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Abstract: In this paper, we define surfaces of revolution without parabolic points in three-dimensional
Lorentz–Minkowski space. Then, we classify this class of surfaces under the condition ∆I I I x = Ax,
where ∆I I I is the Laplace operator regarding the third fundamental form, and A is a real square
matrix of order 3. We prove that such surfaces are either catenoids or surfaces of Enneper, or pseudo
spheres or hyperbolic spaces centered at the origin.

Keywords: Laplace operator; surfaces in E3
1 ; surfaces of revolution; surfaces of coordinate finite type

1. Introduction

Euclidean immersions of finite type were introduced by B.-Y. Chen about thirty years
ago, and it has been a topic of active research since then. Let Mn be an n-dimensional
submanifold of an arbitrary dimensional Euclidean space Em. Denote by ∆I the Beltrami–
Laplace operator on Mn with respect to the first fundamental form I of Mn. The subman-
ifold Mn is said to be of finite k-type if its position vector x can be written as a sum of
eigenvectors of the Laplace–Beltrami operator, ∆I , according to k distinct eigenvalues, i.e.,
x = y0 + y1 + · · ·+ yk, for a constant vector y0 and smooth non-constant functions yk,
(i = 1, . . . , k) such that ∆yi = λiyi, λi ∈ R, ref. [1].

In this respect, important families of surfaces were studied by different authors by
proving that finite type ruled surfaces [2], finite type quadrics [3], finite type tubes [4],
finite type cyclides of Dupin [5], and finite type spiral surfaces [6] are surfaces of the only
known examples in E3. However, for other classical families of surfaces, such as surfaces of
revolution, translation surfaces as well as helicoidal surfaces, the classification of its finite
type surfaces is not known yet. (For a survey in Em, see [7]).

The year 1966 was the beginning when Takahashi in [8] stated that spheres and
minimal surfaces are the only ones in E3 whose position vector x satisfies the relation

∆I x = λx, λ ∈ R. (1)

Since the coordinate functions of x can be denoted as (x1, x2, x3), then Takahashi’s
condition (1) becomes

∆I xi = λxi, i = 1, 2, 3. (2)

Later, in [9], Garay generalized Takahashi’s condition (2). Actually, he studied surfaces
of revolution in E3, whose component functions satisfy the condition

∆I xi = λixi, i = 1, 2, 3,
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that is, the component functions are eigenfunctions of their Laplacian but not necessarily
with the same eigenvalue. Another generalization was also made by studying surfaces
whose position vector x satisfies a relation of the form

∆I x = Ax,

where A ∈ R3×3 [10].
This type of study can also be extended to any smooth map, which is not necessary for

the position vector of the surface, for example, the Gauss map of a surface. For the version
of finite type Gauss map ruled surfaces, and tubes were studied in [11], while cyclides
of Dupin were investigated in [12]. Concerning classes of surfaces whose Gauss map n
satisfies ∆In = An, where A ∈ R3×3, one can find in [13] for the class of helicoidal surfaces,
the class of tubular surfaces in [14], and, finally, the class of surfaces of revolution in [15].

Another extension can be drawn by applying the conditions stated before but for the
2nd or 3rd fundamental form of a surface [16]. More precisely, for the third fundamental
form, ruled and quadric surfaces were studied in [17], translation surfaces were studied
in [18], tubular surfaces in [19], and surfaces of revolution in [20]. The second fundamental
form tubular surfaces were studied in [21], and surfaces of revolution were investigated
in [22]. On the other hand, all the ideas mentioned above can be applied in the Lorentz–
Minkowski space E3

1.
Let M2 be a connected non-degenerate submanifold in the three-dimensional Lorentz–

Minkowski space E3
1 and x : M2 → E3

1 be a parametric representation of a surface in
the Lorentz–Minkowski 3-space E3

1 equipped with the induced metric. Let (x, y, z) be a
rectangular coordinate system of E3

1 . By saying Lorentz–Minkowski space E3
1 , we mean the

Euclidean space E3 with the standard metric given by

ds2 = −dx2 + dy2 + dz2.

Thus, an interesting geometric question has been posed: Classify all surfaces in E3
1,

which satisfy the condition
∆J x = Ax, J = I, I I, I I I, (3)

where A ∈ R3×3 and ∆J is the Laplace operator, regarding the fundamental form J.
Kaimakamis and Papantoniou in [23] solved the above question for the class of surfaces

of revolution with respect to the second fundamental form. In [24], Bekkar and Zoubir
studied the same class of surfaces with respect to the first fundamental form satisfying

∆xi = λixi, λi ∈ R.

Moreover, surfaces of revolution satisfying an equation according to the position vector
field and the second Laplacian in E3

1 were studied in [25]. Furthermore, coordinate finite-
type submanifolds in pseudo-Euclidean spaces have been studied in [26,27]. An interesting
piece of research one can also follow is the idea in [28] by defining the first and second
Beltrami operator using the definition of the fractional vector operators.

In this paper, we investigate the Lorentz version of the surfaces of revolution satisfying
the relation (3) according to the third fundamental form.

