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ABSTRACT

Macular edema (ME) is one of the most common retinal diseases that occur as a result of the detachment
of the retinal layers on the macula. This study provides computer-aided identification of ME for even
small pathologies on OCT using the advantages of Deep Learning. The study aims to identify ME on
OCT images using a lightweight explainable Convolutional neural networks (CNN) architecture by com-
posing significant feature activation maps and reducing the trainable parameters. A CNN is an effective
Deep Learning algorithm, which consists of feature learning and classification stages. The proposed
model, DeepOCT, focuses on reaching high classification performances as well as popular pre-trained
architectures using less feature learning and shallow dense layers in addition to visualizing the most
responsible regions and pathology on feature activation maps. The DeepOCT encapsulates the block-
matching and 3D filtering (BM3D) algorithm, flattening the retinal layers to avoid the effects arising from
different macula positions, and excluding non-retinal layers by cropping. DeepOCT identified OCT with
ME with the rates of 99.20%, 100%, and 98.40% for accuracy, sensitivity, and specificity, respectively.
The DeepOCT provides a standardized analysis, a lightweight architecture by reducing the number of
trainable parameters, and high classification performances for both large- and small-scale datasets. It
can analyze medical images at different levels with simple feature learning, whereas the literature uses
complicated pre-trained feature learning architectures.

© 2021 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Optical Coherence Tomography (OCT) is a non-invasive oph-
thalmic technique that enables controlling the retinal conditions.
The pattern of the retina is comprised of cross-sectional layers.
The distinctive layers’ map, thickness, and contiguity values state
the type and severity of the ophthalmic diseases. The OCT images
are commonly employed to help identify ophthalmological dis-
eases by visualizing the ocular pathologies and formal degenera-
tion in retinal layers [1]. The OCT images are frequently utilized
to estimate the performance of deep learning (DL) algorithms
due to providing facilities to control the tissue at microscopic res-
olution [2,3].

The number of researches on the computerized analysis of OCT
has increased in popularity depending on the developments in the
medical image processing techniques and DL algorithms. One of
the most frequent ophthalmic diseases is macular edema in litera-
ture. The macula is the pigmented tissue near the centre of the
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retina. Macular edema is described with the detachment of retinal
layers and the occurrence of fluid-filled pathologies in macula
owing to many conditions, including diabetes, age-related macular
degeneration, genetic disorders, injuries, and more [3-5]. Conven-
tional image processing techniques focused on the identification of
diabetic macular edema (DME) using hand-crafted features [6,7].
In recent years, a majority of the studies focused on adapting the
efficacy of DL algorithms into the identification of pathologies
and diagnosis of DME on OCT images. Transfer learning, feature
learning, and pruning the pre-trained Convolutional Neural Net-
works (CNN) architectures are the common approaches for many
research fields to handle novel DL architectures. The studies uti-
lized various DL architectures, including VGG-16 [8-12], VGG-19
[13], ResNET50 [13,14], ImageNET-InceptionV3 [15-17], and Alex-
NET [16-18] to detect DME on OCT images.

The recent developments on pre-trained DL architectures have
reached high levels that are difficult to outperform. The focus of
novel papers is composing lightweight architectures presenting
similar capabilities as well as deeper models besides ensuring
the explainability with visual supports for clinical validation. The
importance of the proposed method is composing a lightweight
CNN architecture with high DME identification performances using

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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an acceptable number of trainable parameters compared to popu-
lar pre-trained architectures in addition to visualizing the most
responsible retinal activation maps with clinical relevance.

Computerized analysis of the OCT images is an important step
to provide a more detailed analysis for ophthalmologists. This
study aims at identifying macular edema on OCT images using a
lightweight explainable CNN architecture by composing significant
feature activation maps and reducing the trainable parameters.
The paper experimented with a variety of CNN structures on both
large- and small-scale OCT databases to classify DME and non-DME
subjects. The exact identification of DME with small pathologies is
a time-consuming detailed examination for even skilled ophthal-
mologists. The proposed DeepOCT architecture performs identifi-
cation of small edemas with feature mapping, assigns a
standardized analysis with preprocessing, and attains an optimized
lightweight DL architecture by reduced feature learning and fine-
tuned supervised model on OCT images.

Herein, block-matching and 3D filtering (BM3D), flattening of
retinal layers and cropping were applied to subtract non-retina
layers. Various CNN architectures on large- and small-scale data-
sets were experimented with to specify a high-performance CNN
structure for DME identification. The main contributions of this
proposal can be encapsulated as:

1. The proposal is a lightweight architecture with much less num-
ber of the parameters required to train the network compared
to popular pre-trained architectures

2. A standardized aligning position for OCT scans is provided by
curvature correction of retinal layers analysis and excluding
non-retinal sections

3. The architecture reached promising DME identification perfor-
mance rates by modelling from scratch. Hence, it composed ini-
tialization weights for transfer learning to adapt knowledge
into the analysis of related medical images.

