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This paper presents improved energy management for grid-inverter of a hybrid photovoltaic (PV)/fuel cell
(FC) energy system with unbalanced sensitive loads. In the system, unbalanced loads draw unbalanced
currents at each phase and consume power from energy units at different levels. This condition makes
the grid unbalanced, which cannot be compensated by a conventional energy management controller
used in grid inverters. For this, a phase balancing control method is proposed in order to improve the grid
quality under unbalanced loading conditions. The proposed method calculates power differentiation val-
ues based on multiple-frame ab/dq transform instead of abc/dq transform in the conventional method.
Thus, it eliminates negative & zero sequence components in addition to power flow control. Under
unbalanced loading conditions, the proposed method removes the deficiency of the conventional energy
management method which generates the symmetrical current references to trigger the switching ele-
ments of the inverter. In performance results, the system with unbalanced loads is tested for different
case studies, which supply different power from energy units to grids. The results show that the proposed
method provides power balancing at the grid-side and eliminates negative & zero sequence components
at grid-side currents.

� 2021 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Ain Shams Uni-
versity. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/

by-nc-nd/4.0/).
1. Introduction

1.1. Overview

Renewable energy technologies are becoming increasingly
popular for residential and utility-scale applications with techno-
logical advancements. In order to meet the electrical power
demand, renewable energy sources are used in the electrical grid
integration implementations for additional power supply [1]. The
integration of two or more renewable energy sources with
utility-grids is briefly defined as grid-connected hybrid energy
systems [2–4]. In these systems, excess electrical energy is
transferred to the grid, or the needed electrical power is completed
from the grid to feed local load banks. This means that the electric-
ity produced by the hybrid system can either be used directly
(which is suitable for illumination, heating and other devices in
buildings) or be commercialized to the electrical distribution
companies [5–7].

In renewable energy technologies, hybrid energy systems,
including photovoltaics (PVs) and fuel cells (FCs), are broad and
desirable according to easy operation, simple working and envi-
ronmental sources [8,9]. Moreover, PVs and FCs ensure a good
solution for power balancing and voltage/frequency regulation in
comparison to the intermittency of a wind turbine in power out-
puts [6,10]. These structures should be cautiously organized and
handled to supply optimized active power from renewable energy
systems to utility-grids [11–13]. Thus, the energy generation units
are placed in an electrical line to strengthen the grid power, thus
decreasing the instantaneous oscillations and enhancing system
stability/performance [14]. In this regard, the grid-connected
hybrid systems provide a collective power exchange from energy
units to local loads/grids.
d pho-
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Nomenclature

AC Alternating current
DC Direct current
D1 Duty cycle of FC-side switch
D2 Duty cycle of PV-side switch
FC Fuel cell
IEEE Institute of Electrical and Electronics Engineers
Isc Output current in PV panel
Ifc Output current in FC stack
Iload;n Load current (n = a,b,c)
Idc;ref Average current reference
Iref ;n Reference value for switching (n = a,b,c)
Idn Direct-component of system currents
Iqn Quadrature-component of system currents
Idif ;n Differentiation value of current (n = a,b,c)
MPPT Maximum power point tracking
N Number of cells in an FC

PEMFC Proton exchange membrane fuel cell
PLL Phase locked loop
PI Proportional-integral
PWM Pulse width modulation
PV Photovoltaics
P&O Perturb and observe
Pgrid;n Grid-side power
Pload;n Load-side power
Psys;n Supplied power from PV/FC system
Pfc FC-side output power
Ppv PV-side output power
THD Total harmonic distortion
Vdc DC-link voltage
Vfc FC voltage
Vpv PV voltage
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In a normal condition, grid currents and power flows are
balanced at the grid-side. For this, the electrical system is funda-
mentally symmetrical, and hence positive-sequence currents only
seem in an electrical line. But, unbalanced loads distorts the
equilibrium of grid currents, which are in the ratings of different
magnitudes [15]. These components also distort the power balance
supplied to the grid-side, thereby triggering the system losses and
reducing the running efficiency [16]. And this condition creates
negative & zero sequence components at grid-side currents. For
this purpose, the elimination of negative & zero sequence currents
at the grid-side is an essential issue for unbalanced load conditions.
Thus, an improved power flow controller is proposed in this study
to provide stability at grid-side currents. In this way, the proposed
method controls the power equilibrium at grid-side power flows to
eliminate unwanted sequence components.

