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Abstract: The main purpose of this paper is to consider q-sine-based and q-cosine-Based q-Fubini
polynomials and is to investigate diverse properties of these polynomials. Furthermore, multifari-
ous correlations including q-analogues of the Genocchi, Euler and Bernoulli polynomials, and the
q-Stirling numbers of the second kind are derived. Moreover, some approximate zeros of the q-sine-
based and q-cosine-Based q-Fubini polynomials in a complex plane are examined, and lastly, these
zeros are shown using figures.
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1. Introduction

Special polynomials possess an important role in mathematics such as solving nu-
merical problems, determining the composition of certain molecules and compounds,
determining combinatorics relations, describing the trajectory of projectiles, solving differ-
ence equations, approximation theory, cost analysis in economics, determining pressure
in applications of fluid dynamics, and so on, see [1–16]. Recently, many properties and
applications have been studied and investigated by many authors, especially determining
approximate zeros in conjunction with showing them in figures. In this paper, we con-
sider q-sine-based and q-cosine-Based q-Fubini polynomials and then investigate diverse
properties of these polynomials. Furthermore, we provide several correlations with many
earlier q-polynomials. Moreover, we compute the first few q-sine-based and q-cosine-Based
q-Fubini polynomials. Finally, we determine some approximate zeros of the q-sine-based
and q-cosine-Based q-Fubini polynomials in a complex plane, which are shown in figures
and tables.

A brief review of q-calculus taken from (see [4,5,10,11]) is given as follows.
For q, being a complex number with 0 < q < 1, the q-number and q-factorial are

introduced by

[z]q =
1− qz

1− q

and

[0]q! = 1 and [z]q! =
z

∏
u=1

[u]q = [1]q[2]q · · · [z]q for z ∈ N,

respectively.
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The q-extensions of Gauss binomial coefficients are provided by(
z
u

)
q
=

[z]q!
[u]q![z− u]q!

for u = 0, 1, · · · , z.

The q-extensions of the functions (x1 + x2)
z and (x1 − x2)

z are provided by

(x1 ⊕ x2)
z
q =

z

∑
u=0

(
z
u

)
q
qu(u−1)/2xz−u

1 xu
2 for z ∈ N0. (1)

(x1 	 x2)
z
q =

z

∑
u=0

(
z
γ

)
q
qu(u−1)/2xz−u

1 (−x2)
u for z ∈ N0.

The q-analogues of the usual exponential function are provided by

eq(x1) =
∞

∑
z=0

xz
1

[z]q!
0 <| q |< 1; | x1 |<| 1− q |−1 (2)

and

Eq(x1) =
∞

∑
z=0

q(
z
2)

[z]q!
xz

1 0 <| q |< 1; x1 ∈ C, (3)

which satisfies the following relations (see [4,5,10,11])

eq(x1)Eq(−x1) = 1,

eq(x1)Eq(x2) = eq((x1 ⊕ x2)q)

and
eq(x1)Eq(−x2) = eq((x1 	 x2)q).

The q-derivative operator is provided by

Dq f (x3) =
f (qx3)− f (x3)

qx3 − x3
, 0 <| q |< 1,

and Dq f (0) = f ′(0), provided that f is differentiable at x3 = 0.
This satisfy the following rules

Dq,x3

(
f (x3)

g(x3)

)
=

g(qx3)Dq,x3 f (x3)− f (qx3)Dq,x3 g(x3)

g(x3)g(qx3)
(4)

and

Dq,x3( f (x3)g(x3)) = f (x3)Dq,x3 g(x3) + g(qx3)Dq,x3 f (x3). (5)

The q-extensions of the sine and cosine trigonometric functions are provided as follows
(see [7,16])

sinq(x1) =
eq(ix1)− eq(−ix1)

2i
, SINq(x1) =

Eq(ix1)− Eq(−ix1)

2i
,

and

cosq(x1) =
eq(ix1) + eq(−ix1)

2
, COSq(x1) =

Eq(ix1) + Eq(−ix1)

2
,

which fulfill
Eq(ix2) = COSq(x2) + iSINq(x2)

and
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Eq(−ix2) = COSq(x2)− iSINq(x2),

where i =
√
−1 ∈ C.

