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Abstract. Nowadays, there is an increasing demand for the use of joining dissimilar metals in 

various industrial applications owing to the economic benefits and better joint performance. 

Ferritic stainless steel grades is a good alternative for austenitic ones in several applications as 

they display higher ductility and strength as well as better corrosion resistance in chloride 

environments. However, the poor ductility and low impact toughness of ferritic stainless-steel 

welded joints limit their wide-spread application. Thus, the demand for joining dissimilar ferritic 

and austenitic stainless steels is ever increasing in several engineering applications in various 

industries such as nuclear power plants, coal fired boilers, automobile manufacturing industry, 

chemistry and petro-chemistry industries, etc. Therefore, successful joining of these two 

different types of stainless steel grades using conventional fusion welding methods is rather 

important. In this study, the weldability of AISI 430 ferritic and AISI 304 austenitic steel plates 

using gas metal arc welding and the effect of heat input on microstructure and the mechanical 

properties were investigated. For this purpose, AISI 430 and AISI 304 plates with a thickness of 

5 mm were joined using different heat input values. The microstructures evolved in the weld 

region of the joints and their mechanical properties were determined by detailed optical 

microscopy investigations, micro-hardness measurements and tensile tests. Thus, the influence 

of the heat input on the weldability of these two different stainless-steel plates using gas metal 

arc welding was also studied. 

1.  Introduction 

Ferritic stainless steels (FSS), such as AISI 430, have higher resistance to stress corrosion cracking in 

chloride and caustic environments than austenitic stainless steels (ASS). In addition to that they have 

the advantage of having low cost. Thus, it is widely used in a wide spectrum of applications ranging 

from household utensils to oil, gas, petrochemical, nuclear and power industries [1-11]. However, the 

poor HAZ toughness of ferritic stainless steels after welding limits their wide-spread application in 

critical situations [3]. This problem has been related to the evolution of coarse grains as well as the 

formation of brittle intergranular martensite along the ferrite grains in the heat affected zone (HAZ) of 

fusion welds [4]. 

Although the austenitic stainless steels exhibit much superiority weldability than the ferritic grades, 

they are prone to stress corrosion cracking in chloride and caustic environments and they have a higher 

cost. Thus, the joint between austenitic and ferritic stainless steels may be advantageous in many 

instances. The demand for dissimilar ferritic-austenitic stainless steels joints is in fact increasing day by 



The 9th Global Conference on Materials Science and Engineering (CMSE 2020)
Journal of Physics: Conference Series 1777 (2021) 012047

IOP Publishing
doi:10.1088/1742-6596/1777/1/012047

2

 

 

 

 

 

 

day in several industries such as automotive, nuclear, chemical, petrochemical, and power generation 

industries. However, there are several concerns about joining these two different stainless steels. First 

of them is the much higher thermal expansion coefficient (CTE) of austenitic steels than ferritic grades 

which could probably result in the cracking within the weld region [7]. Secondly, the formation of 

chromium-depleted zones may be encountered in the HAZ of austenitic stainless steels side. The last 

but not the least, the occurrence of reduced ductility (toughness) in the HAZ of ferritic steel due to grain 

coarsening and intergranular martensite along the ferrite grain boundaries. Moreover, although the 

ferritic steels contain only small amounts of carbon, chromium-depleted zones (i.e., carbide precipitation) 

may take place along the ferrite grain boundaries in HAZ in addition to the martensite formation. 

Carbide precipitation can make both steels sensitive to inter-crystalline corrosion in HAZs. These 

problems become more pronounced as the heat input increases during welding. 

For instance, Hsieh et al. [9] investigated the microstructural changes in gas tungsten arc welded 

dissimilar AISI 304/AISI 430 stainless steels joints. They observed that massive -ferrite precipitated 

within the austenite phases and at the ferrite-austenite interfaces within the fusion zone (FZ) which 

increased the hardness. Thus, the hardness of FZ was higher than that of the both base metals (BMs). It 

was suggested that the use of Ni-based filler wires could improve the performance of dissimilar ferritic-

austenitic joints significantly. However, Shojaati and Beidokhti [10] conducted a detailed study on the 

influence of filler composition on the properties of dissimilar stainless steel joints, using E310, E316L, 