1.2. A brief review

In grid-connected hybrid energy systems, energy generation
units such as PVs, FCs, batteries and/or super-capacitors generate
electrical power in dc-form [8]. However, it is common knowledge
that the electrical power in dc form must be converted into
ac-form for the grid interconnection [17]. In order to provide a
smooth connection, these generation units are linked to utility-
grids by using electrical interface components [18]. In a conven-
tional system, the fundamental components are dc-dc converter
and inverter, and power flow management is provided through
inverter elements [19,20]. The input inverter is connected with a
dc-dc converter, which provides a smooth voltage within an opti-
mum control [21]. For this, the significant control of a grid-
connected PV/FC system is achieved based on pulse-width modu-
lated inverters. The main target of inverters is to supply active
power from energy generation units to loads/utilities and control
the supplied currents/dc-link voltage [22]. There are many studies
related to energy management used in grid-connected hybrid
energy systems in the literature. The common function of these
studies is to control power flow between grid and energy units. A
lot of studies are considered for three-phase balanced sensitive
loads in Refs. [17,19–22]. In these studies, it takes attention to
power flow control with optimization approaches. But, these works
are tested under balanced loading situations.

Considering the existing studies, the system structures in Refs
[23,24] are considered for on-grid and off-grid modes with
three-phase balanced sensitive loads. In Ref. [25], the system is per-
formed under unbalanced grid fault situations. However, only nega-
2

tive sequence components are compensated through a positive–
negative sequence extraction method. In Refs. [26,27], the funda-
mental subject is the compensation of current harmonics under
three-phase balanced nonlinear loads. Also, a hybrid system with
reactive loads is analyzed in Ref. [28]. Besides, Ref. [29,30], Ref.
[31], and Ref. [32] are interested in single-phase systems for sensi-
tive loads, nonlinear loads, and no-load conditions, respectively.
These studies are not analyzed for unbalanced loading conditions.
In Ref, [33], zero-sequence components are only compensated at
the grid-side. In Ref. [34], the system is performed under no load
with unbalanced grid fault conditions, which cause unbalanced cur-
rents. In this study, the positive–negative sequence method is
implementedwith a three-phase three-wire inverter to provide bal-
anced currents. Ref. [35] uses a droop controller to provide system
stability under unbalanced grid situations. The common point of
these methods in Refs. [34,35] is that the systems are tested under
unbalanced grid-conditions and based on three-phase three-wire
inverters. This condition makes them applicable to the compensa-
tion of only negative sequence components. For this purpose, in this
study, an improved power flow control method is proposed to com-
pensate negative and zero sequence components at the grid-side.
Also, the system is tested under unbalanced loads balanced grid
voltages in contrast to classical systems. By thisway, the compensa-
tion of zero-sequence currents at grid-side is aimed in addition to
negative sequence components in this study.
1.3. Key contributions

In comparison with traditional grid-interfaced hybrid
renewable energy systems, the current study introduces a
grid-side phase balancing method with negative/sequence current
elimination. To eliminate the negative&zero sequence current, the
proposed energy management scheme is based on ab/dq transform
instead of conventional abc/dq transform. Thus, the proposed
method needs more voltage/current measurements compared to
conventional abc/dq method. This makes the proposed method
more complicated and difficult in comparison with the conven-
tional energy management method. But, the proposed energy man-
agement scheme ensures that the grid-connected hybrid energy
system operates more stable under unbalanced loading conditions.
This mitigation may play a significant role to (1) increase the
efficiency, (2) increase the system relaiblity, (3) reduce the power
system losses, and (4) prevent the malfunction of the overall
system.
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In the current study, an energy management scheme is devel-
oped to supervise power flow control between energy units amd
grids/loads. The applicability of the proposed scheme is designed
and tested in a grid-interfaced PV/FC hybrid energy system under
unbalanced loading condition. In order to show the validity of
the developed energy management scheme, different case studies
are further presented in comparison with conventional power flow
control strategy. Regarding the comparison results, the overall sys-
tem has been built and tested using Simulink environment
program.

In this paper, a grid-connected PV/FC hybrid energy system is
designed and performed for unbalanced load & balanced grid volt-
age conditions. The unbalanced loading situations distorts the grid-
current stability and cause unbalanced currents at grid-side. To
obtain balanced grid-currents under unbalanced loading situa-
tions, the elimination of negative&zero sequence current are pro-
posed in this study. To this end, the grid-connected hybrid
energy system is controlled through the proposed phase balancing
method to ensure grid stability. The operating principles of the
proposed control method are also detailed in the study. Moreover,
the main objectives of the study are given as follows:

� In the designed system, hybrid-energy system unit supplies
more power to the phase where the load consumes higher
power. Also, it supplies less power to the phase where the load
consumes less power. In this regard, the controller provides
power balancing at the grid-side. This also means that the
grid-side currents under constant voltage are balanced.

