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Abstract: In this work, a new design for a real-time noninvasive metamaterial sensor, based on a
corona-shaped resonator, is proposed. The sensor was designed numerically and fabricated experi-
mentally in order to be utilized for efficient detection of glucose in aqueous solutions such as water
and blood. The sensor was inspired by a corona in-plane-shaped design with the presumption that its
circular structure might produce a broader interaction of the electromagnetic waves with the glucose
samples. A clear shift in the resonance frequency was observed for various glucose samples, which
implies that the proposed sensor has a good sensitivity and can be easily utilized to distinguish any
glucose concentration, even though their dielectric coefficients are close. Results showed a superior
performance in terms of resonance frequency shift (1.51 GHz) and quality factor (246) compared to
those reported in the literature. The transmission variation level ∆|S21| was investigated for glucose
concentration in both water and blood. The sensing mechanism was elaborated through the surface
current, electric field and magnetic field distributions on the corona resonator. The proposed meta-
materials sensor is considered to be a promising candidate for biosensor and medicine applications
in human glycaemia monitoring.

Keywords: corona-shaped resonator; metamaterial sensor; dielectric characteristic; glucose concen-
tration

1. Introduction

Glucose biosensors have been long used in biology, chemistry, food processing and
diabetes diagnosis [1,2]. The developments of glucose biosensors, working on different
principles, have been reported previously [3–10]. Among them, microwave-based biosen-
sors have been widely used due to their high sensitivity, simultaneous measurement, fast
response, robustness and low cost [11–14]. Glucose sensing by using microwave techniques
is realized by means of detecting the resonance frequency shift or amplitude changes as a
result of variation in the dielectric constant of the tested materials due to glucose content.
This change in dielectric constant interacts with the time-varying electromagnetic field,
which causes the resonance frequency to be shifted to a specific level [15–18].

Along this line, Lee et al. developed a reusable coplanar waveguide and found that
the increase in glucose concentration led to a decrease of the penetration depth of the
device [19]. Kumari et al. developed a resonator with complementary geometries of ring
and horn shapes for glucose sample characterization [20]. Furthermore, Hassan et al.
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showed that continuous detection of glucose was possible by using an (LC) inductor-
capacitor tank resonator [21].

An open-ended spiral resonator was also presented [22]. This resonator is basically
a spiral-shaped microstrip transmission line and has two ports. This study focused on a
glucose tolerance test and tracked the transmission coefficient parameter (S21). Yilmaz et al.
designed a patch resonator operating in the 2.45 GHz (ISM) industrial, scientific and
medical band [23]. In that study, the input impedance of the resonator was tracked at the
operating frequency to quantify the blood glucose change, which was approximately 0.04%.
Consequently, three different frequencies were proposed [24] to test water and glucose
solutions in the range from 0% to 10% and to track the change in glucose solutions by
the Q factor. A ring resonator sensor proposed in [25] was used to calibrate the sensor for
temperature changes in the sensing environment. An interface test system was proposed for
both glucose and vitamins as well as other sugars present in the blood. Another resonator
was designed by combining a spiral inductor and interdigital capacitor [26]. When blood
plasma was placed on the resonator, the resonance frequency was shifted up if the glucose
level was increased in the blood plasma. As such, a sensitivity of 199 MHz per mg/mL
was reported in the study.

Some other designed antennas have also been proposed by scientists for glucose
quantification. For instance, Freer and Venkataraman proposed an antenna through which
reflection coefficient S11 parameters are monitored in order to detect glucose in the oper-
ating frequencies of 1 GHz and 6 GHz [27]. Patch antennas operating at 2.45 GHz and
5.8 GHz were proposed in [28], in which deionized water and glucose solutions were
analyzed. Results showed that the change was nonlinear and the antenna operating at
a higher frequency was more responsive to the change in glucose levels. Another study
proposed in [29] showed that using a pig blood digital phantom, the predicted shifts can
range between 200 MHz to 300 MHz according to different volumes. A serpentine-shaped
antenna with passive coupling was proposed in [30] to monitor the change in S11 response.
This study showed that the designed antenna had a narrow bandwidth in air, while the
bandwidth was increased to 2.6 GHz for simulation when a finger was used. When a
glucose phantom was used, 32 MHz resonance frequency shifts were observed in the
concentration range from 0 mg/dL to 200 mg/dL.