E2209, and Ni-based one. They reported that a weld microstructure consisting of a Ni-Cr-Fe matrix and 

iron-based precipitates was obtained by using the Ni-based filler metal. In addition, the fusion line 

cracking also occurred in this specimen due to the formation of a thin layer of martensite. The increase 

in the amount of -ferrite in the microstructure resulted in an increase in the hardness of the FZ. On the 

other hand, they did not observe any carbide/nitride phases in the joints produced using E310, E316L 

and E2209 filler wires. As pointed out above, the use of lower heat input is also suggested to minimize 

the problems encountered and successfully join these dissimilar stainless steels. In this respect, Khan et 

al. [11] studied the influence of weld parameters on the microstructure and hardness of laser beam (LB) 

welded dissimilar AISI 304L/AISI 430 joints. They observed that a continuous martensitic layer along 

ferrite grain boundaries and intergranular carbides of Cr23C6 were formed in the FZ. Therefore, the 

hardness of FZ was higher than those of both BMs. Similarly, Sun [12] also investigated the weldability 

of dissimilar ferritic and austenitic steels by LB welding. They reported that LB welding with nickel-

based filler wire can be a potential process. However, they also pointed out that further data is still 

needed for ensuring the quality of the joints. 

Another way of using low heat input is the employment of solid-state welding techniques. Thus, 

friction stir welding (FSW), a solid state welding technique used in joining of Al-alloys [13-18] as well 

as Cu-alloys [19-21] and Pb [22], offers a potential to join steels including stainless steels [23,24]. In 

addition to FSW, the low heat input CMT arc welding method [14,25] and power beam welding 

techniques such as laser beam welding [26-29] can also use. Due to this fact, numerous studies have 

been conducted on FSW of steels including stainless steels in last 30 years [24, 25, 30-38]. However, 

wear of the stirring tool is still a problem to overcome in FSW of these high melting materials since a 

peak temperature during this process may reach over 1000 oC, and even the tools made of high 

temperature resistant materials may wear slowly over the time. Thus, there is definitely a need for further 

work on dissimilar joining of ferritic and austenitic stainless steels. 

In this study, the weldability of dissimilar AISI 430/AISI 304 stainless steel plates, and the influence 

of heat input applied to the plates during welding on the microstructural evolution in the joint area and 

on joint properties were investigated. For this purpose, AISI 430 and AISI 304 plates with a thickness 

of 5 mm were welded by gas metal arc welding (GMAW) using a filler wire of 308 with a diameter of 

1.2 mm. Detailed microstructural investigations were carried out for microstructural characterization of 

the joints obtained. Additionally, detailed microhardness measurements across the joint area were 

conducted in addition to the mechanical tests (namely tensile and bend testing) in order to determine the 

joint properties. It was also evaluated that how the microstructural evolution, taking place in the weld 

region, and thus the joint performance of the joint was affected by heat input.  
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2.  Materials and methods 

AISI 430 grade ferritic stainless steel and AISI 304 grade austenitic stainless-steel plates both with a 

thickness of 5 mm were used in this study. They were supplied in the form of large plates with the sizes 

of 1500x1000x5 mm. Table 1 gives the chemical compositions and mechanical properties of both base 

plates, respectively.  

In order to carry out this study, plates measuring 250x190 were cut. Before the welding process, the 

surfaces of the plates to be welded were cleaned with metal brush and the welding grooves were opened 

as shown in Figure 1. These plates were then joined by the GMAW method in two passes by feeding 

E307 filler wire at a rate of 17.5 mm/min. The parameters used for welding processes are given in Table 

2. As can be understood from this table, two different heat inputs were applied to the weld region to 

evaluate the effect of the heat input on the weld behaviour.  

 

Table 1. Chemical composition of AISI 304 grade austenitic steel plates used in this study. 

 

Chemical Composition (wt. %) 

Specimen C Si Mn P S Cr Ni N Mo Cu 

Base Material  

(AISI 304) 
0,019 0,42 1,56 0,035 0,002 18,2 8,1 0,053 -- -- 

Base Material  

(AISI 430) 
0,037 0,38 0,50 0,031 0,002 16,16 0,27 0,033 0,01 0,20 

Filler Material 

(ER307) 
0,075 0,790 7,10 0,009 0,020 19,075 9,010 ---- 0,005 0,070 

 

Table 2. The weld parameters employed in welding trials (the same weld parameters were used in each 

pass in both welding trials). 

 

Weld Trial 
Current 

(A) 

Voltage 

(V) 

Traverse speed 

(mm/s) 

Wire feed rate 

(mm/s) 
Shielding gas  

Low Heat 

Input 
ave. 385 28 4,5 17,5 Argon (99,95%) 

High Heat 

Input 
ave. 465 27 4,0 17,5 Argon (99,95%) 

 

 
Figure 1. Preparation of the plates for welding trials. 