� In order to control each phase separately, the system uses H-
bridge inverters. For this, multiple frame ab/dq conversion with
the power differentiation part is used for each grid inverter.

� With the power balancing, the negative and zero sequence com-
ponents due to unbalanced loading situations are eliminated at
grid-side currents. The numerical values show the validity of
the proposed method in comparison with the conventional
power flow control strategy.
Fig. 1. The power circuit with
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The paper organization is as follows: Firstly, the structure of the
designed system is introduced in part 2. Subsequently, the phase
balancing method is presented in detail in part 3. In this part, the
control is explained through algorithm, scheme, and mathematical
expressions. In part 4, performance results are introduced to verify
the proposed control method’s effectiveness compared to the con-
ventional power flowmethod. Then, a brief conclusion is also given
in part 5.
2. Hybrid system with phase balancing method

A grid-connected hybrid energy system a dual-input boost con-
verter, an inverter, ripple filter and transformer (optional). Among
interface elements, dc-dc converter and inverter are the main com-
ponents that control the power flow from the FC to the grid. Dc-dc
converter generally increases dc voltage and stabilized the dc volt-
age at output [36]. Dc voltage at the dc-dc converter’s output is
converted to ac form through inverter elements [37]. In this way,
the inverter converts the dc-link voltage into a controlled ac form.
Switching ripple filter connected to the inverter is used to reduce
the unwanted components at the inverter output [38,39]. The
transformer is optional, and its function is to integrate with high
voltage electrical lines [33].

In designed hybrid energy topology, it consists of PV and FC
energy units, as shown in Fig. 1. The system is connected to unbal-
anced sensitive (resistive) loads under balanced grid voltages. It is
also constructed by using H-bridge inverters and connected to the
grid through three single-phase isolation transformers. The system
proposes to control each phase separately through the presented
control strategy.
2.1. Energy generation units

This part presents the system elements employed in the hybrid
energy system. The energy generation units are PV and FC in the
power ratings of 15.6 kW and 19.3 kW.
phase balancing method.
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2.1.1. PV
PV panel generates dc electrical energy through solar rays [40],

and its output power depends on the different variables such as
irradiance, temperature, and solar cell characteristics [41,42]. The
output power of the PV unit (Ppv ) is described below [33]:

Ppv ¼ Ns � Np
� �

Pnom
G

Gnom

� �
1þ a Tc;actual � Tnom

� �� � ð1Þ

Ns and Np express the series and parallel PV modules. Pnom is power
value in the optimum operating. G indicates irradiance value, and
Gnom defined irradiance value at 1000 W=m2 .Tc;actual is the temper-
ature value of PV array, and Tnom is nominal temperature. Also, a
defines a fixed temperature parameter [43,44].

The output current in a PV cell is defined as [40]:

Isc ¼ Iph 1þ Co T � 273ð Þð Þ � Io e
q VpvþIscRsð Þ

nkT � 1
� �

� Vpv þ IscRs

Rsh
ð2Þ
Fig. 2. The power exchange th

Fig. 3. Conventional power flow
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2.1.2. FC
Proton exchange membrane FCs (PEMFC) are used as the second

energy generation input of hybrid energy system. Its dynamic
response is defined in Eqs. (3)–(6). The operating voltage of FC is
computed as [45]:

Vfc ¼ Voc � Vohmic � vd ð3Þ
Vfc is the output voltage of FC stack, Voc is the open-circuit voltage
and Vohmic defines the loss voltage. Besides, vd expresses the abso-
lute polarization overvoltage, which is defined by using .. and
Ifc[46,47]. Open circuit voltage (Voc) is formulated as:

Voc ¼ Kc Vo þ ðT � 298Þ�44;43
zF

þ RT
zF

ln
PH2P

1=2
O2

PH2O

 !" #
ð4Þ

Vo is an electromotive force for constant pressure. and z is electron
value [48]. Loss voltage (Vohmic) is defined according to internal
resistance and FC current [49].
rough separate inverters.

controller for grid inverters.
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Vohmic ¼ ifcRohmic ð5Þ
Polarization overvoltage (vd) is also defined as:

Vd ¼ N � A� Inðifc=ioÞ ð6Þ
N indicates the cells in the FC. A and io are Tafel slope and exchange
current given in [48].