4. The DeepOCT is separately implemented on small- and large-
scale datasets To see the effectiveness of the proposed architec-
ture. It determined the robustness and generalization impact of
the same CNN architecture on OCT scans with different
specifications.

The remaining of the paper is organized as follows: A detailed
related works are presented with a detailed comparison to high-
light the superiority of the proposal in 2. The database specifica-
tions, preprocessing, the proposed DeepOCT architecture, and
experimental setup in training are explained in 3. 4 presents the
experimental results for proposals. A complete comparison with
the state-of-the-art method is explained in 5. Finally, the proposal
is concluded in 6.

2. Related Works

Several researchers have put effort into computer-aided analy-
sis for identifying retinal diseases with the recent advancements in
deep learning. Significant disadvantages of existing works are the
explainability and interpretability of the architectures, limited
clinical relevance, the complicated CNN architectures, and their
dependency on data specifications. This section explains the main
differences of the proposal and further clarification the main con-
tributions concerning related works.

Training a CNN model is a time-consuming and big data depen-
dent process for obtaining a better generalization. Transfer learn-
ing enables overcoming these limitations by recounting the
knowledge of trained architectures. Transfer learning is only con-
venient to be adapted if the initial and target problems are related
enough for the feature learning of the architecture to be relevant.
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However, it has been commonly adapted for the OCT images for
DME identification from conventional object detection models
[14,9,10,16-18,11,19]. DeepOCT was trained from scratch without
any weight factor optimization on pre-trained architectures.
Hence, the generated feature activation maps present low-, mid-,
and high-level with regard to retinal evaluation.

The capabilities of DL algorithms have taken classification and
detection techniques to a new level. That is why advanced image
processing techniques have equipped feature learning. Composing
deeper CNN models provides the opportunity for more detailed
analysis with sequential convolutions besides an increase in the
number of parameters required to train the network and time-
complexity as a disadvantage. The recent main focus of the
researchers is performing high classification achievements as well
as deeper and combined models using lightweight architectures
with a reduced number of trainable parameters. Whereas popular
pre-trained architectures have a variety of classification parameters
through 25 M (ResNet-50) [14], 60 M (AlexNet) [19,18], 138 M
(VGG-16) [9-11], DeepOCT is an acceptable lightweight architec-
ture compared to other architectures with 7.9 M parameters.

Many related works reported high classification performances
for accuracy, specificity, sensitivity, the area under curve ratio,
and more using various techniques. The most crucial disadvantage
of the proposals is that it is a black box in terms of estimating the
responsibility of learned features and how much they affect the
model [14,13,20,11,9,10,16-18,21,12,2]. Even if the model
achieved high performance, it is more valuable for clinical experi-
ments to estimate the most responsible regions for the learning
procedure rather than predicting the category. In recent years,
explainable Al techniques have been used to support medical deci-
sion support mechanisms and for assessing the clinical relevance of
the output [8,19]. The DeepOCT has the advantages of modeling an
explainable lightweight architecture related to medical images
from scratch.

Due to the intensive speckle noise in the OCT, analyzing the
denoised OCT images has always been a prerequisite for many
types of research on segmentation and retinal pathology localiza-
tion. In contrast to analysis of raw OCT scans [9,12,10,18,8,19], var-
ious filtering techniques, which are hard to perform a complete
comparison, were applied in different sequences with different
parameters for even the same procedures. Extracting the retinal
boundaries can be challenging for severe DME pathologies with
different curvature and background specifications. Therefore, the
papers followed various procedures, including median filtering
[14,9], BM3D [14,16], sparsity-based block matching [14,21], and
Surrogate Image Generation [21] for extraction of ophthalmologi-
cal layers. OCT-specific non-automatic cropping, which is a time-
consuming procedure for large-scale databases, is utilized for
extracting the relevant regions for DME [13,20,10,16,17]. Since
the CNN architectures have the ability to learn shape-variants of
the OCT scans, a flattened retinal layer for DME is more effective
to force learning the pathology in the retinal layer [20]. The pro-
posal performs a standardized preprocessing by applying BM3D
for noise suppression and retinal edge detail preservation, flatten-
ing for curvature correction on OCT, binarization for uppermost
and lowermost boundary detection, and automatic cropping for
excluding non-ophthalmologic patterns in OCT.

