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A collocation method for solving boundary value problems of fractional order 

Sertan Alkan*1, Aydin Secer2 

ABSTRACT 

In this work, the Sinc-Collocation Method (SCM) is used to find the approximate solutions of the second-
order fractional boundary value problems based on the conformable fractional derivative. For this purpose, 
a theorem is proved to represent the terms having fractional derivatives in terms of sinc basis functions. To 
show the effectiveness and accuracy of the method, some special problems are handled and the determined 
solutions are compared with the approximate solutions arising from using the other numerical methods as 
well as the exact solutions of the problems. 

Keywords: Differential Equations with Fractional Order, Sinc-Collocation Method, Boundary Value 
Problems, Conformable Fractional Derivative. 

1. INTRODUCTION 

Fractional calculus is a subject of calculus that 
involves noninteger order differential and integral 
operators. 

The backround of fractional calculus dates back to 
the end of the 17th century. In 1695, half-order 
derivative was mentioned in a letter from 
L'Hopital to Leibniz [1]. Since then, fractional 
calculus developed mainly as a pure theoretical 
field for mathematicians. However, in the last few 
decades fractional calculus has fastinated the 
interest of many researchers in several areas [2-9]. 
Many mathematicians contributed to the 
development of fractional calculus, therefore 
many definitions for the fractional derivative are 
available. The most popular definitions are 
Riemann-Liouville and Caputo definition of 
fractional derivatives. Riemann-Liouville and 
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respectively, where � � [ � − 1, �), � = 1,2, … 
 
In the last years, Khalil et al.[10] identified a new 
definition of fractional derivative called the 
conformable fractional derivative. In [11], 
Abdeljawad developed the definition of 
conformable fractional derivative and set basic 
concepts of this new fractional calculus. For a 
detailed overview of the conformable fractional 
derivative and applications, we refer the reader to 
[12-15] and references there in. 
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In particular, in this paper SCM is illustrated to 
determine the approximate solutions of fractional 
order boundary value problems in the following 
form  
 

�

��(�)���(�) + ��(�)�� + ��(�)��(�) +

��(�)��(�) + ��(�)�(�) = �(�)

�(�) = 0, �(�) = 0

    (1)         

 
Here �(�) and �(�) are the conformable fractional 
derivative for 1 < � ≤ 2 and 0 < � ≤ 1. 
Approximate solutions of the equation (1) based 
on Riemann-Liouville and Caputo derivatives has 
been studied in several articles with various 
numerical methods. For example, Variational 
Iteration Method [16], Adomian Decomposition 
Method [17], Homotopy Perturbation Method 
[18], Homotopy Analysis Method [19], Haar 
Wavelet Method [20] etc. In this paper, we 
investigate the sinc-collocation method (SCM) to 
obtain the approximate solution of the equation (1) 
based on the conformable fractional derivative. 
 
In this paper, SCM is firstly applied to determine 
the solution of the FBVPs based on conformable 
fractional derivative. The solution function is 
expanded to a finite series regarding to the 
composite translated sinc functions and some 
unknown coeficients. These unknown coeficients 
are determined by this method. To show the 
sufficiency and reliability of the SCM, the method 
is applied some special FBVPs. Obtained 
numerical results are compared with the exact ones 
in addition to ones of other numerical methods. As 
a result of the comparison one can say that SCM is 
a strong and hopeful method for finding the 
approximate solutions of FBVPs. 
 
The paper organized as follows. In section 2, we 
have illustrated some fundamental definitions and 
properties of fractional calculus and SCM. In 
section 3, we use SCM to determine an 
approximate solution of a general fractional 
differential equation and obtained results are stated 
as a new theorems. In section 4, by using tables 
and graphs some special problems are given to 
show the abilities of present method. Lastly, in 
section 5, The paper is ended with a conclusion. 

2. PRELIMINARIES  

In this section, some fundamental definitions and 
properties with regard to fractional calculus and 

sinc basis functions are introduced. For more 
information, see [21-26]. 

Definition 1. Let � ∈ (�, � + 1] and � be an � − 
differentiable function at �, where � > 0 Then the 
conformable fractional derivative of � of order � 
is defined as 
 

��(�)(�) = lim
�→�

�([�]��)�����([�]��)���([�]��)(�)

�
      (2) 

where [�] is the smallest integer greater than or 
equal to �. 

Remark 1. As a consequence of Definition1, one 
can easily show that 

��(�)(�) = �([�]��) �[�](�) 

where � ∈ (�, � + 1] and � is (� + 1) 
differentiable at � > 0. 

