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Abstract: The current study aimed to describe the fabrication of a composite patch by incorporating
marine algae powders (MAPs) into poly-lactic acid (PLA) for bone tissue engineering. The prepared
composite patch was functionalized with the co-polymer, poly (2-hydroxyethyl methacrylate-co-
ethylene glycol dimethacrylate) (p(HEMA-co-EGDMA)) via initiated chemical vapor deposition
(iCVD) to improve its wettability and overall biocompatibility. The iCVD functionalized MAP–PLA
composite patch showed superior cell interaction of human osteoblasts. Following the surface
functionalization by p(HEMA-co-EGDMA) via the iCVD technique, a highly hydrophilic patch
was achieved without tailoring any morphological and structural properties. Moreover, the iCVD
modified composite patch exhibited ideal cell adhesion for human osteoblasts, thus making the
proposed patch suitable for potential biomedical applications including bone tissue engineering,
especially in the fields of dentistry and orthopedy.

Keywords: PLA; hydrogel; iCVD; osteoblast; biocompatibility; proliferation; tissue engineering

1. Introduction

In dentistry and orthopedy, bone tissue engineering has come to the fore in recent years
with new approaches to treat bone insufficiency or defects arising from a tumor, trauma, or
periodontal diseases [1]. In general, bone tissue engineering requires artificial materials
with physicochemical, structural, and biological properties that promote cellular attach-
ment, proliferation, and differentiation [2,3]. Various types of materials including metals,
bioactive ceramics and glasses, natural and synthetic polymers, and their composites have
been assessed and utilized as scaffolds for successful bone regeneration [4]. Among them,
polymers and their composites are considered as the most promising candidates due to
their proven biocompatibility over most metals and ceramics [5].
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Besides various types of polymers, aliphatic polyesters are the preferred substances
for bone tissue engineering applications essentially owing to their bioresorbable nature [6].
Polylactic acid (PLA), polyglycolic acid (PGA), poly-ε-caprolactone (PCL), and their copoly-
mers are especially frequently used in the fabrication of scaffolds, membranes, and patches
in bone tissue engineering [7]. PLA-based biomaterials are considered to be the gold stan-
dard for various regenerative engineering applications because of their superior biodegrad-
ability, and compatibility with biomolecules and cells [8,9]. In addition, PLA-based bioma-
terials have the ability to be fabricated into a variety of structures (planar membranes, 3D
scaffolds, fibers, etc.) with the appropriate mechanical properties, topography, geometry,
and architecture [10].

In recent years some studies have proclaimed that composites prepared by blend-
ing biodegradable synthetic polymers with biopolymers or their biological sources, for
instance algal biomass, exhibit superior and add-on properties [11–14]. Marine algae are
primarily abundant in the junctures between ocean and land and can be collected in the
coastal areas of various countries [15]. Marine algae also have a high nutrient content and
contain several biologically active components such as pigments/carotenoids, vitamins,
and antioxidants [16]. PLA-based synthetic polymers blended with marina algae powders
(MAPs) have been shown to exhibit significantly improved cytocompatibility [17]. Wu et al.
reported that the incorporation of MAPs in polyesters enhances biodegradability, which is
also an essential issue in bone tissue engineering [18]. In addition, blending MAPs with
synthetic polyesters significantly improves the overall mechanical properties; for example,
Bulota et al. showed that PLA–MAP composite has at least a 40% higher Young’s modulus
as compared with the neat PLA [19].

Recently, a new type of a composite patch prepared by blending PLA with MAPs
as an alternative to porcine-derived collagen membranes has been reported [20]. While
the vegan nature of the PLA–MAP composite membrane provides an extreme advantage
over commercial animal-derived ones (there is a risk of transmission of infection from the
cells or the tissues of the graft during the microbiological screening of source animals), it
exhibits a very poor level of wettability with a water contact angle (WCA) exceeding 85◦.
For instance, Liu et al. showed that the WCA of pristine PLA may exceed 125◦, which may
negatively influence cellular attachment and proliferation [21]. According to the literature,
the wetting angle properties of biomaterials could be improved by initiated chemical vapor
deposition (iCVD) coatings. A recent article has shown that hydrophilic gelatin nanofibers
became hydrophobic after iCVD coating and might be appropriate options in biomedical
applications, for instance, tissue engineering scaffolds and wound dressings [22].