The q-Apostol Bernoulli polynomials, q-Apostol Euler polynomials and q-Apostol
Genocchi polynomials of order α are introduced by (see [13–15]):(

τ

λeq(τ)− 1

)α

ex1τ =
∞

∑
u=0

B(α)
u,q (x1; λ)

τu

[u]q!
(| τ + log λ |) < 2π, (6)

(
2

λeq(τ) + 1

)α

ex1τ =
∞

∑
u=0

E(α)
u,q (x1; λ)

τu

[u]q!
(| τ + log λ |) < π, (7)

(
2τ

λeq(τ) + 1

)α

ex1τ =
∞

∑
u=0

G(α)
u,q (x1; λ)

τu

[u]q!
(| τ + log λ |< π), (8)

, respectively.
Furthermore, note that

B(α)
u,q (0; λ) := B(α)

u,q (λ),E
(α)
u,q (0; λ) := E(α)

u,q (λ) and G(α)
u,q (0; λ) := G(α)

u,q (λ). (9)

In [7], the bivariate q-Bernoulli and q-Euler polynomials are introduced by

∞

∑
u=0

B(C)
u,q (x1, x2)

τu

[u]q!
=

∞

∑
u=0

Bu,q((x1 ⊕ ix2)q) +Bu((x1 	 ix2)q)

2
τu

[u]q!
=

τeq(x1τ)COSq(x2τ

eq(τ)− 1
), (10)

∞

∑
u=0

B(S)
u,q (x1, x2)

τu

[u]q!
=

∞

∑
u=0

Bu,q((x1 ⊕ ix2)q)−Bu,q((x1 	 ix2)q)

2i
τu

[u]q!
=

τeq(x1τ)SINq(x2τ)

eq(τ)− 1
, (11)

and

∞

∑
u=0

E(C)
u,q (x1, x2)

τu

[u]q!
=

∞

∑
u=0

Eu,q((x1 ⊕ ix2)q) +Eu,q((x1 	 ix2)q)

2
τu

[u]q!
=

2eq(x1τ)COSq(x2τ)

eq(τ) + 1
, (12)

∞

∑
u=0

E(S)
u,q (x1, x2)

τu

[u]q!
=

∞

∑
u=0

Eu((x1 ⊕ ix2)q)−Eu((x1 	 ix2))q

2i
τu

[u]q!
=

2eq(x1τ)SINq(x2τ)

eq(τ) + 1
, (13)

respectively.
The q-cosine polynomials and q-sine polynomials are introduced (see [7,16]) by

eq(x1τ)COSq(x2τ) =
∞

∑
u=0

Cu,q(x1, x2)
τu

[u]q!
(14)

and

eq(x1τ)SINq(x2τ) =
∞

∑
u=0

Su,q(x1, x2)
τu

[u]q!
, (15)

which give the following expansions

Cu,q(x1, x2) =
[ u

2 ]

∑
j=0

(−1)j
(

u
2j

)
q
(−1)jq2j−1xu−2j

1 x2j
2 (16)

and

Su,q(x1, x2) =
[ u−1

2 ]

∑
j=0

(
u
2j + 1

)
q
(−1)jq(2j+1)jxu−2j−1

1 x2j+1
2 . (17)
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The q-Stirling numbers of the second kind are defined by (cf. [9])

∞

∑
u=0

Sq
2(u, m)

τu

u!
=

(eq(τ)− 1)m

m!
for m ∈= {0, 1, 2, · · · , }. (18)

Taking q = 1, Equation (18) reduces to the familiar Stirling numbers of the second kind
as follows

∞

∑
u=m

S2(u, m)
τu

u!
=

(eq(τ)− 1)m

m!
.

The q-Stirling polynomials of the second kind are introduced by (see [3])

∞

∑
u=0

Sq
2(u, m : x1)

τu

u!
=

(eq(τ)− 1)m

m!
eq(x1τ). (19)

The bivariate q-Fubini polynomials are introduced by (see [8])

∞

∑
u=0

Fu,q(x1; x2)
τu

[u]q!
=

1
1− x2(eq(τ)− 1)

eq(x1τ). (20)

When x1 = 0, Fu,q(0; x2) := Fu,q(x2) are called the q-Fubini polynomials and
Fu,q(0; 1) := Fu,q are called the q-Fubini numbers.