2.2. Interface elements

Among interface elements, dc-dc converters provide a fixed
input voltage for the inverter unit [32,36]. In the designed system,
dual input single output dc-dc boost converter is used to keep and
stabilize the dc-link voltage. The relationship between input and
output voltage is defined in Eq. (7).

Vdc ¼
Vfc=ð1� DfcÞ for FC

Vpv= 1� Dpv
� �

for PV

( )
ð7Þ

Dpv and Dfc are switching ratios of S1 and S2 in dual input boost
converter.

In the control section of boost converter, perturb and observe
maximum power point tracking method (P&O MPPT) is employed
to generate switching signals for S1 and S2. Online iterative
method P&O MPPT generates a reference duty cycle value and
determines the voltage conversion ratio through the duty cycle.
In the operational process, MPPT is operated via observation for
positive and negative alteration values of PV/FC units [41].

dVin
dt ¼ 1

Cin
iinductor � iinð Þ

diinductor
dt ¼ 1

Lboost
ðD� 1ÞVin � Rboost

Lboost
iinductor

8<
:

9=
; ð8Þ

In the boost converter, the switching of the dual input boost
converter is accomplished at 5 kHz in order to keep dc-link voltage
constant at 150 V. Also, the value of the inductor is selected as 0.5
mH by using Lboost ¼ VinD= Diinductorfð Þ.

Fig. 2 presents the power flow circuit in the H-bridge inverters
based system. It shows that the sending power (Psend) is supplied to
the grid-side through separate inverters. The primary function of
inverters is to supply controlled power for each phase at calculated
values.

The power value at the dc-link point is defined below [50,51].

Pdc ¼ Pcap þ Psend ð9Þ
Pdc and Pcap are coming energy and stored energy, respectively.

Psend defines sent power through inverters. The relationship in
sending powers is written for three phases:

Psend ¼ Psend a þ Psend b þ Psend c ð10Þ

Psys ¼ Psys a þ Psys b þ Psys c ð11Þ
Psys is defined as supplied power from the system to the point of
common coupling. If we neglect the power losses due to the inver-
ter and transformer, the sending power is approximately identical
to the system power, described in Eq. (12).

Psend � Pinv � Psys ð12Þ
Readjusting the Eq. (9), it is written in a new form:

Pdc ¼ Pcap þ Psys ð13Þ
Due to Pcap ¼ VdcCdc

dVdc
dt , the relationship between Pdc and Psys is

described below:

Pdc ¼ Psys þ VdcCdc
dVdc

dt
¼ Psys þ VdcCdc

DVdc

Dt
ð14Þ
5

We assume that Pdc has no active power. In this way, the dc-link
voltage changes linearly with the system power. Thus, the voltage
change in Eq. (14) is rewritten, as given in Eq. (15).

DVdc

Dt
¼ �Psys

VdcCdc
ð15Þ
3. Phase balancing method

The proper power flow control from energy generation units to
utility-grids/loads is provided through inverter operation. The sup-
plied ac power is synchronized through the inverter part and effi-
ciently transferred into the utility-grids by the power flow
controller. For the proper operation, the grid inverter should pro-
vide (1) the grid synchronization and unity power factor, (2) con-
trol of active/reactive power, (3) supervising of dc-link voltage
control, and (4) balancing the power flow at all phases.
Fig. 4. Flowchart of the phase balancing method for the designed system.
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3.1. Conventional power flow method

Fig. 3 shows the structure of a conventional power flow control
strategy implemented in grid inverters. According to the controller
scheme, it is designed to provide the stabilization of active/reactive
power for balanced three-phase systems. In the grid interconnec-
tion, dq based control theory is used by using actual/reference val-
ues of system currents. But, this structure is not robust and stable
under unbalanced current conditions. Because, the power flow
controller generates symmetrical reference values by using abc/
dq transform, thereby supplying balanced powers from the system.
This situation makes the controller cannot be applied for unbal-
anced grid/load conditions.

3.2. Proposed algorithm

The proposed power flow control algorithm is presented
through a flowchart, as shown in Fig. 4. The proposed phase bal-
ancing method can be summarized as follows.