Since glucose content and the dielectric constant are directly correlated, a metamaterial
sensor must satisfy the quality factor (Q) requirements for sensitivity reasons [31–33]. In
order to increase the sensitivity, researchers usually consider different approaches to design
the sensing resonators.

Based on the hypothesis that the symmetrical circular shape of a corona architecture
might be helpful in generating a homogenous electromagnetic wave distribution across the
resonator components, we expect that any trivial interaction of the external field with the
dielectric behavior of the investigated sample would result in an interesting observation in
the transmission response of the sensor. Therefore, in this study, we designed and fabricated
a resonator based on a corona shape. The resonator dimensions were tuned by using a
genetic algorithm embedded in the Computer Simulation Technology (CST) Microwave
Studio program in order to optimize the whole design of the sensor. This work gained
motivation from the fact that a highly sensitive glucose biosensor can be developed using a
proper resonator design with a high Q factor [34]. It has been proved that when glucose
concentration is changed, the effective permittivity (εeff) of the biosensor is ultimately
modified, which in turn leads to the shift in resonance frequency or amplitude [35–41]. In
the current work, the dielectric constant parameters were measured by an 85070E open-
ended dielectric probe kit. The obtained parameters were simulated by the CST Microwave
Studio program. The simulation and experimental studies showed good agreement. The
findings of this study confirmed that glucose content in water or in blood can be efficiently
sensed by the proposed metamaterial-inspired corona-shaped sensor.
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2. Structure and Design of the Metamaterial-Based Sensor

The proposed metamaterial-based sensor was designed and numerically investigated
by Computer Simulation Technology (CST) Studio Suite 2018. The designed structure used
in this work is composed of three main layers, as shown in Figure 1. The top layer consists
of a corona-shaped resonator with a transmission line, where P1 and P2 represent the first
and second port, respectively. The space between the closed circular ring (CCR) and the
conductive inner star shape is utilized as the sensor layer to be filled with samples under
investigation. The top layer is made of copper with a conductivity of 5.8 × 107 S/m and
thickness of 0.035 mm, while both ends of the transmission lines are excited by discrete port
1 and 2. The middle layer is a Rogers RT5870 substrate with a thickness of 1.6 mm and a
dielectric constant and loss tangent of 2.33 and 0.0012, respectively. This substrate layer was
chosen due to some advantages such as uniform electrical properties over a wide frequency
range; lowest electrical loss; being able to be easily cut, shared and machined to the desired
shape; being ideal for high-moisture environments; and being a well-established material.
The bottom layer is fully covered with a copper metal of 0.035 mm thick, which behaves as
a ground plate for the structure. The rest of the required dimensions are shown in Table 1.
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Table 1. Dimensions of the proposed structure.

Dimensions Size (mm)

Radius of resonator 9
Width of resonator 1.5

Length of transmission line 7.5
Width of transmission line 1.5

Radius of star shape 7.3
Length of substrate 35
With of substrate 35
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In the simulation software, there were some boundary conditions used depending on
the desired applications, such as free space, periodic distribution, perfect electric conduc-
tor/perfect magnetic conductor (PEC/PMC) and perfect electric conductor (PEC). In this
work, the boundary open (add space) was assigned at the X, Y and Z axes to be compatible
with the experimental studies, as shown in Figure 2a.
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Figure 2. Metamaterial-based sensor with a corona-shaped resonator: (a) the boundary conditions
and (b) equivalent circuit diagram whereas L denotes the inductance of the corona-shaped resonator,
R is the resistance, and the capacitance between the outer ring and conductor is C1, while C2 is the
capacitance between the inner conductor and copper ground plate.