2. Basic Concepts

Let C : r(s) : s ∈ (a, b) ⊂ E −→ E2 be a curve in a plane E2 of E3
1 and l be a straight

line of E2, which does not intersect the curve C. A surface of revolution M2 in E3
1 is defined

to be a non-degenerate surface, revolving the curve C around the axis l. If the axis l is
space-like (resp. time-like), then l is transformed to the y-axis or z-axis (resp. x-axis) by the
Lorentz transformation. Thus, we may consider the z-axis (resp. x-axis) as the axis l if it is
space-like (resp. time-like). If the axis is null, then we may assume that this axis is the line
spanned by the vector (1, 1, 0) of the xy-plane [23].



Axioms 2022, 11, 326 3 of 17

Firstly, we consider that the axis l is the z-axis (space-like) and the curve C is ly-
ing in the yz-plane or xz-plane. Then, C is parametrized as r(s) = (0, f (s), g(s)) or
r(s) = ( f (s), 0, g(s)), where f , g are smooth functions. Without loss of generality, we
may assume that f (s) > 0, s ∈ (a, b).

A subgroup of the Lorentz group which fixes the vector (0, 0, 1) is given by [25] cosh θ sinh θ 0
sinh θ cosh θ 0

0 0 1

,

where θ ∈ R, (hyperbolic group). Therefore, the surface of revolution M2 in E3
1 in a system

of local curvilinear coordinates (s, θ) is given by:

x(s, θ) =
(

f (s) sinh θ, f (s) cosh θ, g(s)
)

(4)

or
x(s, θ) =

(
f (s) cosh θ, f (s) sinh θ, g(s)

)
. (5)

Secondly, let the axis l be the x-axis (time-like) lying in the xy-plane. Then, the curve
C is given by r(s) = (g(s), f (s), 0), where f (s) > 0, s ∈ (a, b). In this case, the subgroup of
the Lorentz group which fixes the vector (1, 0, 0) is given by 1 0 0

0 cos θ − sin θ
0 sin θ cos θ

,

where θ ∈ R (elliptic group). Hence, the surface of revolution M2 can be parametrized as

x(s, θ) =
(

g(s), f (s) cos θ, f (s) sin θ
)
. (6)

Finally, if the axis l is the line spanned by the vector (1, 1, 0), as the surface M2 is
non-degenerate, we can assume that the curve C lies in the xy-plane, i.e.,

r(s) = ( f (s), g(s), 0), (7)

where g = g(s) is a smooth positive function and f = f (s) is a smooth function in the
interval (a, b) such that h(s) = f (s)− g(s) 6= 0 for all s ∈ (a, b). We notice here that the
subgroup of the Lorentz group which fixes the vector (1, 1, 0) consists of the matrix 1 + θ2

2 − θ2

2 θ
θ2

2 1− θ2

2 θ
θ −θ 1

,

where θ ∈ R, (parabolic group). Hence, M2 can be parametrized as

x(s, θ) =
(

f (s) +
1
2

θ2h(s), g(s) +
1
2

θ2h(s), θh(s)
)
. (8)

We denote by gkm, bkm and ekm with k, m = 1, 2 with the first, second and third funda-
mental forms of M2, respectively, where we put

g11 = E =< xs, xs >, g12 = F =< xs, xθ >, g22 = G =< xθ, xθ >,

b11 = L =< xss, N >, b12 = M =< xsθ, N >, b22 = N =< xθθ, N >,
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e11 =
EM2 − 2FLM + GL2

EG− F2 =< Ns, Ns >,

e12 =
EMN − FLN + GLM− FM2

EG− F2 =< Ns, Nθ >,

e22 =
GM2 − 2FNM + EN2

EG− F2 =< Nθ, Nθ >,

where N is the unit normal vector of M2 and <,> is the Lorentzian metric. For a sufficient
differentiable function p(u1, u2) on M2, the second Laplace operator according to the
fundamental form I I I of M2 is defined by [29]:

∆I I I p = − 1√
e
(
√

eekm p/k)/m,

where p/k := ∂p
∂uk , ekm denote the components of the inverse tensor of ekm and e = det(ekm).

After a long computation, we arrive at

∆I I I p = −
√
| EG− F2 |
LN −M2

((
(GM2 − 2FNM + EN2) ∂p

∂s

(LN −M2)
√
| EG− F2 |

−
(EMN − FLN + GLM− FM2) ∂p

∂θ

(LN −M2)
√
| EG− F2 |

)
s

(9)

−
(
(EMN − FLN + GLM− FM2) ∂p

∂s

(LN −M2)
√
| EG− F2 |

−
(EM2 − 2FLM + GL2) ∂p

∂θ

(LN −M2)
√
| EG− F2 |

)
θ

)
.

Here, we have LN −M2 6= 0, since the surface has no parabolic points.

3. Proof of the Main Results

In this paragraph, we classify the surfaces of revolution M2 satisfying the relation (3). We
distinguish the following three types according to whether these surfaces are determined.