Step 1: Measure the dc-link voltage (Vdc), system voltages
(Vsys;n), system currents (Isys;n) and load currents (Iload;n). In defi-
nitions, n indicates phases a, b, c.
Step 2: Generate orthogonal signals of system currents for each
phase. Then, Calculate d- and q- components for each phase
current (Idn),
Step 3: Calculate load powers by using system voltages (Vsys;n)
and load currents (Iload;n). If load powers are unbalanced, calcu-
Fig. 5. The proposed scheme:
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late the differentiation value to stabilize grid powers and add
the differentiation value (a current reference (Idif ;n)) to the cur-
rent reference value (Idc;ref )) generated through dc-link voltage.
If load powers are balanced, the reference current of d-
component is equal to Idc;ref .
Step 4: In the next process, find reference values (Iref ;n) through
dq/ab transform. In this step, a- components are used as refer-
ence according to the separate-phase structure.
Step 5. The final step is the generation of switching signals to
provide power flow control from the hybrid energy system to
the grid.

3.3. Proposed control scheme and reference generation

The proposed method’s control scheme is used in the H-bridge
inverter-based PV/FC energy generation system with unbalanced
sensitive loads. Compared with the conventional method, it adjusts
the controlled power flow for each phase at different amounts. The
main function of control is to supply more power to the phase
where the load consumes higher power, and supply less power
to the phase where the load consumes less power. In this way,
the controller provides power balancing at the grid-side. By this
way, the negative/zero sequence components are eliminated at
grid-side currents thanks to the power flow balancing. Fig. 5 shows
the proposed control method implemented in the designed system.
The scheme shows that active power is controlled by using d
component, which is calculated by using (Idn), (Idif ;n) and (Idc;ref ).
phase balancing method.
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Reactive power is controlled through q-components of system cur-
rents, and reference value Iq;ref is equal to zero [52].

For a three-phase system, the supplied powers are computed
through system voltages and system currents [53]. The power
magnitudes in dq frame are written as:

Psys;n ¼ 3
2

Vsys;n�disys;n�d þ Vsys;n�qisys;n�q
� � ð16Þ

Qsys;n ¼ 3
2

Vsys;n�qisys;n�d � Vsys;n�disys;n�q
� � ð17Þ

In the equations, it is clear that active/reactive power values are
calculated using d- and q- components of system currents [54]. If
the system voltage is oriented as d-component, the d- and q- volt-
ages are defined as:

Vsys;n�d ¼ Vsys;n ð18Þ

Vsys;n�q ¼ 0 ð19Þ
Arranging the Eq. (16) and Eq. (17), the powers are rewritten in

Eq. (20) and Eq. (21) [53,54]:
Table 1
System parameters.

Parameter Value Unit

DC-DC Converter
Type DISO Boost [–]
Inductances (L1, L2) 1 [mH]
Capacitance (Cdc) 10 mF [mF]
Switching 5 [kHz]
Inverter
Type H-bridge [–]
Filter inductance 1 [mH]
Transformer 15*3 [kVA]
Grid
Voltage (Phase rms) 220 [V]
Frequency 50 [Hz]
Resistive Loads
[Ra,Rb,Rc] [12,8,10] [ohm]

Fig. 6. The electrical characteristics of STX Solar STX-250
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Psys;n ¼ 3
2
Vsys;n�disys;n�d ð20Þ

Qsys;n ¼ �3
2
Vsys;n�disys;n�q ð21Þ

Dc-link voltage is used to control the active power supply. For
this, the reference value of dc-link t is written as:

Idc;ref ¼ KpðVdc;ref � VdcÞ þ Ki

Z
ðVdc;ref � VdcÞdt ð22Þ

For no reactive power supply, the reference value of the q-
component must be zero.

Iq;ref ¼ 0 ð23Þ
D- and q- components of system currents are calculated by

using a- and b- components of system currents.

Idn
Iqn

� 	
¼ cos xtð Þ sin xtð Þ

�sin xtð Þ cos xtð Þ

� 	
Isys;n�a
Isys;n�b

� 	
ð24Þ

According to the ab/dq transformation, Idn and Iqn components
are defined below:
Parameter Value Unit

STX Solar STX-250MT2
Parallel strings 26 [–]
Series modules in a string 3 [–]
Maximum power 250.1 [W]
Cells in a module 60 [–]
Open circuit voltage 38.19 [V]
Short circuit current 8.8 [A]
Voltage at max. power 30.5 [W]
Current at max. power 8.2 [A]
Ballard PEMFC 9SSL
Number of cell 110 [–]
Voltage at 0 A and 1 A [106.15,104.61] [V,V]
Nominal operating point [260,73.4] [A,V]
Maximum Operation values [320,64] [A,V]

MT2 PV Panel and Ballard FC-Velocity 9SSL PEMFC.