Though a limited number of researchers have handled the dis-
advantages of transfer learning by training their own CNN archi-
tectures on OCT scans, none of the related works has nonetheless
reached a satisfying level that would overcome all these
disadvantages.

In [14], fine-tuning on the popular CNN models is used to
improve the identification accuracy of DME on preprocessed OCT
images. They experimented with various removals of deep layers
on GoogLeNet, ResNet, and DenseNet architectures. Their proposal
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reduced the number of parameters to 8.5 M in the CNN model
about 99% classification performances. However, it is not clear to
understand the clinical validity using the achievements without
the correlation between the feature activation maps and disease
pathology.

In [13], the efficiency of multiple machine learning algorithms
and CNN was compared using the wavelet transform as unsuper-
vised learning to define the spatial-frequency domain. They
reported the supremacy of the CNN for the diagnosis of macular
pathology. However, they trained their proposal using a limited
number of OCT scans which is not suitable for the generalization
of DME pathology.

In [20], a multi-scale CNN model with a new cost function was
proposed for macular edema pathology on OCT. They compared the
efficiency of their CNN model in training time and discrimination
ability with existing CNN architectures and designated the superi-
orities of their CNN model. However, it has no visual evaluation to
ensure which sections were learned by the proposed CNN
architecture.

In [12], a ribcage network for dense layers was suggested by
concatenating the hand-crafted features (Gabor filters and scale-
invariant feature transform) with a convolutional block at the mid-
dle layers. Their proposal was trained on the ZhangLab database
and achieved a significant reduction in training time and higher
retinal disease identification performance than VGG-16, DenseNet,
and Xception architectures on OCT images. However, the popular
architectures initialized with the weights on ImageNet, which is
unrelated knowledge for OCT. Moreover, their proposal includes
a series of time-consuming procedures, including various hand-
crafted techniques for feature integration in the discrimination
network. Moreover, using random crop in the data augmentation
risks feeding the network with non-related pathologies for small
DMEs in the ZhangLab.

In[21], a surrogate feature generation was predicted by applying
an optimized non-orthogonal wavelet filter to OCT images. They
proposed a lightweight CNN model with four convolutional layers.
The proposal reported the profitability of denoising and mask
extraction to identify the retinal diseases using CNN models. How-
ever, a small number of OCT scans were utilized in training. This
case is prone to a low generalization of diversity on unsupervised
datainstead of complex representation. Moreover, visual evaluation
is not possible for the correlation of learned data and pathology.

Lastly, it is essential for the proposal to highlight the evaluation
of datasets concerning the scales and variety of usage. A majority of
the literature trained CNN architectures using a limited number of
OCT scans. However, the small-scale dataset is not suitable for
training deep learning models with high generalization even if
using data augmentation. Although not sufficient, this effect is
minimized by using cross-validation [13,20,9,21,10,16-18]. Held-
out procedure for splitting training and testing sets is used for var-
ious CNN architectures on the large-scale database (ZhangLab)
[14,12,18,8,19]. Whereas the related works commonly focused on
combining the available databases or just one of them, this study
implements separate training on each OCT database for the same
architecture stratifying by databases. Thus, it determines the gen-
eralization impact of the same CNN architecture on OCT scans with
different specifications.

3. Materials and Methods
3.1. Database
OCT images allow checking the condition of the retinal layers

during the clinical examination as a consequence of presenting
the different scans of the macula in volumes. Therefore, different
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scans can be obtained from the patient to assess the presence of
pathology, edema, and degeneration-based ophthalmic disorders.
The size and contrast of the pathology may vary depending on
the contiguity of scans.

The OCT from non-DME subject presents normal foveal struc-
tural features with a subsidence of the foveal pit and extrusion of
plexiform layers in particular. The OCT from the patients with
DME lacks extrusion of plexiform layers, causing retinal detach-
ment and a foveal pit with shallow indent for even various sizes
for different macular severities.

There are different local, private, and open-access clinical data-
bases on OCT images. The most commonly used databases are
Zhanglab [19], Singapore Eye Research Institute (SERI) [22], and
Duke datasets. ZhangLab is a comprehensive database among these
databases by the number of subjects and scope of retinal diseases.
In contrast, SERI and DUKE Datasets have limitations on the num-
ber of OCT images and subjects. In this study, ZhangLab and SERI
datasets were used to analyze how the proposed DL-based macular
edema classification models are effective on various specifications.
ZhangLab dataset consists of 62,489 OCT images (11,349 DME and
51,140 normal) with different resolutions. The SERI dataset was
collected from 32 OCT volumes (16 DME and 16 normal). It has
128 B-scan OCT images for each subject with a resolution of
512x1024 pixels.

