

Lastly, we state the following theorem.

Theorem 16. Let k ∈ Z and n ≥ 0. We have

F(k)
n,p (y) =

n

∑
l=0

n−l

∑
r=0

l

∑
m=0

(
n
l

)(
n− l

r

)
DrFn−r−l(y)S1(l, m)

(m + 1)k p(m + 1)m!, (43)

where Dr is r-th Daehee number given by (cf. [18])

log(1 + z)
z

=
∞

∑
r=0

Dr
zr

r!
.

Proof. From (14), (17), and (34), we have
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∞

∑
n=0

F(k)
n,p (y)

zn

n!
=

∞
∑

m=1

p(m)
mk (log(1 + z))m

z(1− y(ez − 1))

=
log(1 + z)

z
1

1− y(ez − 1)

∞

∑
m=0

p(m + 1)m!
(m + 1)k

∞

∑
l=m

S1(l, m)
zl

l!

=
∞

∑
r=0

Dr
zr

r!

∞

∑
n=0

Fn(y)
zn

n!

∞

∑
l=0

(
l

∑
m=0

p(m + 1)m!
(m + 1)k S1(l, m)2l

)
zl

l!

=
∞

∑
n=0

n

∑
r=0

r

∑
l=0

(
n
r

)(
r
l

)
DrFn−r−l(y)

l

∑
m=0

p(m + 1)m!
(m + 1)k S1(l, m)

zn

n!
.

Therefore, we obtain the claimed correlation (43).

4. Conclusions

Inspired and motivated by the definition of the type 2 poly-Bernoulli given by Kim-
Kim [12], in the present paper, we have introduced a new extension of the two-variable
Fubini polynomials using the polyexponential function, which we call two-variable type 2
poly-Fubini polynomials. Then, we have acquired some useful relations including the Stir-
ling numbers of the first and the second kinds, the Bernoulli polynomials of higher-order,
and the usual Fubini polynomials. Also, we have developed some summation formulas
and an integral representation for type 2 poly-Fubini polynomials. Moreover, we have
considered two-variable unipoly-Fubini polynomials via unipoly function and have inves-
tigated diverse properties including derivative and integral properties. Furthermore, we
have provided some relationships covering the two-variable unipoly-Fubini polynomials,
the Stirling numbers of the first and the second kinds, and the Daehee polynomials.
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