3.1. Type I

The parametric representation of M2 is given by (4) with a space-like axis. Suppose
that r is parametrized by arc-length, that is, it satisfies

f ′2(s) + g′2(s) = 1. (10)

By considering this with (4), we obtain that the components of the first fundamental
form are

E = 1, F = 0, G = − f 2, (11)

and also by using (4) and the unit normal vector N of M2, we have the components of the
second fundamental form

L = − f ′g′′ + g′ f ′′, M = 0, N = f g′. (12)

Denote by κ the curvature of the curve C and r1, r2 the principal radii of curvature of
M2. We have

r1 = κ, r2 =
g′

f
,

and

K = r1r2 =
κg′

f
= − f ′′

f
, 2H = r1 + r2 = κ +

g′

f
, (13)
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which are the Gaussian curvature and the mean curvature of M2, respectively. Since the
relation (10) holds, there exists a smooth function ϕ = ϕ(s) such that

f ′ = cos ϕ, g′ = sin ϕ. (14)

Then, κ = ϕ′ and relations (12), (13) become

L = −ϕ′, M = 0, N = f sin ϕ, (15)

K =
ϕ′ sin ϕ

f
and 2H = −ϕ′ − sin ϕ

f
. (16)

We put r = 1
r1
+ 1

r2
= 2H

K . Thus, we have

r = −
(

1
ϕ′

+
f

sin ϕ

)
. (17)

Taking the derivative of the last equation, we obtain

r′ =
ϕ′′

ϕ′2
+

f ϕ′ cos ϕ

sin2 ϕ
− cos ϕ

sin ϕ
. (18)

From (9), (11), and (15), we have

∆I I I x = − 1
ϕ′2

∂2x
∂s2 +

1
sin2 ϕ

∂2x
∂θ2 +

(
ϕ′′

ϕ′3
− cos ϕ

ϕ′ sin ϕ

)
∂x
∂s

. (19)

Let (x1, x2, x3) be the coordinate functions of the position vector x of (4). Then, accord-
ing to relations (2), (19) and taking into account (17) and (18), we find that

∆I I I x1 = ∆I I I f (s) sinh θ =

(
− r sin ϕ + r′

cos ϕ

ϕ′

)
sinh θ, (20)

∆I I I x2 = ∆I I I f (s) cosh θ =

(
− r sin ϕ + r′

cos ϕ

ϕ′

)
cosh θ, (21)

∆I I I x3 = ∆I I I g(s) = r cos ϕ + r′
sin ϕ

ϕ′
. (22)

We denote by aij, i, j = 1, 2, 3, the entries of the matrix A, where all entries are real
numbers. By using (20)–(22), condition (3) is found to be equivalent to the following system:(

− r sin ϕ + r′
cos ϕ

ϕ′

)
sinh θ = a11 f (s) sinh θ + a12 f (s) cosh θ + a13g(s), (23)

(
− r sin ϕ + r′

cos ϕ

ϕ′

)
cosh θ = a21 f (s) sinh θ + a22 f (s) cosh θ + a23g(s), (24)

r cos ϕ + r′
sin ϕ

ϕ′
= a31 f (s) cosh θ + a32 f (s) sinh θ + a33g(s). (25)

From (25), it can be easily verified that a31 = a32 = 0. On the other hand, differentiat-
ing (23) and (24) twice with respect to θ, we obtain that a13 = a23 = 0. Thus, the system is
reduced to (

− r sin ϕ + r′
cos ϕ

ϕ′

)
sinh θ = a11 f (s) sinh θ + a12 f (s) cosh θ, (26)
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(
− r sin ϕ + r′

cos ϕ

ϕ′

)
cosh θ = a21 f (s) sinh θ + a22 f (s) cosh θ, (27)

r cos ϕ + r′
sin ϕ

ϕ′
= a33g(s). (28)

However, sinh θ and cosh θ are linearly independent functions of θ, so we deduce that
a12 = a21 = 0 and a11 = a22. Putting a11 = a22 = λ and a33 = µ, we see that the system of
Equations (26)–(28) reduces now to the following two equations:

− r sin ϕ + r′
cos ϕ

ϕ′
= λ f , (29)

r cos ϕ + r′
sin ϕ

ϕ′
= µg. (30)

Hence, the matrix A for which relation (3) is satisfied becomes

A =

 λ 0 0
0 λ 0
0 0 µ

.

Solving the system (29) and (30) with respect to r and r′, we conclude that

r′ = ϕ′(λ f cos ϕ + µg sin ϕ), (31)

r = µg cos ϕ− λ f sin ϕ. (32)

Taking the derivative of (32), we find

r′ =
1
2
(µ− λ) cos ϕ sin ϕ. (33)

We distinguish now the following cases:
Case I. µ = λ = 0. In this case, from (32), we have r = 0. Consequently, by consider-

ing (16) and (17), we conclude H = 0. That is, M2 is minimal.
Case II. µ = λ 6= 0. Then, from (33), we obtain r′ = 0. Now, by considering this

into (31), we discuss two cases. First, if ϕ′ = 0, then the surface M2 would consist only of
parabolic points, which has been excluded. Therefore, we left with

f (s) cos ϕ + g(s) sin ϕ = 0,

or by considering (14)
f f ′ + gg′ = 0,

from which we obtain f 2 + g2 = c2, c ∈ R. Therefore, the surface M2 obviously satisfies
the equation −x2 + y2 + z2 = c2, that is, M2 is an open piece of the pseudo-sphere S2

1(0, c)
centered at the origin with radius c on E3

1.
Case III. λ 6= 0, µ = 0. Then, system (29), (30) is equivalently reduced to

−r sin ϕ + r′
cos ϕ

ϕ′
= λ f (s),

r cos ϕ + r′
sin ϕ

ϕ′
= 0.