In this current work, the fabrication of a composite patch by incorporating marine
algae into PLA for bone tissue engineering has been described. Following the surface
functionalization by poly (2- hydroxyethyl methacrylate-co-ethylene glycol dimethacrylate)
(p(HEMA-co-EGDMA)) via the iCVD technique, a highly hydrophilic patch was achieved
without tailoring any morphological and structural properties. Moreover, the iCVD mod-
ified composite patch exhibited ideal cell adhesion for human osteoblasts (HOBs) thus
making the proposed patch suitable for potential biomedical applications including bone
tissue engineering in dentistry and orthopedy.

2. Materials and Methods
2.1. Preparation of PLA-Based Composite Patch and Coating by iCVD

The mentioned composite structures were prepared by a two-step processing (schemat-
ically presented in Figure 1: (i) synthesis of PLA-based composite by blending low molecu-
lar PLA with MAPs to enhance the cytocompatibility and cell viability and (ii) function-
alization of the composite patch with the co-polymer, poly(2-hydroxyethyl methacrylate-
co-ethylene glycol dimethacrylate) (p(HEMA-co-EGDMA)) via initiated chemical vapor
deposition (iCVD) to improve the wettability and overall biocompatibility.
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Bruker Vertex 80v spectrometer (Bruker, Billerica, MA, USA) operating in the range of 
1000 cm−1 and 4000 cm−1. The baseline correction was done using built-in software. Fluo-
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Figure 1. A schematic depiction of: (a) the preparation of SVP–PLA patch from marine algae; (b) the surface modification
of the SVP–PLA patch with a p(HEMA-co-EGDMA) layer via iCVD, and (c) a p(HEMA-co-EGDMA) coated SVP–PLA
modified patch.

Following the cleaning and the purification of S. vulgare (a type of brown algae)
seaweed specimens (which were collected from the Mediterranean Sea in May 2020), were
ground and passed through 300- and 400-mesh sieves, air-dried for 1 day at 50–60 ◦C, and
vacuum-dried for at least 12 h at 105–110 ◦C until the moisture content of the resulting fine,
the brown powder was 3 ± 0.5%. The composites were prepared by mixing functionalized
MAPs with PLA (at a mass ratio of 15:85) at 70–80 ◦C for 15 min using a mechanical mixer
operating at a speed of 50–60 rpm. After mixing, the PLA–MAP blend was poured into a
Teflon mold and hot-pressed while the plate temperature was gradually increased from
50 ◦C to 85 ◦C for 15 min. Controlled evaporation of the solvent and applied pressure led
to the formation of a porous patch as seen in Figure 1a.

A scroll pump (nXDS 10i Edwards, Burgess Hill, UK) was used to evacuate the vacuum
chamber. The monomers, HEMA (97%, abcr GmbH, Karlsruhe, Germany), and EGDMA
(98%, abcr GmbH, Karlsruhe, Germany) were heated in glass jars to 75 ◦C and their va-
pors were fed into a custom-made hot filament CVD reactor. Their respective flows were
regulated with the help of flow metering valves (Swagelok). For the lower crosslinked
coatings, HEMA flow was set to 0.3 sccm and EGDMA flow to 0.1 sccm and vice versa for
the high-density layers. Here the density refers to the cross-linking degree of the deposited
co-polymer. The initiator Tert-butyl-peroxide (TBPO, 95%, Fluorochem Ltd., Hadfield, UK)
is held at room temperature. The flow was set to 0.6 sccm and regulated with a flow me-
tering valve (Vögtlin Instruments GmbH, Muttenz, Switzerland). Furthermore, a constant
nitrogen patch flow of 0.3 sccm was introduced into the chamber via a mass flow controller
(MC series, Alicat Scientific Inc., Tucson, AZ, USA). During the deposition, the substrate
temperature was kept at 30 ◦C. A butterfly valve (VAT 615), together with a capacitive
monometer (MKS Baratron), held the process pressure at 40 Pa. The filament power was
P = 40 W. Modification of S. vulgare powder- polylactic acid (SVP–PLA) composite patch
with p(HEMA-co-EGDMA) is schematically depicted in Figure 1c.