 
Theorem 2. Let � ∈ (�, � + 1] and �; � be � − 
differentiable at a � > 0. Then 
 

1. ��(�� + ��) = ��� (�) +  ���(g), for all 
�, � ∈ �. 

2. ��(��) = �����, for all � ∈ �. 
3. ��( �) = 0, for all constant functions 

�(�) = �. 
4. ��(��) = ���(�) + ���(�). 

5. �� �
�

�
� =

���(�)����(�)

�� . 

 
Definition 2. The Sinc funtion is defined as 
 

sinc(�) = �
��� ��

��
, � ≠ 0

1    , � = 0
   ,  � ∈ ℝ 

 
Definition 3. The translated sinc function with 
space knots are given by: 

�(�, ℎ) = sinc �
� − �ℎ

ℎ
�

=

⎩
⎪
⎨

⎪
⎧sin ��

� − �ℎ
ℎ

�

�
� − �ℎ

ℎ

, � ≠ �ℎ

1, � = �ℎ.

 

where ℎ > 0 and � = 0, ±1, ±2, … 

For constructing the approximation on (�, �), the 
conformal map is identified with 
 

�(�) = ln �
� − �

� − �
� 

 
Here, the basis function on (�, �) are determined 
from  
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��(�) =  �(�, ℎ)(�) � �(�) =  sinc �
�(�) − �ℎ

ℎ
� 

 
The inverse map of � =  �(�) is 
 

� = ���(�)  =  
� + ���

1 +  ��
 

 
the sinc grid points �� ∈  (�, �) will be denoted by 
�� because they are real. For the evenly spaced 
knots {�ℎ}����

� , the image corresponding to these 
knots is defined by 
 

�� =  ���(�ℎ)  =  
� + ����

1 + ����
  , � = 0, ±1, ±2, … 

 

3. THE SINC-COLLOCATION METHOD  

Let us consider an approximate solution for ��(�) 
in Eq.(1) of the form 
 

��(�) = � ����(�)

�

����

, � = � + � + 1           (3) 

 
Here, ��(�) is the composite function of  �(�, ℎ) 
and �(�). The unknown coefficients �� in Eq.(3) 
are obtained with SCM using the following 
theorems.  
 
Theorem 3. The first two derivatives of  ��(�) are 
given with 
 

�

��
��(�) = � ���(�)

�

��

�

����

��(�)                   (4) 

and 
��

���
��(�)

= � �� ����(�)
�

��
��(�)

�

����

+ ���(�)�
�

 
��

���
��(�)�                                     (5) 

 
Theorem 4. The conformable fractional 
derivatives of order � and � of  ��(�) for             
1 < α ≤ 2 and  0 < � ≤ 1 are given by 
 

��
(�)

(�) = � ������

�

����

��(�)
�

��
��(�)          (6) 

 

��
(�)

(�) = � ������

�

����

����(�)
�

��
��(�)

+ ���(�)�
� ��

���
��(�)�           (7) 

 

respectively. 
 
Proof. The conformable fractional derivative of 
order � of ��(�) in (3) is written as  
 

��
(�)

(�) = � ����
(�)

�

����

(�). 

Here, according to Remark 1, we can write 

��
(�)

(�) = ������
� (�). 

 
Now, if we use Eq.(4), we obtain 
 

��
(�)

(�) = � ������

�

����

��(�)
�

��
��(�) 

 
Similarly, we may write the conformable 
fractional derivative of order � of ��(�) in(3) as  
 

��
(�)

=  � ����
(�)

(�).

�

����

 

 
By using Remark 1, we have 
 

��
(�)

(�) =  ������
��(�). 

 
Then by Eq.(5), we get the desired result 
 

��
(�)

(�) =  � ������

�

�� ��

����(�)
�

��
 ��(�)

+ ���(�)�
� ��

���
��(�)� 

 
After relocating each term of Eq.(1) with the 
approximation illustrated in Eq.(3)-(7) and 
producting the ending equation by {(1/�′)�} , we 
determine the system 
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� ��� �� ��(�) 
��

���
��

�

���

��

�

�� ��

=  ��(�) �
1

�′(�)
�

�

� 

 
where 

��(�) =  ��(�) �
1

��(�)
�

�

 

 

��(�) =  ����(�) + ��(�)���� � �
1

�′(�)

− (��(�)

+  ��(�)����) �
1

��(�)
�

�

�� 

 
��(�) =  ��(�) +  ��(�)���� 

 
We know from [25] that 
 

���
(�)

=  ���
(�)

, ���
(�)

= − ���
(�)

,      ���
(�)

=  ���
(�)

 

 
After taking � =  ��  , we find the next theorem. 