Fig. 8. System currents at point of common coupling for state 1, state 2, state 3, and state 4.

Fig. 7. The waveforms of duty cycles (for S1 and S2), input PV/FC voltages, dc-link voltage, and system voltages.
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Power Waveforms

Fig. 9. Power flows in grid-connected PV/FC system with phase balancing method.
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Idn ¼ Isys;n�acos xtð Þ þ Isys;n�bsin xtð Þ ð25Þ

Iqn ¼ �Isys;n�asin xtð Þ þ Isys;n�bcos xtð Þ ð26Þ
In order to provide power balancing at the grid-side, load pow-

ers are calculated. In the case of an unbalanced condition, the ref-
erence differentiation values are added into Idc;ref . This process
increases or decreased the supplied active power from each phase
in a controlled way. The power values of sensitive loads are:

Pload;n ¼ Vsys;nIsys;ncoshn ð27Þ
In the next step, the average value of load power is calculated:

Pav ¼ 1
3

X3
n¼1

Pload;n ð28Þ
Table 2
Power values for three-phase and four states.

PV/FC Operation

PV FC

Case 1 1000 W/m2 328 Kelvin

Case 2 800 W/m2 328 Kelvin

Case 3 800 W/m2 320 Kelvin

Case 4 900 W/m2 320 Kelvin

9

The calculated average value is subtracted from each phase
value to find each phase’s differentiation power value. This step
is realized as follows:

Pdif ;a ¼ Pload;a � Pav

Pdif ;b ¼ Pload;b � Pav

Pdif ;c ¼ Pload;c � Pav

8><
>:

9>=
>; ð29Þ

The differentiation values which will be added to the d-
component, are calculated by using current control.

Idif ;n ¼ K:Pdif ;a ð30Þ
After that, the d and q components as a difference are given in

Eqs. (29–30). These components are named error currents in dq
frame.

Iderror;n ¼ Id;ref þ Idif ;n � Idn n ¼ a; b; c ð31Þ
Iqerror;n ¼ Iq;ref � Iqn ¼ �Iqn n ¼ a; b; c ð32Þ
The obtained d- and q components of error are used to generate

reference currents, which is used to trigger switching signals
through the current controller PWM. For this, the d- and q- compo-
nents are converted into a components through dq/ab transform.

Iref ;a ¼ Iderror;acosha þ Iqerror;asinha
Iref ;b ¼ Iderror;bcosha þ Iqerror;bsinha
Iref ;c ¼ Iderror;ccosha þ Iqerror;csinha

8><
>:

9>=
>; ð33Þ

Finally, the reference current values (Iref ;n) are employed to gen-
erate switching signals (S1n; S2n; S3n; S4n) through hysteresis current
control. The switching rules of current control are defined inEq. (34).

Switching

States
¼

Iref ;a > þh S1a; S4a
Iref ;a < �h S2a; S3a
Iref ;b > þh S1b; S4b
Iref ;b < �h S2b; S3b
Iref ;c > þh S1c; S4c
Iref ;c < �h S2c; S3c

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð34Þ

In the switching process, the hysteresis band values (+h and -h)
for the control method are 0.02 and�0.02. In this process, reference
signals produced for each phase are compared with hysteresis band
values. If the reference signal is higher than + h band, S1n; S4n signals
are produced. The switches (S1n; S4n) will remain in the conduction
state until the produced reference signal decreases to �h. When
the reference signal drops below the value of �h, the switches
(S2n; S3n) will go into the conduction state, while the switches in
Power Flow Values

From System To Load To Grid

PhA: 10.75 kW PhA: 4.03 kW PhA: 6.72 kW
PhB: 12.71 kW PhB: 6.04 kW PhB: 6.67 kW
PhC: 11.58 kW PhC: 4.83 kW PhC: 6.75 kW
PhA: 9.54 kW PhA: 4.03 kW PhA: 5.51 kW
PhB: 11.79 kW PhB: 6.04 kW PhB: 5.75 kW
PhC: 10.48 kW PhC: 4.83 kW PhC: 5.65 kW
PhA: 9.12 kW PhA: 4.03 kW PhA: 5.09 kW
PhB: 11.18 kW PhB: 6.04 kW PhB: 5.14 kW
PhC: 9.85 kW PhC: 4.83 kW PhC: 5.02 kW
PhA: 9.654 kW PhA: 4.03 kW PhA: 5.62 kW
PhB: 11.69 kW PhB: 6.04 kW PhB: 5.65 kW
PhC: 10.57 kW PhC: 4.83 kW PhC: 5.74 kW
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the conduction state will be in the cut-off state. The switches will
remain in the conduction mode until the reference signal
reaches + h. In these explanations, n indicates the phases a, b and c.
4. Performance results