To better understand the sensing mechanism of the proposed structure, an equivalent
circuit diagram was drawn, as shown in Figure 2b. The designed structure has two ports,
namely port 1 and port 2.

3. Dielectric Measurement of the Glucose–Water and Glucose–Blood Samples

The electrical properties of the samples were measured in the frequency range from 1
GHz to 8 GHz by using the open-ended coaxial probe with a 85070E dielectric measurement
kit connecting to a vector network analyzer.

A Vector Network Analyzer (VNA) KEYSIGHT brand PNA-L N5234A and dielectric
probe were used to measure the values of dielectric constant and loss tangent of the
glucose mixture with water at different concentrations (100 mg/dL to 500 mg/dL) in
steps of 100 mg/dL and of the glucose mixture with blood under similar conditions.
The experimental setup, shown in Figure 3, was used for electrical measurements of the
prepared samples. The measurements were carried out at room temperature (25 ◦C). Before
starting the measurements of selected samples, the apparatus calibration in the VNA
should be completed. To perform calibration, the electrical property of pure water was
given to the VNA, while making sure that the dielectric measurement was idle and air
was being measured. The next step was to immerse the dielectric probe kit in water and
calibrate the device accordingly. Then, the electrical characteristic of water was measured
in order to ensure the correct calibration of the VNA. Consequently, it was able to detect
the real and imaginary parts of the relative permittivity for various mixtures of the selected
samples. The dielectric loss factor of each sample could be determined by dividing the
imaginary part of the dielectric constant (ε”) by its real part (ε′), tan δ = ε”/ε′.



Appl. Sci. 2021, 11, 103 5 of 19

Appl. Sci. 2021, 11, x FOR PEER REVIEW 5 of 20 
 

lected samples. The dielectric loss factor of each sample could be determined by dividing 
the imaginary part of the dielectric constant (ε″) by its real part (ε′), tan δ = ε″/ε′. 

 
Figure 3. The experimental setup used in this work to measure the electrical properties of the 
samples. 

The measured real part of the dielectric permittivity and the imaginary part of the 
glucose–water and glucose–blood mixtures were recorded and data were imported into 
the CST software to estimate the transmission coefficient. The measured real and imagi-
nary parts of the complex permittivity for the glucose–water mixture are shown in Figure 
4a,c. From the measured results, one can find the real part of the complex permittivity at 
any frequency from 1–8 GHz. The real part of the complex permittivity at a resonance 
frequency of 1 GHz for all glucose concentrations was estimated to be 80.5, while at the 
resonance frequency of 8 GHz, the real part of the complex permittivity for 100, 200, 300, 
400 and 500 mg/dL glucose mixed with water was approximately 66.90, 67.91, 68.2, 69 
and 69.92, respectively. 

To verify the measured results, the electromagnetic parameters, namely the infinite 
dielectric constant (εஶ), static dielectric constant (εୱ) and relaxation time (τ), were theo-
retically deduced from Debye’s model. The formulas for the parameter’s correlation with 
the concentration ratio of glucose were found to be as follows: εஶሺx) = −0.9983xଶ  −  0.3278x +  41.077  (1) εୱሺx) =  −1.9436x − 1.2992x + 1.4725   (2) τሺx) = 3E − 13xଶ − 3E − 12x + 1E − 11  (3) 

where x is the volume fraction of the glucose concentration in water. The calculated 
parameters can be inserted into Debye’s equation so as to yield a generalized formula 
which can be used to determine the real and imaginary permittivity of the samples at 
various volume fractions, as follows: εᇱሺw) = εஶሺx) + க౩ሺ୶)ିகಮሺ୶)ଵା୨୵தሺ୶)   (4) 

Figure 3. The experimental setup used in this work to measure the electrical properties of the samples.