Dataset is normally divided into three subsets (training, valida-
tion, and testing) in the training of the DL algorithms. The training
set is utilized for training the model, validation is used for hyper-
parameter optimization to evaluate the training using loss at the
end of each epoch, and testing is used for final evaluation. 10% of
the training set was split as a validation set to prevent the pro-
posed CNN models from overfitting in training.

The datasets were stratified by patients instead of stratifying by
OCT images for validation of proposals. Thus, none of the OCT
images from a patient is used in both training and test set. Test
group of ZhangLab is comprised of 500 images (250 OCT with
DME and 250 normal OCT) as validation set. The rest of the Zhan-
glab database was used in training the proposed models on DME
identification. The SERI dataset is separated using an 8-fold
cross-validation algorithm to avoid overfitting. The test groups
composed using 8-fold cross-validation and reserved discrete folds
provide an appreciation performance measurement on the pro-
posed DL models using independent feature sets for training and
testing.

The proposed DL models were trained with held-out training
and testing sets on ZhangLab to attain a precise performance com-
parison. Due to the limited data, 8-fold cross-validation was car-
ried out on SERL

3.2. Preprocessing

Due to noise in raw OCT images, they may not have the essen-
tial sufficiency for a complete analysis of retinal edema or pathol-
ogy. Therefore, the retinal layers and edema pathology can be
designated using enhancing techniques by surpassing the unclear
edges and eliminating non-ophthalmological background surfaces.
The OCT images have speckle noise with a low signal-to-noise
ratio. The preprocessing steps of the proposal are (1) denoising
the OCT images for noise suppression and retinal edge detail
preservation, (2) flattening for curvature correction on the shape
variety of OCT scans, (3) binarization for detection of uppermost
and lowermost boundary in OCT, (4) cropping at the obtained
boundaries to excluding non-ophthalmologic patterns, and (5)
resizing the image to feed the DL architectures. In the first step,
the BM3D algorithm was applied to the OCT images to reduce noise
[23]. The BM3D algorithm has higher superiority and effectiveness
than conventional filtering methods on OCT images [14-16]. It is



G. Altan

comprised of designating a group of similar patches from non-local
regions in OCT images and extracting 3-D wavelet representation
of patch group, respectively [23].

Sigma parameter of BM3D is the value of the noise in the
matching step to provide noise suppression and edge detail preser-
vation in the OCT. Using higher sigma values resulted in nesting
layers in the retina and sharp edges. Small sigma values had defi-
ciencies in the restoration of retinal details. The BM3D parameters
are 45 and 35 for sigma for the SERI dataset and ZhangLab dataset,
respectively. In this way, the attenuation of noises from OCT
images and more apparent edges were generated to attain the reti-
nal layers. Hence, the morphological details in the retinal layers
and pathologies become more prominent [24,25] The position of
the retina varies depending on the scans in OCT images. Using a
flattening algorithm is necessary to get the retinal layers in propor-
tion to a unified aligning position to minimize morphological vari-
ations. Therefore, the anisotropic diffusion strategy in [11] was
adapted as the second step of preprocessing. Anisotropic diffusion
strategy consists of intra-region smoothing, aligning the individual
retinal edges, and performing curvature correction of retinal [26].
The parameters of the anisotropic diffusion are applied at one iter-
ation using the default conduction coefficient (kappa) value of 50
as a function of gradient and standard deviation of 0.1 for Gaussian
blurring. Each of the OCT images was horizontally cropped using
the positioned retinal layers’ uppermost and lowermost locations
that were detected by binarization of the images using an adaptive
threshold value of 44.The threshold of 44 is a manually determined
average value to have absolute retinal layers after the binarization
of random ten OCT scans with DME and nonDME. In this manner,
the non-ophthalmologic patterns in OCT images were excluded.
At the last step, each OCT image was resized to 224x224 pixels
for introducing a comparable architecture with the popular pre-
trained networks (VGG-16, VGG-19, ResNet, EfficientNet, and
more). 1 depicts the OCT images and preprocessing stage in a
sequel manner for DME and normal.