The complete grid-connected PV/FC model is used to test the
proposed control scheme using Matlab/Simulink environment
program. Also, the performance results are compared with the
conventional power flow method in order to show the validity of
the proposed control scheme. The parameter values of the grid-
connected hybrid energy system are introduced in Table 1. In the
system, STX Solar STX-250MT2 PV panels are performed to pro-
duce 16.5 kW in output power ratings. At this operating point, volt-
age/current values are defined as 24.5 V/8.16 A for maximum
Fig. 10. The grid currents according to conve
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power. Ballard FCvelocity 9SSL PEMFC is the second energy gener-
ation input of the hybrid system. The maximum power of PEMFC is
19.3 kW in the rating of 73.4 V, 260 A.

Fig. 6 shows the electrical characteristic waveforms of the PV
panel and FC stack. For nominal value (1000 W/m2, 25 �C),
15.6 kW power is extracted at 91.5 V/170 A from PV. The FC can
generate approximately 19.3 kW for nominal operation.

The modeled system is tested for different case studies. The case
studies are defined as follows:

� Case 1: operating at 1000 W/m2 and 328 Kelvin for PV and
PEMFC, respectively

� Case 2: operating at 800 W/m2 and 328 Kelvin for PV and
PEMFC, respectively
ntional/proposed method based system.



Fig. 11. The magnitudes of grid-currents for three states through conventional/
proposed systems.

Table 3
The magnitudes of grid-currents for conventional/proposed method based systems.

Grid Currents

Conventional

Phase A Phase B Phase C

Case 1 48.8 A 43.9 A 35.7 A
Case 2 43.2 A 37.1 A 28.8 A
Case 3 39.8 A 34.2 A 27.2 A
Case 4 43.4 A 36.8 A 28.8 A

Fig. 12. The waveforms of negative/zero-sequence c
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� Case 3: operating at 800 W/m2 and 320 Kelvin for PV and
PEMFC, respectively

� Case 4: operating at 900 W/m2 and 320 Kelvin for PV and
PEMFC, respectively

The waveforms of duty cycles (D1 and D2), PV/FC voltages (Vpv
and Vfc), dc-link voltage (Vdc) and system voltages are presented
in Fig. 7. Performance results show that MPPTs generate different
duty cycles to keep the dc-link voltage constant according to input
PV/FC voltages. The dc-link capacitor’s voltage is kept at 150 V. PV
generates approximately 93 V at the output-side. However, FC
operates at 72 V for 328 Kelvin and at 68 V for 320 Kelvin. The sys-
tem voltage is balanced, stable, and identical to grid voltages. The
peak values of system voltages are 311 V.

The system currents in ac form are given in Fig. 8. It shows sys-
tem current, load currents, and grid currents for four states. As
shown in waveforms, the loads draw unbalanced currents accord-
ing to the resistive load values. Therefore, the system supplies the
active power and supplies currents in a controlled manner. As a
result, the magnitudes of grid currents are equal to each other
for all phases.

The power flow waveforms of grid-connected PV/FC system
with phase balancing method are introduced in Fig. 9. The con-
sumed powers by loads are constant, and their values are different.
The load powers are 4.03 kW, 6.04 kW, 4.83 kW for phase a, phase
b, and phase c. The system generated active power and supply to
grid/loads according to the condition. The power values at the
grid-side are nearly kept at a constant value, as shown in wave-
forms. The detailed results for power values for four states are
given in Table 2.

The main function of the proposed method is to provide bal-
anced currents at the grid-side through power balancing. In this
Proposed

Phase A Phase B Phase C

42.7 A 42.9 A 43.4 A
35.8 A 35.6 A 35.8 A
32.2 A 32.6 A 32.7 A
36.5 A 36.9 A 36.8 A

omponents for conventional/proposed method.
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Fig. 13. THD analysis of grid currents up to 21th harmonics.

Table 4
The percentage values of harmonic components of grid-side currents.