2. The q-Sine-Based and q-Cosine-Based q-Fubini Polynomials

Here, we examine some identities of the q-sine and q-cosine Fubini polynomials arising
from the following exponential generating function:

∞

∑
n=0

Fn,q
(
(x1 ⊕ ix2)q

) τn

[n]q!
=

eq(x1τ)Eq(iτx2)

1− x3(eq(τ)− 1)
. (21)

We observe that

Eq(iτx2)eq(x1τ) = (COSq(x2τ) + iSINq(x2τ))eq(x1τ). (22)

Thus, by (21) and (22), it is derived that

∞

∑
n=0

Fn,q
(
(x1 ⊕ iy)q

) τn

[n]q!
=

(COSq(x2x3) + iSINq(x2x3))eq(x1τ)

1− x3(eq(τ)− 1)
, (23)

and
∞

∑
n=0

Fn,q
(
(x1 	 ix2)q

) τn

[n]q!
=

(COSq(x2τ)− iSINq(x2τ))eq(x1τ)

1− x3(eq(τ)− 1)
. (24)

From (23) and (24), we obtain

COSq(x2τ)eq(x1τ)

1− x3(eq(τ)− 1)
=

∞

∑
n=0

(
Fn,q

(
(x1 ⊕ ix2)q

)
+ Fn,q(x1 	 ix2)q

) τn

2[n]q!
, (25)

and
SINq(x2τ)eq(x1τ)

1− x3(eq(τ)− 1)
=

∞

∑
n=0

(
Fn,q

(
(x1 ⊕ ix2)q

)
− Fn,q(x1 	 ix2)q

) τn

2[n]q!
. (26)

The bivariate q-cosine and q-sine Fubini polynomials are considered by the following
generating functions, respectively:

∞

∑
n=0

F(C)
n,q (x1, x2; x3)

τn

[n]q!
=

COSq(x2τ)eq(x1τ)

1− x3(eq(τ)− 1)
, (27)
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and
∞

∑
n=0

F(S)
n,q (x1, x2; x3)

τn

[n]q!
=

SINq(x2τ)eq(x1τ)

1− x3(eq(τ)− 1)
, (28)

Note that F(C)
n,q (0, 0; x3) := Fn,q and F(S)

n,q (n, 0, 0; x3) = 0 (n ≥ 0).
From (25)–(28), we have

F(C)
n,q (x1, x2; x3) =

1
2
(Fn,q

(
(x1 ⊕ ix2)q; x3

)
+ Fn,q

(
(x1 	 ix2)q; x3

)
), (29)

F(S)
n,q (x1, x2; x3) =

1
2i
(Fn,q

(
(x1 ⊕ ix2)q; x3

)
− Fn,q

(
(x1 	 ix2)q; x3

)
). (30)

Remark 1. Inserting x1 = 0 in (27) and (28) gives the q-cosine Fubini polynomials and q-sine
Fubini polynomials as follows, respectively:

∞

∑
n=0

F(C)
n,q (x2; x3)

τn

[n]q!
=

COSq(x2τ)

1− x3(eq(τ)− 1)
(31)

and
∞

∑
n=0

F(S)
n,q (x2; x3)

τn

[n]q!
=

SINq(x2τ)

1− x3(eq(τ)− 1)
, (32)

We note that

F(C)
n,q (0; x3) := Fn,q(x3), and F(S)

n,q (0; x3) := 0 (n ≥ 0).

Remark 2. Letting q→ 1 gives the usual cosine-Fubini polynomials and sine-Fubini polynomials
as follows, respectively:

∞

∑
n=0

F(C)
n (x1, x2; x3)

τn

n!
=

ex1τcos(x2τ)

1− x3(eτ − 1)
,

and
∞

∑
n=0

F(S)
n (x1, x2; x3)

τn

n!
=

ex1τsin(x2τ)

1− x3(eτ − 1)

Here, we analyze some relations and formulas for the bivariate q-cosine and q-sine Fubini
polynomials.

Theorem 1. For n ≥ 0, we have

F(C)
n,q (x2; x3) =

[ n
2 ]

∑
v=0

(
n + v
2v

)
q
(−1)vq(2v−1)vx2v

2 Fn−2v,q(x3), (33)

and

F(S)
n,q (x2; x3) =

[ n−1
2 ]

∑
v=0

(
n + v
2v + 1

)
q
(−1)vq(2v+1)vx2v+1

2 Fn−2v−1,q(x3). (34)

Proof. In terms of (31) and (32), it is readily seen that

∞

∑
n=0

F(C)
n,q (x2; x3)

τn

[n]q!
=

1
1− x3(eq(τ)− 1)

COSq(x2τ)

=
∞

∑
n=0

Fn,q(x3)
τn

[n]q!