From (32), we have
r + λ f sin ϕ = 0. (34)

On differentiating (34) and taking into account (31) with µ = 0, we obtain

λ f ϕ′ cos ϕ + λ cos ϕ sin ϕ + λ f ϕ′ cos ϕ = 0
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or
ϕ′ = − sin ϕ

2 f
.

From (34), (17) and the last equation, we obtain

f
sin ϕ

+ λ f sin ϕ = 0

or
f (1 + λ sin2 ϕ) = 0.

It is a contradiction. Hence, there are no surfaces of revolution with parametric
representation (4) of E3

1 satisfying (3).
Case IV. λ = 0, µ 6= 0. Then, Equations (29) and (30) reduced to

−r sin ϕ + r′
cos ϕ

ϕ′
= 0,

r cos ϕ + r′
sin ϕ

ϕ′
= µg. (35)

From (32), we have
r− µg cos ϕ = 0. (36)

Taking the derivative of (36) and taking into account (31) with λ = 0, we find

µgϕ′ sin ϕ− µ cos ϕ sin ϕ + µgϕ′ sin ϕ = 0

or
ϕ′ =

cos ϕ

2g
. (37)

Taking the derivative of (37), we find

3ϕ′ sin ϕ + 2gϕ′′ = 0. (38)

On account of (35), (17) and (18), it is easily verified that

ϕ′′ =
ϕ′2

sin ϕ
(µgϕ′ + 2 cos ϕ). (39)

Inserting (37) and (39) in (38), we conclude

3 + (
1
2

µ− 1) cos2 ϕ = 0.

Here, we also have a contradiction.
Case V. λ 6= 0, µ 6= 0. We write Equations (29) and (30) as follows:

sin ϕ

ϕ′
+

f
sin2 ϕ

+
ϕ′′ cos ϕ

ϕ′3
− cos2 ϕ

ϕ′ sin ϕ
− λ f = 0, (40)

ϕ′′ sin ϕ

ϕ′3
− 2 cos ϕ

ϕ′
− µg = 0. (41)

From (41), we have relation (39). By eliminating ϕ′′ from (40), we obtain

1
ϕ′ sin ϕ

+
µg cos ϕ

sin ϕ
+

f
sin2 ϕ

− λ f = 0. (42)
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On differentiating the last equation and using (39), we find

2µgϕ′

sin2 ϕ
+

2 f ϕ′ cos ϕ

sin3 ϕ
+

2 cos ϕ

sin2 ϕ
− (µ− λ) cos ϕ = 0. (43)

Multiplying (42) by 2ϕ′

sin ϕ and (43) by − cos ϕ, we obtain

2
sin2 ϕ

+
2µgϕ′ cos ϕ

sin2 ϕ
+

2 f ϕ′

sin3 ϕ
− 2λϕ′ f

sin ϕ
= 0, (44)

− 2µgϕ′ cos ϕ

sin2 ϕ
− 2 f ϕ′ cos2 ϕ

sin3 ϕ
− 2 cos2 ϕ

sin2 ϕ
+ (µ− λ) cos2 ϕ = 0. (45)

Combining (44) and (45), we conclude that

(µ− λ) cos2 ϕ− 2(λ− 1)
f ϕ′

sin ϕ
+ 2 = 0 (46)

or
(µ− λ) cos2 ϕ

ϕ′
− 2(λ− 1)

f
sin ϕ

+
2
ϕ′

= 0.

Taking the derivative of the above equation and using (33) and (39), we find

2(µ + 1) cos ϕ + (µ− λ)µgϕ′ cos2 ϕ− 2(λ− 1)
f ϕ′ cos ϕ

sin ϕ
+ 2µgϕ′ = 0. (47)

Multiplying (46) by − cos ϕ, and adding the resulting equation to (47), we obtain

2µ cos ϕ + (2 + (µ− λ) cos2 ϕ)µgϕ′ − (µ− λ) cos3 ϕ = 0

or
2µ cos2 ϕ + (2 + (µ− λ) cos2 ϕ)µgϕ′ cos ϕ− (µ− λ) cos4 ϕ = 0. (48)

On account of (42), we find

µgϕ′ cos ϕ = λ f ϕ′ sin ϕ− f ϕ′

sin ϕ
− 1. (49)

Eliminating µgϕ′ cos ϕ from (48) by using (49), Equation (48) reduces to

2µ cos2 ϕ− (µ− λ) cos4 ϕ +(
2 + (µ− λ) cos2 ϕ

)(
(λ sin2 ϕ− 1)

f ϕ′

sin ϕ
− 1
)
= 0. (50)

However, from (46), we have

f ϕ′

sin ϕ
=

(µ− λ) cos2 ϕ + 2
2(λ− 1)

. (51)

Obviously λ 6= 1 because otherwise, from (46), we would have

(µ− λ) cos2 ϕ + 2 = 0.

This is a contradiction. Now, by inserting (51) in (50), we obtain

−λ(µ− λ)2 cos4 ϕ + (µ− λ)
(
(µ− λ)(λ− 1)− 6λ + 2

)
cos2 ϕ

+6µ(λ− 1)− 2λ(λ + 1) = 0.
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This relation, however, is valid for a finite number of values of ϕ. Thus, in this case,
there are no surfaces of revolution with the required property.