 

After the welding trials, one metallography specimen, two bending specimens and four tensile 

specimens were prepared from each welded plate in order to demonstrate the influence of process 

parameters on the welding performance. In addition, in order to compare the mechanical properties of 

both joints with two base materials, four tensile specimens were also extracted from each base plate. 
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The metallography specimens cut from the joints produced were first ground and then polished before 

etching. Etching was carried out for about 20 seconds using 50 ml HCl and 150 ml HNO3 solution. After 

etching, a detailed optical microscopy and extensive hardness measurements were performed on the 

metallography specimens. Hardness measurements were carried out for along three different lines (see 

Figure 2) on each specimen which in the center, 1 mm below the top and 1mm above the root using a 

load of 500 g.  

 

 
Figure 2. Schematic showing the conduction of microhardness measurements on each joint along 

three lines across the weld region, one being almost in the center, the other two lines lying 1 mm from 

the surface and root of the joints. 

 

Tensile specimens prepared from both BMs and two welded joints using different heat input values 

were subjected to tensile tests at a loading rate of 15 mm/s and the mechanical performance values of 

the welded plates were determined. In addition, two bending specimens were prepared for each welded 

plate and subjected to bending test to investigate whether cracking occurs or not in weld region. In 

addition, the effect of heat input applied to the weld region on the microstructural changes taking place 

in fusion zone and HAZ and thus on weld performance was also evaluated. 

3.  Results and discussions 

3.1.  Microstructural aspects 

Figure 3 gives the microstructures of the base metals used in this study, namely AISI 430 and AISI 304, 

respectively.  As seen from Figure 3(a), ferritic stainless-steel base metal microstructure consists of a 

fully ferritic microstructure containing carbides evenly distributed within the grains as well as along the 

grain boundaries whereas austenitic stainless-steel base plate displays a single-phase microstructure 

consisting of austenite grains (Figure 3(b)). Figures 4 and 5 give macrographs and micrographs 

illustrating the weld cross-sections of the joints and the microstructures observed in base plate, FZ and 

HAZ of the joints produced using low and high heat inputs. Both joints exhibited similar microstructural 

evolutions within the weld region. A fine dendritic structure is observed in the FZ of both joints. 

However, the grain size of the dendrites is slightly coarser in the higher heat input joint due to the higher 

temperatures generated during welding. 

Moreover, a crack was observed within the FZ of lower heat input joint neighboring the HAZ at the 

ferritic steel side whereas no weld defect was present in the weld region of the higher input joint (Figure 

4). The reason for this cracking is much higher thermal expansion coefficient (CTE) of austenitic steels 

than ferritic grades as pointed out by [7]. Moreover, the formation of martensite within FZ and the fast 

cooling after the welding in the lower heat input joint may also lead to cracking. Shojaati and Beidokhti 

[10] also observed the fusion line cracking in the dissimilar stainless steel joints produced using a Ni-

based filler metal. They attributed this to the formation of thin layer of martensite and the increased 

hardness of the FZ due to a high amount of -ferrite in the microstructure. 
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Figure 3. The micrograph illustrating the microstructure of the base plates: (a) AISI 430 and (b) AISI 

304. 

 

   

Figure 4. The macrographs illustrating the weld cross-sections of the joints produced: (a) the lower heat 

input joint and (b) the higher heat input joint. 

 

   

    

Figure 5. The micrographs illustrating the microstructures of: (a) cracking in the FZ of the lower heat 

input joint next to the A-HAZ, (b) A-HAZ of the lower heat input joint, (c) A-HAZ of the higher heat 

input joint, (d) FZ of the lower heat input joint, (e) F-HAZ of the lower heat input joint, and (f) F-HAZ 

of the higher heat input joint. 