3.3. Convolutional Neural Networks

The CNN architectures consist of feature learning with sequen-
tially combining a variety of convolutional layers (CONV), pooling
layers, and supervised learning stages with multiple fully-
connected layers (FC) [9,13,20,27,28]. The most prevalent pre-
trained CNN architectures are AlexNet [16-19], VGGNet [10-
13,20], GooglLeNet [14], ResNet [14,17,20], and DenseNet [12]. In
this study, a novel lightweight CNN architecture, DeepOCT, was
proposed to identify macular edema in OCT images. At the feature
learning stage, the proposed models had three CONVs (descending
and ascending order of 32, 64, and 96 feature maps) in which the
size of convolution filters varied at a range of 3 x 3 ~ 13 x 13. Add-
ing noise after each CONV is a popular method in training to
improve the robustness of the CNN models for real-valued inputs,
regularization progress, and detract overfitting. Gaussian noise
(1=0.35,0=0.01) was added to emulate the noise effect to the pre-
processed OCT images for each CONV. The CNN architecture con-
sisted of a max-pooling (2 x 2) layer to identify dominant pixels
of feature maps. Rectified linear unit (ReLU) activation function is
commonly utilized to rule out the negative pixels of convolution
operation after each CONV. At the classification stage, the classifier
was composed of an input layer in which the feature map of the
last CONV is flattened, one-or-two FCs, and an output layer with
a softmax activation layer (DME-non-DME). The neuron variety
at each FC was empirically iterated at a range of 100~600 neurons.
The proposed CNN models were trained using a limited number of
FCs and neurons at each FC.

In consequence of proposing a CNN architecture that includes
not only feature learning but also supervised learning with DNNs,
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the experimental setup performs a brute-force (exhaustive) search
with a variety of convolution filters and dense layer optimization.
The reason for the preference is on the ground of the no free lunch
theorem. In other words, each feature map may have the possibil-
ity of performing high generalized predictions for different dense
layer specifications. Hence, the training assumption is attempting
the different feature activation maps by a variety of CONV layers
to achieve the highest classification performance by learning the
most significant characteristics. The presented achievements
belong to the best model combinations in the experiments. Espe-
cially, sequential convolutional layers on low-level characteristics
at the first steps evolve to reach mid- and high-level features.

The proposals were trained from scratch without any weight
factor optimization on pre-trained architectures. Furthermore,
owing to many classification parameters, including dropout factor,
learning rate, and more in supervised learning, the proposed archi-
tecture used fixed parameters as a dropout factor of 0.5 for each FC,
50 epochs, and a batch size of 50. Adaptive Moment Estimation
(Adam) algorithm with an initial learning rate of 0.001 and epsilon
constant of 1e-07 for numerical stability on stochastic gradient
descent is selected as the optimizer of DL. No early stopping was
utilized in training. The softmax function is set as the output func-
tion and binary cross-entropy loss function is adapted to the pro-
posed DeepOCT. The sigmoid function is chosen as the activation
function of the FCs.

Feature gradient activation map was used to generate a visual-
ization map by the sum of pooling layers to visualize the result of
proposed DeepOCT architecture [29,30]. It enables preserving the
spatial location information of the targets for each corresponding
class in the CNN-based models. The heat map on OCT presents
the degree of significance depending on the CNN architecture to
determine which regions are more responsible for diagnosing
DME. Thus, DeepOCT responds to validating the predictions for
actual pathology regions on the OCT as an explainable model.

The DL analysis on the separation of OCT images with DME and
non-DME concentrated on the same image options, CONV layers
with the same arguments, and a fixed range of classification param-
eters. The supervised stage of the CNN models was performed at a
limited variety of neuron numbers, dense layers, iterations, and
other classification parameters for getting an optimized DL model.

The statistical test characteristics are calculated using the con-
tingency table distribution of the predicted and actual labels to
designate the classification performance of the models in machine
learning. Therefore, overall accuracy, sensitivity, specificity, posi-
tive predictive value, and negative predictive value were consid-
ered in the comparison of the CNN models [31]. BDPV (Inference
and Design for Predictive Values in Diagnostic Tests) package in
R was applied to obtain these characteristics. Moreover, the
DeLong method was used to compare the performances of pro-
posed CNN models at 95% confidence interval (pROC package in
R). It calculates the variance of the area under the curve (AUC)
via the quantile function of the normal distribution [32]. 1 presents
the highest achievements for various CNN models, separately.
Since training CNN models is very time-consuming and requires
advanced hardware (GPU), the classification performances on
DME identification, which were achieved using the common pre-
trained CNN models and fine-tuning, were directly compared with
the literature. The efficiency of the proposed CNN models for var-
ious CONV filters and dense layers has been experimented with
two datasets.

4. Experimental Results

The DeepOCT model was trained on different datasets (Zhan-
glab and SERI) separately. 2 presents the highest classification
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Fig. 1. Preprocessing stage for OCT images with DME (a) and non-DME (b). It includes BM3D filtering to obtain more clear edges among retinal layers, flattening to handle a
standardized positioning of OCT, binarization to get the uppermost and lowermost position of retinal layers, and cropping to exclude non-retinal layers from OCT,

respectively.