Now, let us consider a surface of revolution M2 given by (5). Suppose that r is
parametrized by arc-length, that is, it satisfies

g′2(s)− f ′2(s) = −ε, (ε = ±1).

Here, also, one can find

E = −ε, F = 0, G = f 2,

L = f ′g′′ − f ′′g′, M = 0, N = −g′ f .

By using the same procedure as above, we have the following:
If ε = 1, M2 is an open piece of the pseudo-sphere S2

1(0, c) centered at the origin with
radius c, or minimal surface.

If ε = −1, M2 is an open piece of the hyperbolic space H2
1(0, c) centered at the origin

with radius c, or minimal surface. Thus, we proved the following:

Theorem 1. Let x : M2 −→ E3
1 be a surface of revolution with a space-like axis. Then, x satisfies (3)

regarding to the third fundamental form if and only if one of the following statements holds:

• M2 has zero mean curvature;
• M2 is an open piece of the pseudo-sphere S2

1(0, c) centered at the origin with radius c;
• M2 is an open piece of the hyperbolic space H2

1(0, c) centered at the origin with radius c.

3.2. Type II

The parametric representation of M2 is given by (6) with a time-like axis. Then, the
tangent vector of the profile curve parametrized by arc-length is

< x′, x′ >= f ′2 − g′2 = ε, (ε = ±1).

We can assume that
f ′2 − g′2 = 1, ∀s ∈ (a, b). (52)

Then, the components of the first and second fundamental forms are given by, respectively,

E = 1, F = 0, G = f 2, (53)

and
L = f ′g′′ − g′ f ′′, M = 0, N = f g′. (54)

From Equation (52), it is obviously clear that there exists a smooth function ϕ = ϕ(s)
such that

f ′ = cosh ϕ, g′ = sinh ϕ.

On the other hand, similar to the way followed in the previous type, we can obtain

r1 = κ = ϕ′, r2 =
g′

f
=

sinh ϕ

f
,

and so the Gaussian curvature and mean curvature are given by

K = r1r2 =
κg′

f
= − f ′′

f
=

ϕ′ sinh ϕ

f
, 2H = r1 + r2 = ϕ′ +

sinh ϕ

f
. (55)

Here, we have

r =
1
ϕ′

+
f

sinh ϕ
. (56)
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By taking the derivative of the last equation, we obtain

r′ = − ϕ′′

ϕ′2
− f ϕ′ cosh ϕ

sinh2 ϕ
+

cosh ϕ

sinh ϕ
. (57)

On the other hand, by considering (53) and (54) in (9), we obtain

∆I I I x = − 1
ϕ′2

∂2x
∂s2 −

1
sinh2 ϕ

∂2x
∂θ2 +

(
ϕ′′

ϕ′3
− cosh ϕ

ϕ′ sinh ϕ

)
∂x
∂s

. (58)

By substituting the components of (6) into (58), we find

∆I I I x1 = ∆I I I g(s) = −r cosh ϕ− r′
sinh ϕ

ϕ′
,

∆I I I x2 = ∆I I I f (s) cos θ =

(
− r sinh ϕ− r′

cosh ϕ

ϕ′

)
cos θ,

∆I I I x3 = ∆I I I f (s) sin θ =

(
− r sinh ϕ− r′

cosh ϕ

ϕ′

)
sin θ.

Now let ∆I I I x = Ax. Thus, as in the former paragraph, we find

−r cosh ϕ− r′
sinh ϕ

ϕ′
= a11g(s) + a12 f (s) cos θ + a13 f (s) sin θ,

(
− r sinh ϕ− r′

cosh ϕ

ϕ′

)
cos θ = a21g(s) + a22 f (s) cos θ + a23 f (s) sin θ,(

− r sinh ϕ− r′
cosh ϕ

ϕ′

)
sin θ = a31g(s) + a32 f (s) cos θ + a33 f (s) sin θ.

Applying the same algebraic methods, used in the previous type, the above system
reduces to

− r cosh ϕ− r′
sinh ϕ

ϕ′
= µg, (59)

− r sinh ϕ− r′
cosh ϕ

ϕ′
= λ f , (60)

where a11 = µ, a22 = a33 = λ, λ, µ ∈ R. Solving the system (59) and (60) with respect to r
and r′, we conclude that

r′ = ϕ′(−λ f cosh ϕ + µg sinh ϕ), (61)

r = λ f sinh ϕ− µg cosh ϕ. (62)

Now, we consider the following five cases according to the values of λ, µ.
Case I. λ = µ = 0. Thus, from (62), we conclude that r = 0. Consequently, by

considering (55) and (56), we conclude that H = 0. That is, M2 is minimal.
Case II. µ = λ 6= 0. Then, from (61), we have that r′ = 0. If ϕ′ = 0, then M2 would

consist only of parabolic points, which has been excluded. Therefore, we find that

− f cosh ϕ + g sinh ϕ = 0

or
− f f ′ + gg′ = 0.