The measured real part of the dielectric permittivity and the imaginary part of the
glucose–water and glucose–blood mixtures were recorded and data were imported into the
CST software to estimate the transmission coefficient. The measured real and imaginary
parts of the complex permittivity for the glucose–water mixture are shown in Figure
4a,c. From the measured results, one can find the real part of the complex permittivity
at any frequency from 1–8 GHz. The real part of the complex permittivity at a resonance
frequency of 1 GHz for all glucose concentrations was estimated to be 80.5, while at the
resonance frequency of 8 GHz, the real part of the complex permittivity for 100, 200, 300,
400 and 500 mg/dL glucose mixed with water was approximately 66.90, 67.91, 68.2, 69 and
69.92, respectively.

To verify the measured results, the electromagnetic parameters, namely the infinite
dielectric constant (ε∞), static dielectric constant (εs) and relaxation time (τ), were theoreti-
cally deduced from Debye’s model. The formulas for the parameter’s correlation with the
concentration ratio of glucose were found to be as follows:

ε∞(x) = −0.9983x2 − 0.3278x + 41.077 (1)

εs(x) = − 1.9436x− 1.2992x + 1.4725 (2)

τ(x) = 3E− 13x2 − 3E− 12x + 1E− 11 (3)

where x is the volume fraction of the glucose concentration in water. The calculated
parameters can be inserted into Debye’s equation so as to yield a generalized formula
which can be used to determine the real and imaginary permittivity of the samples at
various volume fractions, as follows:

ε′(w) = ε∞(x) +
εs(x)− ε∞(x)

1 + jwτ(x)
(4)

ε′′ (w) =
[εs(x)− ε∞(x)]wτ

1 + jwτ(x)
+

σs

wεo
(5)
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Figure 4. The complex permittivity of glucose–water mixture: (a) measured real part, (b) calculated real part, (c) measured
imaginary part and (d) calculated imaginary part.

The theoretically extracted real part and imaginary part of the complex permittivity
values are shown in Figure 4. The real part of the complex permittivity for the samples with
100, 200, 300, 400 and 500 mg/dL of glucose mixed with water was 80.5, 80.5, 80.5, 81 and
81, respectively, at the resonant frequency of 1 GHz. At the resonance frequency of 8 GHz,
the values were 67.8, 68.2, 68.96, 69.53 and 70 for the same concentrations, respectively. The
real and imaginary parts of the complex permittivity for different ratios of glucose–water
showed a good agreement between the measured values and theoretically extracted ones
from Debye’s equation.

To further validate the measured and theoretical results, we conducted an analysis
of the real and imaginary parts of the complex permittivity of the glucose–blood samples,
as shown in Figure 5. The measured and calculated results were in good agreement. The
calculated curves of the real and imaginary permittivity versus frequency in the range
of 1–8 GHz were derived theoretically from Debye’s equation, Equations (4) and (5),
after estimating the following parameters, Equations (6)–(8), upon the curve fitting of the
experimental data.

ε∞(x) = −66.171x3 + 124.98x2 − 65.129x + 47.224 (6)

εs(x) = −136.39x3 + 225.95x2 − 130.14x + 20.669 (7)
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τ(x) = 2E− 12x2 − x× 10−13 + 10−11 (8)
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4. Numerical and Experimental Studies of the Proposed Sensor for Glucose Detection

The designed (MTM) metamaterials corona-shaped sensor was simulated by the
CST Studio suite electromagnetic solver. When the sensing layer was filled with air, the
reflection coefficient (S11) and transmission coefficient (S21) were monitored over the
frequency range of 1–8 GHz, as shown in Figure 6. It can be noted from Figure 6a that
the S11 had two resonance frequencies at 3.6 GHz and 6.2 GHz with −32 dB and −26 dB,
respectively. These correspond to the two maximal values of the transmission coefficient at
the same frequencies in Figure 6b. These two sharp peaks of the transmission and reflection
coefficient are considered to be one of the important advantages of the proposed design,
which helps to detect any trivial shift/change in the resonance frequency.