2.2. Materials Characterization

Fourier-transform infrared (FTIR) spectra of dry samples have been acquired with
a Bruker Vertex 80v spectrometer (Bruker, Billerica, MA, USA) operating in the range
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of 1000 cm−1 and 4000 cm−1. The baseline correction was done using built-in software.
Fluorescein diacetate (FDA, Sigma- Aldrich, St. Louis, MO, USA) and propidium iodide
(PI, Sigma-Aldrich, St. Louis, MO, USA) were used. A semi-automated contact angle
meter (OCA 30, Dataphysics, Filderstadt, Germany) was performed for wetting contact
angle (WCA) measurements. After this, 10 µL of water droplets were used and advanc-
ing/receding CAs were recorded and measured by the addition and subtraction of water
to/from droplets sitting on the sample surface. The cells were assessed with a fluorescence
microscope (Axioplan2) and documented with a digital camera (AxioCam MRc5 from
ZEISS, Oberkochen, Germany). The dyes could be excited at 488 nm (blue light, argon
laser). The green fluorescence (FDA) was detected at 530 nm.

2.3. Cytocompatibility Analysis

The study was embarked upon after receiving approval from The Ethics Committee
of the Medical Faculty of Christian Albrechts University, Kiel, Germany. (D640/20) and
was conducted according to the guidelines of the Helsinki Declaration of Human Rights.
Osteoblast cultivation was conducted according to the technique described by Naujokat
et al. [23] Human osteoblasts were obtained from patients who had undergone bone graft
harvesting procedures of cancellous bone from the crista iliaca anterior at the Oral and
Maxillofacial Surgery Department at the Christian Albrechts University Hospital Schleswig-
Holstein, Kiel Campus, Kiel, Germany. The osseous samples were transferred into the 89%
Dulbecco’s Modified Eagle’s Minimum Essential Medium (DMEM) (PAA Laboratories
GmbH, Pasching, Austria), 10% fetal calf serum (FCS) (Biochrom, Berlin, Germany, 1%
Penicillin/Streptomycin, Biochrom, Berlin, Germany). Further processing took place under
laminar flow (Heraeus Instruments, Osterode, Germany). Then, they were minced into
∼1–2 mm pieces and placed into cell culture flasks (Thermo-Fisher Scientific, Waltham,
MA, USA) containing 10 mL cell culture medium. The osteoblasts were passaged after
reaching 80% confluence. Following aspiration of the medium and concomitant rinsing
with 10 mL of phosphate-buffered solution (PBS) (Sigma-Aldrich, St. Louis, MO, USA),
5 mL of PBS containing 0.05% trypsin was added to each culture flask to detach and remove
the osteoblasts from the surface, followed by the dilution of the cell suspension via DMEM
enriched with 10% FCS to inhibit the action of trypsin. After that, the cell suspension
was centrifuged at 3200 rounds per minute (rpm) for 180 s. The supernatant was filtered,
suctioned off and the remaining cell pellet was resuspended in 5 mL of medium and the
cells were counted in a Neubauer counting chamber (Brand, Wertheim, Germany), after
which 105 osteoblasts were transferred into a 75 cm3 culture flask containing 10 mL of
medium. The incubation process was conducted with eluates, as well as indirect contact
with scaffolds.

2.4. MTT Assay

The proliferation of the osteoblasts was evaluated via an MTT Cell Proliferation Kit
(11465007001, Roche Diagnostics, Mannheim, Germany). We incubated 96-well microtiter
plates with 5 × 103 cells/well for 24 h. After that, a sample of 100 µL eluate was obtained.
Following an incubation for 24 h, cell proliferation was quantified. The optical density of
the samples was examined photometrically at a wavelength of 450 nm.