Then, g2− f 2 = c2, c ∈ R and, therefore, M2 is obviously the hyperbolic space H2(0, c)
centered at the origin with an imaginary radius, given by x2 + y2 − z2 = −c2.
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Case III. λ 6= 0, µ = 0. Then, system (59), (60) is reduced to

r cosh ϕ + r′
sinh ϕ

ϕ′
= 0,

−r sinh ϕ− r′
cosh ϕ

ϕ′
= λ f (s).

From (62), we obtain
r− λ f sinh ϕ = 0. (63)

By differentiating (63) and taking into account (61) with µ = 0, we obtain

ϕ′ = − sinh ϕ

2 f
.

Considering (56), (62) and the last equation together, we obtain

f (1− λ sin2 ϕ) = 0,

which is a contradiction. Hence, there are no surfaces of revolution with parametric
representation (6) of E3

1 satisfying (3).
Case IV. λ = 0, µ 6= 0. Then, Equations (59) and (60) reduced to

− r cosh ϕ− r′
sinh ϕ

ϕ′
= µg, (64)

−r sinh ϕ− r′
cosh ϕ

ϕ′
= 0.

From (62), we have
r + µg cosh ϕ = 0. (65)

Taking the derivative of (65) and taking into account (61) with λ = 0, we find

ϕ′ = −cosh ϕ

2g
. (66)

Taking the derivative of (66), we obtain

3ϕ′ sinh ϕ + 2gϕ′′ = 0. (67)

On account of (56), (57) and (64), it is easily verified that

ϕ′′ =
ϕ′2

sinh ϕ
(µgϕ′ + 2 cosh ϕ). (68)

Inserting (66) and (68) in (67), we conclude that

3− (
1
2

µ + 1) cosh2 ϕ = 0,

which shows that it is a contradiction.
Case V. Let λ 6= 0, µ 6= 0. Now, by substituting (56) and (57) into Equations (59) and (60),

we can rewrite this system as

ϕ′′ sinh ϕ

ϕ′3
− 2 cosh ϕ

ϕ′
− µg = 0, (69)

− sinh ϕ

ϕ′
+

f
sinh2 ϕ

+
ϕ′′ cosh ϕ

ϕ′3
− cosh2 ϕ

ϕ′ sinh ϕ
− λ f = 0. (70)
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From (69), we have relation (68). By eliminating ϕ′′ from (70), we obtain

1
ϕ′ sinh ϕ

+
µg cosh ϕ

sinh ϕ
+

f
sinh2 ϕ

− λ f = 0. (71)

On differentiating the last equation and using (68), we find

2µgϕ′

sinh2 ϕ
+

2 f ϕ′ cosh ϕ

sinh3 ϕ
+

2 cosh ϕ

sinh2 ϕ
− (µ− λ) cosh ϕ = 0. (72)

Multiplying (71) by
2ϕ′

sinh ϕ
and (72) by − cosh ϕ, we obtain

2
sinh2 ϕ

+
2µgϕ′ cosh ϕ

sinh2 ϕ
+

2 f ϕ′

sinh3 ϕ
− 2λϕ′ f

sinh ϕ
= 0, (73)

− 2µgϕ′ cosh ϕ

sinh2 ϕ
− 2 f ϕ′ cosh2 ϕ

sinh3 ϕ
− 2 cosh2 ϕ

sinh2 ϕ
+ (µ− λ) cosh2 ϕ = 0. (74)

Combining (73) and (74), we conclude that

(µ− λ) cosh2 ϕ− 2(λ + 1)
f ϕ′

sinh ϕ
− 2 = 0 (75)

or
(µ− λ) cosh2 ϕ

ϕ′
− 2(λ + 1)

f
sinh ϕ

− 2
ϕ′

= 0.

Taking the derivative of the above equation and using (68), we find

2(µ + 1) cosh ϕ + (µ− λ)µgϕ′ cosh2 ϕ− 2(λ + 1)
f ϕ′ cosh ϕ

sinh ϕ
− 2µgϕ′ = 0. (76)

Multiplying (75) by − cosh ϕ, and adding the resulting equation to (76), we obtain

2(µ + 2) cosh ϕ− (2− (µ− λ) cos2 ϕ)µgϕ′ − (µ− λ) cosh3 ϕ = 0

or
2(µ + 2) cosh2 ϕ− (2− (µ− λ) cosh2 ϕ)µgϕ′ cos ϕ− (µ− λ) cos4 ϕ = 0. (77)

On account of (71), we find

µgϕ′ cosh ϕ = λ f ϕ′ sinh ϕ− f ϕ′

sinh ϕ
− 1. (78)

Eliminating µgϕ′ cosh ϕ from (77) by using (78), we obtain

2(µ + 2) cosh2 ϕ− (µ− λ) cosh4 ϕ−(
2− (µ− λ) cosh2 ϕ

)(
(λ sinh2 ϕ− 1)

f ϕ′

sinh ϕ
− 1
)
= 0. (79)

However, from (75), we have

f ϕ′

sinh ϕ
=

2− (µ− λ) cosh2 ϕ

2(λ + 1)
. (80)

Obviously, λ 6= −1 because, otherwise, from (75), we would have

(µ− λ) cosh2 ϕ− 2 = 0.
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This is a contradiction. Now, by inserting (80) in (79), we obtain

−λ(µ− λ)2 cos6 ϕ + (µ− λ)
(
(µ− λ)(λ− 1) + 4λ

)
cos4 ϕ

+(6λ2 − 2λ− 2µ− 2λµ + 8) cos2 ϕ + 8(λ + 1) = 0.