In order to optimize the performance of the proposed sensor, a parametric study was
performed to tune the sensor dimensions. For this purpose, the overall dimensions of the
proposed structure were optimized by using a genetic algorithm technique, which is a
built-in function in the CST software. To address the effects of changing the dimensions of
the proposed sensor, the most influential parameters, which are the width of the outer ring
resonator radius (Ro), transmission line width (WTI) and sensor layer radius (Rs), were
investigated, as shown in Figures 7–9.
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sion spectra.

From the studied results, a clear shift in the resonance frequencies of the reflection
coefficient to the upper-frequency limit was noted when the value of Ro was increased from
9.5 mm to 11.5 mm, as shown in Figure 7. Besides, the Ro increment led to the amplitude
variation and increment of the resonance frequency of the transmission coefficient.

The effects of changing the transmission line width (WTI) from 0.5 to 2.5 mm are
presented in Figure 8. As can be seen from the figure, with WTI decrement in 0.5 steps, the
resonance frequency of the reflection coefficient increased by a small amount. Noticeably,
the amplitude of the transmission coefficient was reduced with this WTI reduction, while
this had a very small effect on the resonance frequency shift of the transmission coefficient.

Figure 9 shows the variation of the resonance frequency and amplitude of the reflection
coefficient and transmission coefficient of the proposed sensor when the sensor layer radius
was changed from 8.4 to 9.6 mm in 0.3 mm steps. The result showed that there is a direct
proportionality relation between the sensor layer radius and the resonance frequency of
the reflection coefficient. When the radius is increased, the resonance frequency is also
increased linearly by about 100 MHz in each step. Consequently, based on the optimization
of the genetic algorithm technique, the optimum values of the outer ring resonator radius
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(Ro), transmission line width (WTI) and sensor layer radius (Rs) were found to be 10.5 mm,
1.5 mm and 9 mm, respectively.
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In conclusion, it can be said that the positions of the resonance frequencies are mostly
affected by the outer ring resonator radius (Ro) and the sensor layer radius. This implies
that these two parameters are the most influential parameters of the proposed structure, as
they are highly related to the investigated samples. Consequently, any minor change in the
electrical characteristics of the samples led to the shift in resonance frequency.

The measurements were run seven times sequentially and the average of the mea-
surements was taken. Hence, the standard deviation of the measurements is represented
by error bars on the corresponding plots. The proposed designed structure is shown in
Figure 10a. The required dimensions of the structure were fabricated based on the opti-
mized dimension achieved in the numerical design. Additionally, the substrate length and
width were chosen to be 35 mm × 35 mm. Two coaxial test cables were connected to the
metamaterial sensor via two ports, as shown in Figure 9b. Before taking measurements, the
vector network analyzer (VNA) was connected to the structure through the coaxial cables
and then calibration was done in three steps of the open circuit, short circuit and 50 Ohm
load connector in the desired frequency range, as shown in Figure 9c. To take the reference
data, a simulation and experiment were carried out with the presence of the glucose–water
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and glucose–blood samples in the sensor layer. The test results were done in the frequency
range of 1–8 GHz.
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Figure 10. Photographs of (a) the proposed structure, (b) its two-port connection and (c) experimen-
tal setup.