(a) (b) 

(a) (b) 

(a) (b) (c) 

(d) (e) (f) 
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Furthermore, there is a clear difference between the microstructures evolving in the HAZs of both 

joints at the austenitic steel side (A-HAZs). As seen from Figure 5d, there are chromium carbide 

precipitates within the A-HAZ of the higher heat input joint elongated in the cold rolling direction, 

whereas no indication of carbide precipitation is visible within the A-HAZ of the lower heat input joint 

(Figure 5(c)). Moreover, the fusion interface is more distinct in the lower heat input joint. On the other 

hand, a carbide precipitation along the fusion boundary (fusion line) at the HAZs on the ferritic side (F-

HAZs) of both joints. However, the carbide layer along the fusion line is thicker in the higher heat input 

joint due to the higher heat input involved as clearly seen in Figures. 5(e) and (f). Moreover, the 

formation of martensites at ferrite grain boundaries (i.e., intergranular martensites) was observed in the 

HAZ both joints next to the fusion boundary at the ferritic steel side (F-HAZs) in addition to the 

coarsening of ferrite grains. However, the F-HAZs of the two joints displayed different microstructural 

evolution. The ferritic side HAZ (F-HAZ) of the lower heat input joint exhibited a finer grained 

microstructure compared to that of the higher heat input joint. The reason for the formation of larger 

grains within the F-HAZ of the higher heat input joints is clearly the higher temperatures experienced 

by the plates during welding. On the other hand, both joints displayed a similar F-HAZ regions 

consisting of coarse grained HAZ (CGHAZ) and fine grained HAZ (FGHAZ) sections which were also 

reported by many other researchers [3, 39, 40]. 

3.2.  Mechanical properties 

Figure 6 gives the hardness profiles obtained from the microhardness measurements conducted along 

three lines across the joints produced using low and high heat inputs, respectively, showing the hardness 

variations across the joints. As clearly seen from these hardness profiles both joints exhibited similar 

hardness values across the weld region. There is a clear hardness increase at the F-HAZ of both joints 

due to the formation of intergranular martensites as well as the growth of ferrite grains in this region. 

However, as seen from Figure 6 the F-HAZ region of the higher heat input joint is wider than that of the 

lower heat input joint, indicating that the higher heat input widens the width of F-HAZ region. 

 

  

Figure 6. Hardness variation across the joints: (a) the lower heat input joint and (b) the higher heat input 

joint. 

 

The results of all the tensile tests performed are summarized in Table 3. Moreover, Figure 7 compares 

the stress-strain curves obtained from BMs and the joints. The transverse tensile specimens extracted 

from both welded joints showed good tensile strength values similar to those of the lower strength AISI 

430 base plate. Thus, the tensile strength performance of both joints was found to be about 100%. 
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Table 3. Tensile test results. 

Specimen 
RP0.2 

(MPa) 

Rm 

(MPa) 

Elongation 

(%) 

Strength 

Performance 

(%) 

Ductility 

Performance 

(%) 

Failure 

Location 

AISI 430 

BM               

396, 392, 395 

(394) 

506,501,504 

(504) 

21, 25, 22 

(23) -- -- -- 

AISI 304 

BM 

366, 358, 359 

(361) 

643,631,633 

(636) 

48, 48, 49 

(48) -- -- -- 

Low Heat 

Input Joint 

357, 369, 351, 

362  (360) 

510,514,500,

508  (508) 

14,14,14,15 

(14.3) 

1011 

802 

621 

302 

FGHAZ/BM 

transition zone 

High Heat 

Input Joint 

358, 341, 348, 

324  (343) 

498,495,504,

497  (499) 

13,13,13,13 

(13) 

991 

782 

571 

272 

FGHAZ/BM 

transition zone 
Notes: (Average values are given bold in parenthesis; BM: Base metal; FGAZ: Fine grained HAZ) 

(1 Strength and ductility performance with respect to the lower strength base plate AISI 430 and 2 Strength and ductility performance with 

respect to the higher strength base plate AISI 304) 

 

   

   

Figure 7. Stress-elongation (%) curves of: (a) the base plate AISI 430 steel, (b) the base plate AISI 304 

steel (c) lower heat input joint, and (d) higher heat input joint. 

 

On the other hand, both joints displayed lower ductility; i.e. about 14%, than that of the lower 

ductility AISI 430 base plate, i.e. 23%. The decrease in the elongation is slightly higher in the higher 

heat input joint as seen in Figure 7(c) and (d). This low ductility exhibited is not surprising since there 
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is a strength overmatching in both joints as seen from the hardness profiles. Thus, the higher strength 

weld region stays in the elastic region as well as the higher strength AISI 304 steel side (which forms 

almost half of the gauge length, l0) and only lower strength AISI 430 steel part of the gauge length 

underwent plastic deformation and contributed to the total elongation. Thus, both joints displayed low 

ductility values due to the confined plasticity. Similarly, low elongation values were also reported for 

inhomogeneous welded joints in the literature, namely strength overmatched laser beam welded steels 

[26, 41], strength undermatching Al-alloys joints [42-47] and bi-metallic joints showing confined 

plasticity [48,49]. 