This relation, however, is valid for a finite number of values of ϕ. Thus, in this case,
there are no surfaces of revolution with the required property.

Finally, let ε = 1, i.e., M2 is a time-like surface. Quite similarly as before, we can show
that M2 is an open part of the pseudo-sphere S2

1(0, c) centered at the origin with real radius
c, given by the equation x2 + y2 − z2 = c2, or minimal, or the catenoid of the 3rd kind as a
time-like surface. Thus, we proved the following:

Theorem 2. Let x : M2 −→ E3
1 be a surface of revolution given by (6). Then, x satisfies (3)

regarding to the third fundamental form if and only if one of the following statements holds:

• M2 has zero mean curvature;
• M2 is an open piece of the pseudo-sphere S2

1(0, c) centered at the origin with real radius c;
• M2 is an open piece of the hyperbolic space H2

1(0, c) centered at the origin with real radius c.

3.3. Type III

The parametric representation of M2 is given by (8), i.e.,

x(s, θ) =
(

f (s) +
1
2

θ2h(s), g(s) +
1
2

θ2h(s), θh(s)
)
,

where h(s) = f (s)− g(s) 6= 0. Since M2 is non-degenerate, f ′(s)2 − g′(s)2 never vanishes,
and so h′(s) = f ′(s)− g′(s) 6= 0 everywhere. Now, we may take the parameter in such a
way that

h(s) = −2s.

Assume that k(s) = g(s)− s; then,

f (s) = k(s)− s g(s) = k(s) + s,

(see, for example, ref. [30]). Therefore, M2 can be reparametrized as follows:

x(s, θ) =
(
k− s− θ2s, k + s− θ2s,−2sθ

)
, (81)

with the profile curve given in (7) becomes

r(s) = (0, k(s)− s, k(s) + s). (82)

By using the tangent vector fields, xs and xθ of M2, the components of the first and
second fundamental forms are given by

E = 4k′(s), F = 0, G = 4s2.

Now, let M2 be a space-like surface, i.e., k′(s) > 0. Then, the time-like unit normal
vector field N of M2 is given by

N =
1

2
√

k′
(θ2 + 1, θ2 − 1, 2θ) +

√
k′

2
(1, 1, 0). (83)

Then, the components of the second fundamental forms are given by

L = − k′′√
k′

, M = 0, N =
2s√

k′
.
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Thus, relation (9) becomes

∆I I I p = −4k′2

k′′2
∂2 p
∂s2 − k′

∂2 p
∂θ2 +

2k′

k′′3
(
2k′k′′′ − k′′2

)∂p
∂s

. (84)

According to relations (8) and (84), we find that

∆I I I x1 = ∆I I I(k− s− sθ2) =
2k′

k′′3
(
2k′k′′′ − k′′2

)
(k′ − 1− θ2)− 4k′2

k′′
+ 2sk′,

∆I I I x2 = ∆I I I(k + s− sθ2) =
2k′

k′′3
(
2k′k′′′ − k′′2

)
(k′ + 1− θ2)− 4k′2

k′′
+ 2sk′,

∆I I I x3 = ∆I I I(−2sθ) = − 4k′

k′′3
(
2k′k′′′ − k′′2

)
θ.

Now, let ∆I I I x = Ax. Then,

2k′

k′′3
(
2k′k′′′ − k′′2

)
(k′ − 1− θ2)− 4k′2

k′′
+ 2sk′ =

a11(k− s− sθ2) + a12(k + s− sθ2) + a13(−2sθ), (85)

2k′

k′′3
(
2k′k′′′ − k′′2

)
(k′ + 1− θ2)− 4k′2

k′′
+ 2sk′ =

a21(k− s− sθ2) + a22(k + s− sθ2) + a23(−2sθ), (86)

− 4k′

k′′3
(
2k′k′′′ − k′′2

)
θ = a31(k− s− sθ2) + a32(k + s− sθ2) + a33(−2sθ). (87)

Regarding the above equations as polynomials in θ, so from the coefficients of (87),
we obtain

(a31 + a32)s = 0, (88)

2k′

k′′3
(
2k′k′′′ − k′′2

)
= a33s, (89)

(a32 − a31)s + (a31 + a32)k = 0. (90)

From the coefficients of (86), we find

2k′

k′′3
(
2k′k′′′ − k′′2

)
= (a21 + a22)s, (91)

a23s = 0, (92)

2k′

k′′3
(
2k′k′′′ − k′′2

)
(k′ + 1)− 4k′2

k′′
+ 2sk′ = (a21 + a22)k + (a22 − a21)s. (93)

From the coefficients of (85), we obtain

2k′

k′′3
(
2k′k′′′ − k′′2

)
= (a11 + a12)s, (94)

a13s = 0, (95)

2k′

k′′3
(
2k′k′′′ − k′′2

)
(k′ − 1)− 4k′2

k′′
+ 2sk′ = (a11 + a12)k + (a12 − a11)s. (96)

It is easily verified that

a23 = a31 = a32 = a13 = 0.
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On the other hand, from (89), (91) and (94), we find

a11 + a12 = a33 = a21 + a22,

from which we obtain
a12 = a33 − a11, a21 = a33 − a22. (97)

Moreover, by considering (89) and (97) in (93) and (96), respectively, we obtain

a33s(k′ + 1)− 4k′2

k′′
+ 2sk′ = a33k + (a22 − a21)s (98)

and

a33s(k′ − 1)− 4k′2

k′′
+ 2sk′ = a33k + (a12 − a11)s. (99)

By subtracting (98) from (99), we obtain

(a11 − a21)s + (a22 − a12)s− 2a33s = 0. (100)

From (97) and (100), we find
a21 = −a12. (101)

Taking into account relations (100) and (101), we obtain

a11 + a22 = 2a33.