2.5. BrdU Assay

The osteoblast proliferation rate was determined by using the BrdU (Bromodeoxyuri-
dine) Cell Proliferation enzyme-linked immunoadsorption tool (Roche Diagnostics,
Mannheim, Germany). Similar to the MTT assay, 96-well microtiter plates with 5 × 103 cells/
well were incubated for 24 h and a sample of 150 µL eluate was obtained. After 48 h, the
eluate was changed to a standard nutrient medium and the osteoblasts were incubated
for another 72 h. After that, 10 µL of BrdU solution was added to each well and the
osteoblasts were incubated for an additional 24 h so that the osteoblasts could incorporate
bromodeoxyuridine into their DNA. The optical density of each sample was examined in a
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microplate reader (Spectra Max plus 384, Molecular Devices, Sunnyvale, CA, USA) at a
wavelength of 450 nm.

3. Results

This work describes the fabrication of PLA-based porous composite structures with
superior wetting and bioactive properties, which opens up the possibility of using them as
a membrane or patch, especially in the reconstruction of maxillofacial osseous defects as
shown in Figure 2.
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Figure 2. (a) An SVP–PLA composite patch and (b) the use of SVA–PLA composite patch in the reconstruction of maxillofa-
cial osseous defects.

3.1. FTIR Analysis and Wetting Properties

p(HEMA-co-EGDMA) layer was coated on both sides of SVP–PLA patches to obtain a
homogenous film thickness around 175–200 nm. Afterward, Fourier-transform infrared
(FTIR) spectroscopy analysis was performed to determine the exact film composition of
the p(HEMA-co-EGDMA) layer. Here, a FTIR spectrometer (Vertex 80v, Bruker, Brillerica,
MA, USA) in transmission mode from 500 to 4000 cm−1 at 4 cm−1 step width was used.
The crosslinking degree can be calculated from the respective spectra of high density (HD)
and low density (LD) films by taking the ratios of the respective characteristic peak areas
of HEMA and EGDMA (Figure 3a). The OH– band (3150–3600 cm−1) is characteristic for
HEMA as well as the ester peak at 1730 cm−1. For EGDMA the ester peak is characteristic
as well, however, the intensity is higher due to the presence of two ester groups in the
monomer structure (see the structure of monomers in Figure 3b). The intensity of the ester
peak is increasing whereas the peak of the hydroxyl group is decreasing with increasing
EGDMA content. By taking this into account one gets the following formula used to
calculate the composition of the co-polymer [24]:

EGDMA
HEMA

=
1
2 (AC = O − rAOH)

rAOH
(1)

where A represents the respective characteristic areas under the peaks and r corresponds
to the ratio of the peaks of the homopolymer HEMA. The calculations reveal crosslinking
degrees of 57.1% LD and 80.4% for HD samples, respectively (the structure of the LD and
HD p(HEMA-co-EGDMA) layers are schematically depicted in Figure 3b for comparison).
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layers (dashed circles indicate cross-linking); and (c) The water contact angles (WCAs) of prepared samples before and after
soaking in water.