Glucose–water mixtures were prepared at different concentrations of glucose, from
100 mg/dL to 500 mg/dL in steps of 100 mg/dL. The dielectric properties of the samples
were measured using a dielectric probe kit. The data files obtained from the measured
results were imported into simulation software to obtain the transmission coefficient (S21)
in dB, in the frequency range of 1–8 GHz. The sensitivity of the proposed sensor was
examined by means of the transmission coefficient value for all glucose concentrations, and
the simulated results are illustrated in Figure 11a. As can be seen from the figure, when
the glucose concentration in water was about 100 mg/dL, the resonance frequency shift
was about 7.01 GHz. However, by increasing the concentration of the glucose, a clear shift
in the resonance frequency could be seen towards the lower frequency. For instance, at
500 mg/dL, the resonance frequency was about 6.25 GHz, while in the frequency range
from 1 GHZ to 1.6 GHz, a shift in the resonance frequency was observed when the glucose
concentration was increased from 100 mg/dL to 500 mg/dL. The inset of Figure 11a
shows the close-up for this shift. To validate the numerical results of the proposed sensor,
the measured results of the transmission coefficient (S21) for the glucose–water mixtures
at similar concentrations was recorded, as depicted in Figure 11b. The measured results
showed that the designed structure was very sensitive to the samples inside the sensor layer;
as seen from the figure, there was a clearer shift for all the concentrations. For instance, the
resonance frequency shift between 100 mg/dL and 200 mg/dL was about 1.51 GHz. This
frequency shift is larger than the shifts achieved in the other similar published works
in the literature. In terms of the Q-factor, the proposed structure had a superior quality
factor, which was about 246 based on the measured results at the glucose concentration of
300 mg/dL in water.
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Figure 11. (a) Simulated and (b) measured results of the glucose–water mixture of the proposed metamaterials sensor.

In order to verify the sensitivity of the proposed sensor, the simulation and measure-
ments were performed with other glucose concentrations mixed with blood: 100, 200, 300,
400 and 500 mg/dL as illustrated in Figure 12. The simulated and measured results were
found to be in good agreement, where there were clear shifts in the resonance frequency
of both numerical and measurement results around 2 GHz and 3.5 GHz. The results had
deeper peaks around −16 dB. Both results indicated that the proposed corona-shaped sen-
sor could easily detect the minimal glucose concentration in blood, which is very important
for the medical and biological applications.
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Figure 12. A comparison of the glucose–blood mixture sample of the proposed metamaterials sensor: (a) simulated and
(b) measured.

Figure 13a shows the comparison of the simulated and measured results along with
the fitted curve of the resonance frequency shift versus glucose concentration in aqueous
solution. The resonance frequency of the proposed sensor shifted down by increasing
the concentration of glucose in water; the frequency shift also caused a change in the
transmission coefficient (S21) level at a fixed frequency of 7.01 GHz, which is the resonance
frequency for the 100 mg/dL glucose–water mixture. Therefore, both the resonance fre-
quency shift (∆fr) and the S21 level can be used in the sensing mechanism. The resonance
frequency shift versus the glucose concentration is plotted in Figure 13a. The resonance
frequency shifts of the experimental results and fitted curve are plotted in Figure 13b. It
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was noticed that by increasing the glucose concentration in water, the resonance frequency
shift was decreased. The lowest concentration of glucose which was reliably detected by
the proposed sensor can be expressed by the limit of detection (LOD). The value of the LOD
defines the lowest detectable quantity of an analyte when the concentration approaches
to zero. The response of the sensor in the range of 200–500 mg/dL was found to be well
fitted as y = 6.414 − 0.0048x (R2 = 0.972). Consequently, the LOD was determined to be
30.94 mg/dL using LOD = K × S0/S [42], where K was chosen as 3.3 with respect to the
95% confidence level, S0 is the standard deviation and S is the slope of the fitting curve.
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Figure 13. Resonance frequency shift versus the glucose concentration in water: (a) simulation and fitted curve, and
(b) measurement and fitted curve.

Figure 14 shows the frequency shift dependence of the glucose–blood mixtures for
the simulated and measured results. It was seen that the fitted curve was in compliance
with the resonance frequency shifts, concluding that the resonance frequency shifts are
decreased by increasing the glucose concentration in blood.