 
Theorem 5. If the considered approximate 
solution of BVP (1) is Eq.(3), then the discrete 
sinc-collocation system for the determination of 
the unknown coefficients {��}�� ��

�  
 

∑ ��� �∑
������(��)

��
�
���  ���

(�)
�� =�

�� ��

 ��(��) �
�

������
�

�

� ;  � = −�, … , �                    (8) 

 
Let us define some notations to rewrite the 
equation system we have obtained in the matrix 
form.  
Let �(�) be a diagonal matrix whose diagonal 
elements are �(���), �(�����), … , �(��)  and all 
the other elements are zero and �(�) be the matrices 
formed by 

�(�) = ����
(�)

�, � = 0, 1, 2 

 
where �, �(�), �(�) and �(�)  are � � � order 
matrices. For calculating the unknown coefficients 
�� in (8), we can write this system using the 
previous notations in the matrix form  

�� =  �                          (9) 

Here, 

� =  �
1

ℎ�
 �(��)�(�)

�

���

 

 

� = � �
�

�′
� 1 

 
� = (���, �����, … , ��)� 

 
Now we have a linear system of with � equations 
given by (9). The unknown coefficients �� can be 
determined by solving the system. 

4. COMPUTATIONAL EXAMPLES 

In this section, we consider three different 
problems being approximately solved in [20] 
based on Riemann-Liouville and Caputo fractional 
differential operator. The exact solutions of those 
three problems are known and will be investigated 
by using the present method with Mathematica10 
software. In each example, we consider ℎ =

 �/√�, � = �. 
 
Example 1. [20] Let us consider the fractionally 
damped mechanical oscillator equation in the form 
of 
 

�(�)(�) + ��(�)(�) + ��(�) = �(�),   1 < � 
≤ 2;    0 <  � ≤ 1  

 
with subject to y(0) = 0, �(1) = 0. Here, we take 

� =
�

�
 , � =

�

�
, � = 1, � =  −

�

√�
  and  

�(�) =  −
��

√�
+  3��/� + 

��

√�
 − 2��/� − 6��/� – 

2��/�. 
 
�(�) = ��(� − 1) is the exact solution of the 
problem.  The numerical results determined by 
SCM for this problem are illustrated in Table 1. 
Also, the comparison of the exact and approximate 
solutions for various values of � are given 
graphically in Figure 1. 
 
Table 1: Absolute errors for various values of � 
for Example 1  
 

x N=4 N=8  N=16 N=32 N=64 

0.1 
2.996
× 10�� 

6.306
× 10�� 

1.656
× 10�� 

2.624
× 10�� 

3.376
× 10��� 

0.2 
3.129
× 10�� 

4.556
× 10�� 

2.219
× 10�� 

3.620
× 10�� 

4.409
× 10��� 
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0.3 
5.175
× 10�� 

6.260
× 10�� 

8.078
× 10�� 

3.999
× 10�� 

2.295
× 10��� 

0.4 
5.196
× 10�� 

8.101
× 10�� 

4.094
× 10�� 

3.222
× 10�� 

4.657
× 10��� 

0.5 
1.571
× 10�� 

4.189
× 10�� 

1.689
× 10�� 

1.502
× 10�� 

1.442
× 10��� 

0.6 
5.082
× 10�� 

8.232
× 10�� 

4.039
× 10�� 

3.091
× 10�� 

5.855
× 10��� 

0.7 
6.423×

10�� 
5.832
× 10�� 

8.029
× 10�� 

3.721
× 10�� 

2.390
× 10��� 

0.8 
3.144×

10�� 
3.412
× 10�� 

1.944
× 10�� 

3.309
× 10�� 

4.018
× 10��� 

0.9 
1.188×

10�� 
6.109
× 10�� 

1.349
× 10�� 

2.124
× 10�� 

2.862
× 10��� 

  

 

(a) N = 4 
 

 

(b)  N = 16 
 

 

 
(c)  N = 64 

Figure 1: Graphs of the exact and the approximate 
solutions for Example 1 
 
Example 2. [20] Let us assume the fractional 
differential equation  
 

�(�)(�) = �(�)(�) − ���� − 1, 1 < � ≤ 2;  0
< � ≤ 1 

 
with subject to �(0) = 0, �(1) = 0. 
�(�) = �(1 − ����) is the exact solution of the 
problem for � = 2 and � = 1. In Table 2, the 
numerical results determined by SCM are 
compared with the results determined by using 
Haar wavelet (HWM) and Homotopy perturbation 
methods (HPM). In addition to presented results in 
Table 2, the graphs of approximate solutions for 
various values of �  when � = 1 and � = 64 are 
given in Figure 2. We can easily see that when � 
approaches to 2, the approximation solutions of 
fractional order differential equation approach to 
the solutions of integer order differential equatio 
via the graphs in Figure 2. 
 