As shown in Figure 3c, the WCA was 88.6 ± 7.3◦ for the as-prepared SVP–PLA com-
posite, and iCVD modified patches exhibited low WCAs of 38.5 ± 3.2◦ and 45 ± 3.8◦ for LD
and HD p(HEMA-co-EGDMA), respectively. When the samples were soaked in water, it
was observed that the WCAs decreased significantly. While the as-prepared SVA–PLA patch
exhibited a WCA of 82.5 ± 7.0◦, the WCAs of the control substrate and the as-prepared
SVP–PLA patch-modified with LD and HD were 23.3 ± 1.9◦ and 36.4 ± 3.1◦, respectively.
It has been reported that when HEMA is exposed to air, the hydrophobic methyl groups
become directed toward air due to interface caused by chain rotation (which means the
reorientation of its hydrophilic groups toward the water). As a result of the ∼100% retention
of the hydroxyl (–OH) functional groups from the HEMA monomer, iCVD p(HEMA-co-
EGDMA) seems to add a hydrophilic behavior to the SVP–PLA patch. Actually, without any
detailed analysis of WCAs, one can clearly see that p(HEMA-co-EGDMA) functionalized
SVP–PLA tends to be wetted easily by the water droplets (Figure 4). This may provide a
suitable microenvironment for the attachment and proliferation of cells because they have
become more hydrophilic.
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Figure 4. The behavior of water drops on: (a) the SVP–PLA patch and (b) the p(HEMA-co-EGDMA) coated SVP–PLA
modified patch.

3.2. MTT Assay

The adhesion and proliferation of Human Osteoblasts (HOBs) was investigated to
evaluate whether the p(HEMA-co-EGDMA) modified SVP–PLA patch satisfied the basic
requirements for bone tissue engineering. The first cytotoxicity and viability of HOBs were
investigated by an MTT assay. As shown in Figure 5a the metabolic activity (OD value) of
HOBs on SVP–PLA and SVP–PLA + iCVD (LD; p(HEMA-co-EGDMA) and HD; p(HEMA-
co-EGDMA)) was significantly higher compared to the control group (p < 0.005). Despite
higher cell viability of both iCVD coated SVP–PLA patches, the difference between SVP–
PLA and SVP–PLA + iCVD (LD; p(HEMA-co-EGDMA) and HD; p(HEMA-co-EGDMA))
was statistically insignificant. (p > 0.005) The enhancement of the cell viability could be
attributed to the improved hydrophilicity of iCVD, which might have enhanced the protein
adsorption capacity of a surface and promoted cellular behaviors, including the initial
attachment, proliferation, and differentiation. Here one should keep in mind that the
improvement in cell viability can be also correlated with the extremely low cytotoxicity of
HEMA and its co-polymers.
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3.3. BrdU Assay

The proliferative behavior of the prepared surfaces was tested using the standard BrdU
assay. Basically, the BrdU assay is based on the ability of proliferating cells to incorporate
the BrdU reagent into their DNA as they add thymidine during DNA replication and
synthesis [25]. The results suggested significantly higher proliferation rates of HOBs on all
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SVP–PLA patches, compared to the control group. The difference between SVP–PLA, SVP–
PLA + iCVD (HD) and SVP–PLA + iCVD (LD) was statistically insignificant (p > 0.0005)
(Figure 5b).

3.4. Fluorescein-Diacetate Analysis

Fluorescence microscopic observation was conducted after 48 h of culture. Fluorescein
diacetate (FDA, Sigma- Aldrich, St. Louis, MO, USA) and propidium iodide (PI, Sigma-
Aldrich, St. Louis, MO, USA) were used. The cells were assessed with the fluorescence
microscope (Axioplan2) and documented with a digital camera (AxioCam MRc5 from
ZEISS, Oberkochen, Germany). The dyes could be excited at 488 nm (blue light, argon
laser). The green fluorescence (FDA) was detected at 530 nm.

Figure 6 shows adherent HOBs cultured on the control substrate and prepared patches.
The results indicated a well-attached and elongated morphology, which is a major sign of
viable cells. However, there was a significant difference in the numbers of cells, especially
for those cultured on p(HEMA-co-EGDMA) modified and as-prepared patches. FDA
analysis revealed higher cell numbers of both HD and LD iCVD coatings compared to
the SVP–PLA and control groups, which were also correspondent with the MTT results.
However, regardless of the cell numbers, on both p(HEMA-co-EGDMA) modified patches
(LD and HD) and HOBs revealed more cell-to-cell interaction (indicated by the dashed
circle) compared to the control substrate and as-prepared SVP–PLA patches. Additionally,
cell density has clearly increased on the p(HEMA-co-EGDMA) modified patches. At higher
magnifications, it could be observed that HOBs started to form a dense network of filopodia
(indicated by arrows). Cell-to-cell contacts were established and HOBs exited an extremely
spread morphology. On the contrary, one can see that HOBs exhibited a totally different
morphology on the control substrate. Despite the similar proliferation rates of HOBs on
SVP–PLA and p(HEMA-co-EGDMA) modified patches (LD and HD) observed from BrdU
test, the morphology of the cells on an as-prepared SVP–PLA patch was prone to indicate a
non-spreading characteristic with lesser filopodia-like extensions.
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4. Discussion