Order Phase Order Phase

Phase A Phase B Phase C Phase A Phase B Phase C

2nd 0.12 0.18 0.21 12th 0.28 0.09 0.22
3rd 0.91 0.84 0.87 13th 0.05 0.11 0.37
4th 0.09 0.08 0.06 14th 0.29 0.12 0.24
5th 0.32 0.29 0.16 15th 0.26 0.15 0.41
6th 0.27 0.26 0.19 16th 0.18 0.21 0.44
7th 0.26 0.27 0.28 17th 0.45 0.44 0.44
8th 0.29 0.24 0.30 18th 0.28 0.31 0.32
9th 0.21 0.24 0.27 19th 0.29 0.29 0.32
10th 0.27 0.26 0.29 20th 0.14 0.12 0.19
11th 0.32 0.16 0.37 21th 0.33 0.28 0.34
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way, the performance results of conventional and proposed
methods under unbalanced resistive loads are presented in
Fig. 10. Considering the grid currents, it is clear that the magni-
tude values of phases are different for all cases. However, the
proposed method provides balanced currents at the grid-side.

Fig. 11 shows the magnitudes of grid currents for the conven-
tional/proposed method and clarifies the power flow balancing.
In a conventional controlled system, the magnitudes of grid cur-
rents are dissimilar for all states. But, the currents are balanced
for the proposed controlled system, and the magnitudes are
approximately identical. The numerical values of grid currents
for conventional/proposed are given in Table 3.

In an unbalanced situation, the signal consists of negative/
zero sequence components in addition to the positive compo-
nent. The magnitudes of negative sequence components for
three-phase signals are the same, but they have 120-degree
phase differences between each other. However, zero sequence
components are the same for all phases. In this part, the nega-
tive sequence component (for only phase a) and the zero-
sequence component of grid-side currents through conven-
tional/proposed methods are presented in Fig. 12. As shown in
results, the grid currents have negative/zero sequence compo-
nents in the ratings of 5 A and 4 A, respectively. In contrast to
the conventional method, the proposed method reduces nega-
tive/zero sequence to values less than 0.3 A.

In addition to negative/zero sequence component elimination,
total harmonic distortion (THD) analysis has been carried out for
three-phase grid currents. In harmonic spectrum analysis, THD val-
ues of grid currents are obtained as 1.47%, 1.45%, 1.49% for phase a,
phase b, and phase c. According to the harmonic analysis, the
12
obtained values that are less than power quality standards defined
in IEEE 519 standards show the validity of the improved method.
The THD values in percentage for each phase are given in Fig. 13.
Also, the numerical values of harmonic components are given in
Table 4.
5. Conclusion

The integration of renewable energy sources and electric grids is
becoming more popular and more important day by day. Along
with technological developments, the widespread use of renewable
energy sources can be applied in different applications in the com-
ing years. Furthermore, the increase in these energy sources’ power
capacitiesmay also compensate for the various problems inmodern
applications. In this regard, the research works in the grid-
interfaced hybrid energy systems are going to deal with the follow-
ing topics: (1) the application in different custom power devices to
solve voltage/current problems, (2) the implementation of high effi-
cient improved power electronic interface, (3) integration with
vehicle-to-grid (V2G) technology for charging management, and
(4) overall system efficiency and reliability.

Unbalanced loads connected to the utility-systems distort the
power balance at the grid-side and cause negative & zero sequence
components at grid currents. For this purpose, an improved phase
balancingmethod for grid inverter interfaced hybrid energy system
is presented in this study. The proposed method has been built to
generate individual references for each phase under unbalanced
current conditions. For this, the current work has been constructed
based on multiple ab/dq frames instead of abc/dq frame. Moreover,
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the proposedmethod is used in H-bridge inverters instead of three-
phase three-wire inverters to compensate negative & zero sequence
components at the grid-side. For a smooth operation, the controller
consists of active/reactive power control, dc-link control and phase
balancing control. In order to show the effectiveness of the pre-
sented method, the system is designed and tested in a Simulink
environment program. In hybrid energy system, PV and FC are
designed according to different irradiation/temperature operating
conditions. In this way, four case studies with different power val-
ues are presented. The case studies show that the system supplies
the controlled powers into grids/loads in order to ensure power sta-
bility at the grid-side. Also, the results show that unbalanced cur-
rents are compensated at the grid-side. The negative & zero
sequence components at grid-currents are reduced significantly.
In addition, the harmonic analysis of the injected currents is pre-
sented in order verify the validity of the proposed method.
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