Figure 15a shows the change in the transmission level variation, ∆|S21|, with respect
to the 100 mg/dL glucose–water mixture at 7.01 GHz for the simulation and fitted curve
derived from the Debye formula. The results show a linear relationship between the
resonance frequency shift and the glucose concentration in the solution. However, the
S21 level variation is a nonlinear function of the glucose concentration for the considered
concentration ranges. The points in Figures 13a, 14a, 15a and 16a were obtained by repeating
each simulation 10 times. As it can be seen from the figure, the variation in transmission
level was increased when the glucose concentration in water was increased. To verify the
simulated results, the experimental results were recorded and compared with the numerical
results. The measurement and fitted curve of the transmission variation level with respect
to the 100 mg/dL mixture as a reference at 7.01 for the glucose–water mixture was obtained
and plotted in Figure 15a. The results show a linear relationship between the transmission
variation level and glucose concentration in water.

The simulated and measured results of the variation in transmission level with respect
to the glucose concentration were recorded for the samples of glucose–blood, as shown in
Figure 16a. The results showed a linear relationship between the transmission level and
glucose concentration in blood.

Figure 16b shows the dependence of the transmission variation level on glucose
concentration in blood for the measured results and fitted curve. The glucose concentration
of 100 mg/dL at resonance frequencies of 2 and 3.5 GHz was used as a reference. The
measured and fitted curve were in good agreement, indicating the linear relationship
between the transmission variation level and glucose concentration.
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To better understand the working principle of the proposed metamaterials sensor,
the simulated surface current, electric field and magnetic field distribution was studied
at two different resonance frequencies of 3.6 and 6.18 GHz, as shown in Figures 17–19,
respectively. At the resonance frequency of 3.6 GHz, the current flowed into port one and
exited from port two. Furthermore, at the lower part of the resonator, the direction of
the current flow was clockwise, while at the upper part of the resonator, the current flow
was in an anticlockwise direction, as shown in Figure 17a. At the resonance frequency of
6.18 GHz, the current was heavily distributed on the resonator, whereas currents on port
one and two were flowing in opposite directions and both the resonator and transmission
line were in parallel and anti-parallel directions. Nevertheless, the parallel currents control
the electric response and the anti-parallel currents control the magnetic response, as shown
in Figure 17b.

Figure 18 depicts the simulated electric field distribution for the proposed metamateri-
als sensor at two different resonance frequencies of 3.6 and 6.18 GHz. From Figure 18a, it
is apparent that the electric field intensity is mostly concentrated in the inner and outer
rings of the resonator. In addition, it was localized at the transmitting side (port 1) of the
transmission line compared with at the other side at the resonance frequency of 6.18 GHz,
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as shown in Figure 18b. Electric field distribution was highly concentrated on the resonator
(especially the inner and outer rings). Hence, the proposed structure was able to sense any
small changes in the electrical characteristics of the sample placed in the sensor layer.
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The simulated magnetic field distribution for the proposed sensor at resonance fre-
quencies of 3.6 GHz and 6.18 GHz is shown in Figure 19. The magnetic field distribution
was strongly localized at the upper and lower parts of the resonator at the resonance
frequency of 3.6 GHz, as shown in Figure 19a. However, when the resonance frequency
was increased to 6.18 GHz, the magnetic fields were mostly concentrated at the resonator
as shown in Figure 19b.

A comparison between this work and other similar published work in term of size,
materials substrate, frequency range, sensitivity and application procedure has been shown
in Table 2.
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Table 2. Comparison study of the proposed glucose sensor with those reported in literature.