Table 1

The classification performances (%) of the proposed CNN architectures on DME identification.

Dataset

Specificity (CI) NPV (CI) PPV (CI)

Model Structure

Accuracy (CI)

Sensitivity (CI)

CONV(12)@96 CONV(5) @64 CONV
(13)a32 FC1(370)

CONV(12)@96 CONV(7) @64 CONV(6)
@32 FC1(240) - FC2(520)

CONV(4) @32 CONV(5) @64 CONV
(13)@96 FC1(230)

CONV(4) @32 CONV(12)@64
(DeepOCT) CONV(13)@96 FC1
(140) - FC2(470)

94.90 (91.22-95.06)
81.20 +£1.26 (80.79-
82.48)
94.80 (94.34-95.04)
91.60+2.41 (86.32-
92.75)
92.40 (91.84-93.11)
93.41+0.87 (91.77-
96.80)
99.20 (98.94-99.96)
99.12:0.26 (97.27-
99.41)

92.60 (89.93-94.11)
90.53+1.42 (89.80-
93.17)

99.60 (99.43-99.81)
93.31+2.69 (88.79-
94.62)

88.60 (87.79-89.21)
94.97+0.79 (92.34-
95.85)

100 (99.64-100)
98.58 +0.21 (98.44-
99.02)

97.20 (96.23-98.56)
71.88+1.03 (71.63-
73.42)
90.00 (88.79-90.35)
89.89+3.10 (88.99-
91.83)
96.20 (94.81-96.79)
91.85+0.86 (91.11-
92.43)
98.40 (95.48-99.12)
99.66--0.34 (98.89-
99.87)

92.93 (89.86-94.33)
88.36:0.94 (88.29-
90.04)

99.56 (98.55-99.68)
93.07+1.72 (91.91-
94.32)

89.41 (88.87-91.21)
94.81+0.52 (94.72-
94.94)

100 (99.87-100)
99.6540.25 (99.51-
99.99)

97.06 (96.13-98.42)
76.30+£0.97 (75.83-
76.93)
90.88 (89.72-91.62)
90.2340.96 (90.01-
91.23)
95.89 (95.13-96.23)
92.09+1.03 (90.79-
93.17)
98.43 (96.75-99.43)
98.60+0.32 (96.59-
99.24)

CI: 95% confidence intervals (Lower-Upper bound), CONV: Convolution layer, FC: Fully connected layer, ***each CONV was followed by max pooling (2 x 2) and RELU.

results for four CNN architectures at the experimented range of
parameters. The proposed method worked very well on both data-
sets from different institutions with a variety of specifications. The
highest classification accuracy rate was achieved via 2 FCs with
140 at the 1°f FC and 470 neurons for 2" FC using three CONVs fea-
ture maps.

The proposed DeepOCT model (see 2) has achieved an AUC
value of 0.9828 for DME identification on OCT images. The most
responsible features are designated using the feature activation
map on the OCT images for DME. Even though existing many reti-
nal layers, the activation map has designated the macular region
for tested OCT images. Preprocessing on the retinal layer has
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Table 2

Comparison of related works on identification of DME using different CNN architectures.
Related Works CNN Architecture Parameters Accuracy Sensitivity Specificity Database
Awais et al. [9] VGG-16 138 M 87.50 93.50 81.00 SERI
Perdomo et al. [10] VGG-16 138 M 93.75 93.75 93.75 SERI
Chan et al. [16] AlexNET + PCA + SVM 60 M 96.07 97.66 94.48 SERI
Chan et al. [17] AlexNET + SVM 60 M 96.88 93.75 100 SERI
This study DeepOCT 79 M 99.12 98.58 99.66 SERI
Kaymak et al. [18] AlexNET 60 M 99.80 100 99.60 ZhangLab
Lietal [11] VGG-16 138 M 98.80 98.80 98.80 ZhangLab
Kermany et al. [19] AlexNet 60 M 98.20 96.80 99.60 ZhangLab
This study DeepOCT 79 M 99.20 100 98.40 ZhangLab

LoO-CV: Leave-one-Out Cross Validation, VGG: Visual Geometry Group, PCA: Principal component analysis, SVM: Support vector machines.

contributed positively to the performance of the CNN models for
feature dimensionality. This finding proves that eliminating non-
retinal regions in medical images has improved the capabilities
of detecting the macular abnormalities on OCT.