Moreover, all the specimens extracted from both joints failed in the lower strength AISI 430 base 

plate away from weld region (in the transition region between FGHAZ and F-BM), as shown in Figure 

8, although the lower heat input joint displayed a crack within the weld region next to the A-HAZ (Figure 

5a). Even the presence of the crack did not change the fracture location, due to the strength overmatching 

nature of the weld region. This can be attributed to shielding effect of the overmatched weld zone and 

thus extensive plastic deformation developing at the lower strength AISI 430 ferritic stainless-steel side 

of the specimen. This shielding effect was also reported in the literature for laser beam welded dissimilar 

steel joints containing solidification cracks within fusion zone (FZ) [26,41]. 

Similar to tensile test, no effect of the heat input was observed on the joint behavior in bend testing. 

No cracking occurred in both surface and root bend specimens extracted from both joints as shown in 

Figure 9. The heat input difference used in this study apparently did not have any diminishing effect on 

the weld performance in spite of the existence of a crack in the FZ of the lower heat input joint next to 

the A-HAZ of the joint as well as intergranular martensite, grain coarsening were observed in the HAZ 

regions in addition to the carbide precipitation along the fusion boundary at the F-HAZ sides of both 

joints. These results indicate that the existence of crack in the fusion zone does not lead to failure in 

lower heat input joint, in other words the crack is shielded in bend testing in both surface and root bend 

configurations as the case in static transverse tensile testing. 

 

  

Figure 8. Macrographs showing the failure locations in the tensile test specimens extracted from: (a) 

lower heat input joint and (b) higher heat input joint. 

 

    

Figure 9. Macrographs showing the surface and root bend specimens extracted from: (a) lower heat 

input joint and (b) higher heat input joint. Note that no cracking occurred in any of the specimens.  

 

 

(a) 
(b) 

(a) 

Surface bend Root bend Surface bend Root bend 

(b) (c) (d) 
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4.  Conclusions 

The weldability of dissimilar AISI 430 / AISI 304 plates (both being 5 mm thick) by GMAW welded 

using a filler wire of 307 with a diameter of 1.2 mm has been studied. Furthermore, the influence of heat 

input on the microstructural evolution in the joint area and thus on joint properties of these dissimilar 

joints was investigated. The following conclusions were withdrawn from this study: 

• Dissimilar AISI 430 / AISI 304 plates were defect-free welded in two passes by GMAW process. 

However, it was observed that cracking occurred in lower heat input joint due to higher thermal 

expansion coefficient (CTE) of austenitic steel than the ferritic grade. Thus, the welding 

conditions play a significant role in obtaining sound joint in this dissimilar stainless steel 

combination.  

• A fine dendritic microstructure was evolved in the fusion zone of both joints, although the grain 

size of the dendrites was slightly finer in the lower heat input joint. 

• Two distinct HAZ regions were formed in the ferritic base plate side (F-HAZs) of both joints 

namely coarse grained HAZ (CGHAZ) and fine grained HAZ (FGHAZ) regions. The formation 

of intergranular martensites and the growth of ferrite grains took place in the CGHAZ in 

addition to the carbide precipitation along the fusion boundary. However, no intergranular 

precipitates formed in the grains in the CGHAZ next to the fusion boundary.  

• All the transverse tensile test specimens fractured in the transition zone between FGHAZ and 

the lower strength AISI 430 base plate far away from the FZ. Even the specimen extracted from 

the lower heat input joint containing crack in the FZ failed far away from the FZ due to shielding 

effect resulting from strength overmatching weld region. 

• Both joints exhibited similar strength values to that of the lower strength base plate AISI 430, 

the strength performance of the joints being about 100%. However, the strength performance 

with respect to the higher strength base plate AISI 304 was much lower, about 80% for both 

joints. On the other hand, the ductility performance was lower, i.e. about 62% and 57% for the 

lower and higher heat input joint, respectively, due to both confined plasticity resulting from 

strength overmatching weld region and the higher strength AISI 304 part of the specimen. 

• Both surface and root bend specimens extracted from both joints did not crack in bending test 

although a large crack exists in the FZ of the lower heat input joint. The results also indicate 

that the strength overmatching weld region shield the crack existing in FZ in both tensile and 

bending tests. 
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