Ref. Size (mm) Substrate Materials Frequency Range (GHz) Sensitivity Application Procedure Remarks

[6] 46 × 46 FR-4 0.7–1.2 0.033 MHz g/L Noninvasive
Split Ring Resonator (SRR)-based
microwave
fluidic sensors

[7] 20 × 20 Rogers RO4350B 2–5 0.037 GHz 30 mg/dL Noninvasive
Sensing capacity with
double negative (DNG) property and
minimal absorption

[10] 40 × 40 Silicon 50–67 Range 2.2–7.7 mg/mL Noninvasive
Whispering Gallery
Modes (WGMs) launched in a dielectric
disc resonator (DDR)

[17] 50 × 20 Rogers RT6006 1–5 0.026 MHz mg/dL Noninvasive Metamaterial-inspired microwave
microfluidic SRR

[18] 20 × 15 Rogers RT5880 1–2 1.6 MHz1–15 g/dL Glucose-sensing SRR resonator
without metamaterials

[20] 40 × 20 FR-4 1–3 Range 20–100 mg/mL Invasive Microwave filter as a
sensor device

This work 35 × 35 Rogers RT5880 1–8 1.51 GHz 100–500 mg/dL Glucose-sensing Corona resonator based on metamaterials
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5. Conclusions

In this work, for the first time, a metamaterial-based sensor comprising a corona-
shaped resonator was successfully developed for the efficient detection of glucose concen-
tration. The sensor was designed numerically and tested experimentally by evaluating
variations in the transmission coefficient (S21) of the waves at resonant frequency. The
proposed structure can offer a noninvasive characterization technique based on the di-
electric properties of the measured glucose concentration in water or blood. According to
the measured results for the glucose concentration in water, the resonance frequency shift
for concentrations between 100 mg/dL and 200 mg/dL was about 1.51 GHz. A favorable
quality factor of 246 could be achieved, which is highly competitive compared to that of
previous results. The proposed metamaterial-based sensor has many advantages, such
as its use in real time, low cost, durability, accuracy and ability to detect any glucose
concentration in the samples in a few seconds. The proposed sensor can be considered for
many applications of biosensing and medicine and in monitoring human glycaemia.
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37. Bakır, M.; Dalgaç, Ş.; Ünal, E.; Karadağ, F.; Demirci, M.; Köksal, A.S.; Akgöl, O.; Karaaslan, M. High Sensitive Metamaterial
Sensor for Water Treatment Centres. Water Air Soil Pollut. 2019, 230, 304. [CrossRef]

http://dx.doi.org/10.1038/s41598-017-18621-2
http://www.ncbi.nlm.nih.gov/pubmed/29317767
http://dx.doi.org/10.1109/JSEN.2019.2950912
http://dx.doi.org/10.3390/s20030943
http://www.ncbi.nlm.nih.gov/pubmed/32050710
http://dx.doi.org/10.1016/j.snb.2012.01.044
http://dx.doi.org/10.1109/JSEN.2018.2877691
http://dx.doi.org/10.1109/JSEN.2019.2938853
http://dx.doi.org/10.1088/1361-6463/ab2d78
http://dx.doi.org/10.1088/1361-6463/aaa5c5
http://dx.doi.org/10.1109/LAWP.2019.2955176
http://dx.doi.org/10.1109/TAP.2014.2313139
http://dx.doi.org/10.1109/TIM.2018.2866743
http://dx.doi.org/10.1109/TMTT.2015.2472019
http://www.ncbi.nlm.nih.gov/pubmed/26568639
http://dx.doi.org/10.1038/srep07807
http://www.ncbi.nlm.nih.gov/pubmed/25588958
http://dx.doi.org/10.1155/2015/570870
http://dx.doi.org/10.1016/j.sna.2018.03.041
http://dx.doi.org/10.1117/1.JNP.13.026014
http://dx.doi.org/10.1109/JSEN.2018.2873544
http://dx.doi.org/10.1016/j.physb.2019.07.051
http://dx.doi.org/10.1109/TMTT.2015.2503275
http://dx.doi.org/10.1016/j.jmrt.2020.07.034
http://dx.doi.org/10.1016/j.cplett.2020.137169
http://dx.doi.org/10.1007/s11270-019-4355-y


Appl. Sci. 2021, 11, 103 19 of 19
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