In terms of visualization performance of the DeepOCT architec-
ture on DME identification, the most responsible area is at the
foveal pit for the normal OCT images (see 3.a). The most responsi-
ble areas are macular edema areas for not only extensive macular
pathology but also small ones (see 3.b-c). The DeepOCT has a suf-
ficient capability to identify the small macular edemas using the
advantages of feature activation maps and feature learning.

5. Discussion

This study’s main finding is that the lightweight CNN model
also has capabilities to identify the DME on OCT images just as
complicated CNN models, including AlexNET, GoogleNET, VGGNet,
and more. Despite the fact that a CNN often needs a large amount
of data to propose practical applications, the lightweight CNN
models have high enough generalization performance for SERI
datasets and ZhangLab on the classification of the DME and non-
DME. Herein, excluding non-retinal layers from OCT by BM3D, flat-
tening, and cropping provided learning the significant characteris-
tic features of the convolved representations. Raw OCT results in

ophthalmological sections, and indirectly decelerating the training
for even a tiny number of OCT images.

The researchers focused on a variety of preprocessing, feature
extraction, and multiple machine learning algorithms to identify
abnormalities and different pathologies on retinal layers. However,
it could be inadequate to identify DME as similar detachments on
retinal layers may cause similar symptoms of other retinal diseases
on OCT images.

Sidibe et al. intended to prove the capability of the components
of the Gaussian mixture model on DUKE and SERI datasets. Their
method reached the rates of 80% and 93% on DUKE; 100% and
80% on SERI for sensitivity and specificity, respectively [6]. Further-
more, Lemaitre et al. applied multiple machine learning algorithms
to the texture features and reported the efficiency of support vec-
tor machines on SERI with separation performance rates of 93.33%,
86.67%, and 100% for accuracy, sensitivity, and specificity, respec-
tively [7].

In recent years, most of the studies applied the pre-trained CNN
models to identify pathologies and DME on OCT images. Lee et al.
used VGG-16 on the Heidelberg Spectralis database that is com-
prised of 2.6 million OCT images and separated age-related macu-
lar edema from normal with an accuracy rate of 87.63%, a
sensitivity rate of 84.63%, and a specificity rate of 91.54% [8]. Rasti
et al. used wavelet-based CNN on DUKE and likewise the Heidel-
berg Spectralis database. They achieved the rates of 98.67% and
98.22% on Heidelberg; 99.33% and 99.11% on DUKE for precision

the curse of feature dimensionality, learning non- and sensitivity, respectively [13]. Moreover, they proposed a
CONV1(4x4@32)
CONV2(12x12@64)
CONV3 (13x13@96)
FCl1 FC2
| ] | e |
IxIx140 Ix1x470
/
37x37x96
99x99x64
@ convolution (CONV) + ReLU
(—{) max pooling (2x2)
() fully-connected (FC)
221x221x32

Fig. 2. The architecture of the DeepOCT including the convolutional layer (CONV) with kernel specifications, max-pooling layers, fully-connected layers (FC) with neurons,

and the dimensionalities of the feature maps after each CONV.
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(b)

Fig. 3. Visualization of feature activation maps through DeepOCT for normal OCT (a), DME with small macular edema on OCT (b), and DME with extensive macular edema.

The red regions indicate the most responsible feature activation maps for DeepOCT.

multi-scale CNN model and reported a precision rate of 99.39% and
a sensitivity rate of 97.78% on DUKE [20]. Rong et al. proposed a
CNN structure on DUKE using surrogate image generation. They
separated DME from non-DME with classification rates of 95.09%,
96.39%, and 93.60% for accuracy, sensitivity, and specificity [21].
Ji et al. performed DME identification using many ImageNet (Incep-
tion D2, V2, E3) CNN architectures. They reported the highest clas-
sification accuracy rate of 100% using the Inception V3 model [15].
Furthermore, they fine-tuned the same architecture on a local Bei-
jing dataset consisting of 1680 OCT images. They separated three
eye diseases with an accuracy rate of 98.86%, a sensitivity rate of
98.30%, and a specificity rate of 99.15%. Whereas these studies
focused on identifying DME on the DUKE and local datasets, recent
studies commonly analyzed ZhangLab and SERI datasets using effi-
cient pre-trained CNN architectures. Despite using the same data-
bases, a complete comparison is improbable for SERI because none
of the papers shared in which subjects were incorporated into
training or testing folds. However, the most related papers in terms
of database and DL algorithm are compared in 2.