We put a11 = λ and a22 = µ, so the matrix A for which relation (3) is satisfied takes
finally the following form:

A =

 λ 1
2 (µ− λ) 0

1
2 (λ− µ) µ 0

0 0 1
2 (λ + µ)

.

Hence, the system of Equations (88)–(96) reduces to the following two equations:

2k′

k′′3
(2k′k′′′ − k′′2) = a33s, (102)

(a33 + 2)k′s + 2a12s− 4k′2

k′′
− a33k = 0, (103)

where, as we mentioned before, a33 = 1
2 (λ + µ) and a12 = 1

2 (µ− λ).
Solving the system of Equations (102) and (103) with respect to λ and µ, we find

λ =
k′(2s− k + sk′)

s2k′′
(2k′k′′′

k′′2
− 1
)
− 2k′2

sk′′
+ k′, (104)

µ =
k′(2s + k− sk′)

s2k′′
(2k′k′′′

k′′2
− 1
)
+

2k′2

sk′′
− k′. (105)

Case I. λ = µ = 0. Thus, from (104) and (105), we conclude that k = as3 + b with
a > 0, b is a constant, and s 6= 0. Consequently, H = 0. Therefore, M2 is minimal and the
corresponding matrix A is the zero matrix.

Case II. λ = µ 6= 0. Thus, from Case I, k 6= as3 + b. Now, from (67), we obtain a23 = 0,
and so

(k− sk′)(2k′k′′′ − k′′2)
s2k′′3

+
2k′

sk′′
− 1 = 0, (106)
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whose solution is k(s) = ± c2

4s
. By considering (82), we conclude that r is a spherical curve

and so the surface M2 is an open piece of the pseudo-sphere S2
1(0, c) or the hyperbolic space

H2(0, c).
Case III. λ 6= 0, µ = 0. By considering the last assumption in (105), i.e., µ = 0, we have

2k′

sk′′
(2k′k′′′

k′′2
− 1
)
=

k′(−k + sk′)
s2k′′

(2k′k′′′

k′′2
− 1
)
− 2k′2

sk′′
+ k′.

By substituting this into (104), we obtain

λ =
4k′

sk′′
(2k′k′′′

k′′2
− 1
)

,

where λ is a non-zero function. Since there is no k function to implement in both conditions,
there is no surface of revolution that fulfills these conditions.

Case IV. λ = 0, µ 6= 0. Similarly, we obtain a contradiction as in Case III.
Case V. λ 6= µ and λ 6= 0, µ 6= 0. In this case, the above two relations (104) and (105)

are valid only when λ and µ are functions of s. Thus, there are no surfaces of revolution
with the required property. Thus, we proved the following:

Theorem 3. Let x : M2 −→ E3
1 be a surface of revolution given by (8). Then, x satisfies (3)

regarding to the third fundamental form if and only if the following statements hold true:

• M2 has zero mean curvature;
• M2 is an open piece of the pseudo sphere S2

1(0, c) of real radius c;
• M2 is an open piece of the hyperbolic space H2

1(0, c) of real radius c.

Finally, we know that the minimal surfaces of revolution with a non-light-like axis
are congruent to a part of the catenoid and also with a light-like axis are congruent to a
part of the surface of Enneper (see for more details [31]). Now, by combining Theorem 1–3,
and [31]:

Theorem 4. (Classification) Let x : M2 −→ E3
1 be a surface of revolution satisfying (3) regarding

the third fundamental form. Then, M is one of the following:

• M2 is an open part of catenoid of the 1st kind, the 2nd kind, the 3rd kind, the 4th kind, or the
5th kind.

• M2 is an open part of the surface of Enneper of the 2nd kind or the 3rd kind,
• M2 is an open part of the pseudo sphere S2

1(0, c) centered at the origin with radius c,
• M2 is an open part of the hyperbolic space H2

1(0, c) centered at the origin with radius c.

4. Discussion

Firstly, we introduce the class of surfaces of revolution of the 1st, 2nd, and 3rd kind as
space-like or time-like in the Lorentz–Minkwoski 3-space. Then, we define a formula for the
Laplace operator regarding the third fundamental form I I I. Finally, we classify the surfaces
of revolution M2 satisfying the relation ∆I I I x = Ax, for a real square matrix A of order 3.
We distinguish three types according to whether these surfaces are determined, with each
type investigated in a subsection of Section 3. An interesting study can be drawn, if this
type of study can be applied to other classes of surfaces that have not been investigated yet
such as spiral surfaces, quadric surfaces, or tubular surfaces.
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