The hydrophilicity of the materials plays an important role in their interactions with
the cells [26]. The WCAs of prepared SVP–PLA patches were measured before and after the
surface functionalization by iCVD to evaluate whether the hydrophilicity was improved
by the deposition of the p(HEMA-co-EGDMA) co-polymer. Additionally, the WCAs of
prepared samples were investigated before and after soaking them in water. It is known
that by increasing the incorporation of EGDMA, the swelling of the p(HEMA-co-EGDMA)
films in water is tunable from ∼25% for pure HEMA down to ∼0% for pure EGDMA [27].
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In general, when a polymer surface is exposed to a dry atmosphere, the change in the
surface configuration promotes a more hydrophobic state [28]. When the surrounding
medium is changed from the dry atmosphere to an aqueous medium, the hydrophilicity
increases significantly.

Xeno-based collagen materials have been widely used as bioresorbable barrier mem-
branes in guided tissue/bone regeneration. However, in addition to the controversies
regarding the risk of the transmission of infection by the cells or the tissues of the graft
during the microbiological screening of source animals, infections at surgical sites present
a realistic challenge for guided tissue/bone regeneration [29]. Moreover, it is very well
known that collagen, which exhibits rapid biodegradation accompanied by a notable de-
crease of mechanical stability in the human body, is one of the most popular biomedical
materials. However, this fact represents the key challenge for its use in large-sized tissue
regeneration, which takes a long time [30]. Therefore, numerous studies aimed to improve
the biomechanical characteristics of those membranes via nano-material applications [31].
On the other hand, the aim of the current study was to improve the hydrophilic character-
istics of the recently described marine-algae composite patches by iCVD modification to
obtain superior osteoblastic proliferative behavior. However, there is still a need for further
studies to identify their biodegradation and biomechanical stability.

It has been previously proclaimed that alginate membranes may be a useful alternative
to collagen-based membranes when the Guided bone regeneration (GBR) is employed.
Moreover, alginate membranes were also proposed as a self-setting barrier membrane that
can be used for GBR [32]. Functionalized polymer nanolayer deposition via iCVD is a
flexible and robust technique capable of the mass production of biocompatible layers, and
is suggested to be a very suitable modification method in biomedical engineering [33]. In
recent years, there has also been a growing interest in iCVD modified bio-patches, thus they
can enable antibacterial and biocompatible surfaces [34]. The iCVD modified composite
patch presented herein exhibited ideal cell adhesion for human osteoblasts, thus making
the proposed patch suitable for potential biomedical applications including bone tissue
engineering, especially in the fields of dentistry and orthopedy. However, further studies
are needed to clarify the fibroblastic proliferation and to speculate on its suitability for GBR
applications. On the other hand, its anti-bacterial characteristics could also be the subject
of future studies.

5. Conclusions

This work demonstrates the fabrication of a composite patch by incorporating marine
algae into PLA for bone tissue engineering. Following functionalization of the surface by
p(HEMA-co-EGDMA) via the iCVD technique, a highly hydrophilic patch was achieved
without tailoring any morphological or structural properties. Moreover, the iCVD modified
composite patch exhibited ideal cell adhesion for HOBs, thus making the proposed patch
suitable for potential biomedical applications including bone tissue engineering in dentistry
and orthopedy. However, further studies, such as the promotion of bone mineral deposition
after surface functionalization via the iCVD technique, are needed to exactly define the
bone cells’ behavior.
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