It is possible to improve the identification performance of DME
using lightweight architecture and reduce the computational bur-
den on training. The proposed DeepOCT is a functional architecture
in terms of classifying the OCT with DME and non-DME. Due to the
advanced capabilities of computerized analysis on OCT images,
DeepOCT detects small macular edemas that are hard to identify
even other pathologies on retinal layers during the retinal angiog-
raphy. The clarity of the OCT may be different even for the same
subject depending on the specifications of the medical device, scan
type, pose of the eye, and more. The proposed DeepOCT model
implements a standardized approach by flattening the retinal lay-
ers, excluding non-retinal layers, focusing on the most diagnostic
and deterministic areas for the ophthalmic diseases, and transfer-
ring the low- and high-level features among CONVs. The DeepOCT
architecture achieves high accuracy rates of 99.12% and 99.20% for
DME identification on SERI and ZhangLab datasets. The main ben-
efits of the model are identifying even small macular edema in the
retinal layers, decreasing the dependency of the experts, examin-

ing retinal layers with a standardized method, and proposing an
optimized lightweight CNN model by comparison to popular CNN
architectures.

Although the Al models reach high-enough capabilities for
many fields, it is still a major issue of possessing black-box archi-
tectures with no explanations for the predicted outputs. This case
leads to suspicions on the knowledge of how an Al-based system
reached the decision, what to do for an optimum high generaliza-
tion capability, how to understand prediction straightness and lim-
itations, what the Al model learned, and more. It is a big necessity
to reveal the extensions that are trustable by clinicians instead of
focusing on nothing but output in the medical decision support
system. Even if the prediction is true, the certainty in the visualiza-
tion of learned features and precise detection of pathological pat-
terns in medical images are the most important parameters for
the clinical relevance of the Al systems. By focusing on this issue,
the concept of explainable Al has been introduced as a novel
approach to enhance intelligent algorithms more interpretable
and comprehensible using feature activation maps, visualization
techniques on outputs, and rule-based hybrid learning models.
The correlation between the feature activation maps and disease
symptoms were also assessed by an ophthalmologist. The learned
feature activation maps (red regions in 3) had a high responsibility
for identification of pathological regions for DME and foveal pit for
non-DME in the ophthalmological assessment.

The main benefits of the model are identifying even small mac-
ular edema in the retinal layers, decreasing the dependency of the
experts, examining retinal layers with a standardized method, and
proposing an optimized lightweight CNN model compared to pop-
ular CNN architectures.

6. Conclusion
The main superior qualitative of the proposed model is

estimating DME on OCT images using an optimized pruned CNN
architecture. The DeepOCT has the advantages of DL completely
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as pre-trained CNN (GoogleNet, AlexNet, VGGNet, DenseNet, and
more) in terms of high generalization capability via a simplistic
feature learning and FCs. The DeepOCT reached a high generaliza-
tion for DME identification on SERI dataset with a limited number
of OCT. Besides, it was experienced that using large filters at first
CONV and decreasing the filter size CONV by CONV affected the
performance unlikely. On the contrary, using small filters at
CONV1 and increasing the filter size layer by layer improved the
classification performance for DeepOCT. Therefore, the low-level
features generated in the first CONV are transferred to the subse-
quent CONVs to extract middle- and high-level features.

Flattening and cropping of OCT scans in preprocessing may be
appraised as an estimated data loss that negatively impacts
machine learning algorithms. However, excluding less responsible
non-retinal regions from OCT images has enhanced visualization
capability for macular edema besides providing a standardized
analysis. The learned feature activation maps can be supported
with regression concept vectors [33] to enhance the explainability.

Medical image processing depends on high-capacity devices
due to the complexity of the DL models and needs a high energy
supply to predict the diseases. Moreover, it results in delayed
responses and a longtime analysis. The proposed lightweight DL
model is an energy-efficient model with a low number of classifi-
cation parameters to identify DME on OCT. It provides saving bat-
tery life with low energy consumption, high accurate predictions
using energy-efficient electronics, efficient deployability in mobile
devices, low-cost embedded systems, and IoT devices in medicine.
The main scripts, available feature activation maps on random OCT
scans for visual validation, and the weights of DeepOCT will be
fully available at [34] for training, testing, and easy adaptability
to transfer learning.

The weakest aspect of the DeepOCT is the variety in medical
devices. Each medical device has its specifications, including noise
reduction technologies, lateral resolutions, view of angles, and
more. Therefore, although the DeepOCT has high DME identifica-
tion performances, it still needs to be tested with various OCT
scans from different medical devices before settling as a diagnostic
tool. Nevertheless, due to the ability of the DeepOCT for the iden-
tification of small macular edemas, it has potential clinical rele-
vance for DME to be an alternative decision support tool for
ophthalmologists.
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