Table 2: Numerical comparisons for Example 2 
when � =  64, � = 2 and � = 1 

x 
Fourth order 
HPM [27] 

HWM 
(� =  10)[20] 

SCMM Exact 

0.1 0.05934820 0.05934300 0.05934303 0.05934303 

0.2 0.11014318 0.11013418 0.11013420 0.11013421 

0.3 0.15103441 0.15102438 0.15102440 0.15102441 

0.4 0.18048329 0.18047531 0.18047534 0.18047535 

0.5 0.19673826 0.19673463 0.19673467 0.19673467 

0.6 0.19780653 0.19780792 0.19780797 0.19780797 

0.7 0.18142196 0.18142718 0.18142724 0.18142725 

0.8 0.14500893 0.14501532 0.14501539 0.14501540 

0.9 0.08564186 0.08564623 0.08564632 0.08564632 

0.2 0.4 0.6 0.8 1.0 

0.1

0.1

0.0

SC 

Exact 

0.2 0.4 0.6 0.8 1.0 

0.1

0.1

0.0

SC 

Exact 

0.2 0.4 0.6 0.8 1.0 

0.1
 

0.1
 

0.0
 

SC 

Exact 
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Figure 2: Graphs of the approximate solutions for 
various values of � for Example 2. 
 
Example 3.[20] Finally, consider the Bagley-
Torvik equation the following 
 
����(�) + ��(�)(�) + ��(�) = �(�), 1 < � ≤ 2 
with subject to �(0) = 0, �(1) = 0 

 

where � =
�

�
, � = 1, � =

�

��
, � =

��

��
 and 

�(�) =
�

��
(360� + 144��.� − 612�� −

288��.� + 13�� − 13��).  

 

The exact solution of this problem is �(�) =
��(1 − �). The numerical solutions which are 
obtained by using SCM for this problem are 
presented in Table 3. In addition to presented 
results in Table 3, the graphs of the exact and 
approximate solutions for various values of � are 
given in Figure 3. 
 
Table 3: Absolute errors for various values of � 
for Example 3 

x N=4 N=8  N=16 N=32 N=64 

0.1 
6.735
× 10�� 

2.391
× 10�� 

4.792
× 10�� 

8.709
× 10�� 

3.369
× 10��� 

0.2 
8.435
× 10�� 

8.087
× 10�� 

1.427
× 10�� 

8.789
× 10�� 

1.422
× 10��� 

0.3 
1.406
× 10�� 

3.240
× 10�� 

1.995
× 10�� 

1.728
× 10�� 

1.305
× 10��� 

0.4 
1.161
× 10�� 

2.492
× 10�� 

2.353
× 10�� 

2.404
× 10�� 

6.230
× 10��� 

0.5 
6.392
× 10�� 

5.979
× 10�� 

2.072
× 10�� 

1.768
× 10�� 

1.856
× 10��� 

0.6 
1.148
× 10�� 

1.397
× 10�� 

5.836
× 10�� 

3.949
× 10�� 

1.661
× 10��� 

0.7 
1.228×

10�� 
9.068
× 10�� 

1.759
× 10�� 

6.010
× 10�� 

5.980
× 10��� 

0.8 
5.562
× 10�� 

6.948
× 10�� 

2.740
× 10�� 

7.810
× 10�� 

9.854
× 10��� 

0.9 
3.363
× 10�� 

2.501
× 10�� 

3.491
× 10�� 

3.870
× 10�� 

9.605
× 10��� 

 
 

(a) N = 4 

(b)  N = 16 

(c)  N = 64 

Figure 3: Graphs of exact and approximate 
solutions for Example 3 

5. CONCLUSION 

This study focused on the application of SCM to 
and the approximate solutions of a class of 
fractional order two-point boundary value 
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problems. The suggested method is applied to 
some particular examples to show the applicability 
and accuracy of the method for FBVPs. Numerical 
results obtained from the method are compared 
with the exact solutions and differences are 
presented in tables and graphical forms. Regarding 
the results displayed in tables and graphical forms, 
it can be concluded that SCM is a very effective 
and convenient method for obtaining the 
approximate solution of FBVPs. 
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