∞

∑
v=0

(−1)vq(2v−1)vη2v τv

[2v]q!
.
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=
∞

∑
n=0

 [ n
2 ]

∑
v=0

(
n + v
2v

)
q
(−1)vq(2v−1)vη2vFn−2v,q(x3)

 τn

[n]q!
, (35)

and
∞

∑
n=0

F(S)
n,q (x2; x3)

τn

[n]q!
=

1
1− x3(eτ − 1)

SINq(x2τ)

=
∞

∑
n=0

[ n−1
2 ]

∑
v=0

(
n
2v + 1

)
q
(−1)vq(2v+1)vx2v+1

2 Fn−2v−1,q(x3)

 τn

[n]q!
. (36)

Therefore, (35) and (36) mean the asserted results (33) and (34).

Theorem 2. For n ≥ 0, we have

Fn,q
(
(x1 ⊕ ix2)q; x3

)
=

n

∑
k=0

(
n
k

)
q
(x1 ⊕ ix2)

k
qFn−k,q(x3)

=
n

∑
k=0

(
n
k

)
q
(ix2)

kFn−k,q(x1; x3), (37)

and

Fn,q
(
(x1 	 ix2)q; x3

)
=

n

∑
k=0

(
n
k

)
q
(x1 	 ix2)

k
qFn−k,q(x3)

=
n

∑
k=0

(
n
k

)
q
(−1)k(ix2)

kFn,q(x1; x3). (38)

Proof. In terms of (23) and (24), the claimed result (37) and (38) can be readily derived by
utilizing the Cauchy product, so we omit the proof.

Theorem 3. For n ≥ 0, the following relations hold:

F(C)
n,q (x1, x2; x3) =

n

∑
k=0

(
n
k

)
q
Fk,q(x3)Cn−k,q(x1, x2), (39)

and

F(S)
n,q (x1, x2; x3) =

n

∑
k=0

(
n
k

)
q
Fk,q(x3)Sn−k,q(x1, x2). (40)

Proof. In terms of (27) and (28), we observe that

∞

∑
n=0

F(C)
n,q (x1, x2; x3)

τn

[n]q!
=

eq(x1τ)COSq(x2τ)

1− x3(eq(τ)− 1)

=

(
∞

∑
k=0

Fk,q(x3)
τk

[k]q!

)(
∞

∑
n=0

Cn,q(x1, x2)
τn

[n]q!

)

=
∞

∑
n=0

(
n

∑
k=0

(
n
k

)
q
Fk,q(x3)Cn−k,q(x1, x2)

)
τn

[n]q!
,

which means the claimed result (39). The other proof can be performed similarly.

Theorem 4. For n ≥ 0, we have the following relations:

F(C)
n,q (x1 + r, x2; x3) =

n

∑
k=0

(
n
k

)
q
F(C)

k,q (x1, x2; x3)rn−k, (41)
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and

F(S)
n,q (x1 + r, x2; x3) =

n

∑
k=0

(
n
k

)
q
F(S)

k,q (x1, x2; x3)rn−k. (42)

Proof. Replacing x1 by x1 + r in (27), then, we obtain

∞

∑
n=0

F(C)
n,q (x1 + r, x2; x3)

τn

[n]q!
=

1
1− x3(eq(τ)− 1)

eq(x1τ)COSq(x2τ)erτ

=

(
∞

∑
n=0

F(C)
n,q (x1, x2; x3)

τn

[n]q!

)(
∞

∑
k=0

rk τk

[k]q!

)

=
∞

∑
n=0

(
n

∑
k=0

(
n
k

)
q
F(C)

k,q (x1, x2; x3)rn−k

)
τn

[n]q!
,

which gives the claimed result (41). The other can be performed similarly to that of (41).

Theorem 5. For n ≥ 1, the following relations hold:

∂

∂x1
F(C)

n,q (x1, x2; x3) = [n]qF(C)
n−1,q(x1, x2; x3), (43)

∂

∂x2
F(C)

n,q (x1, x2; x3) = −[n]qF
(S)
n−1,q(x1, qx2; x3),

and
∂

∂x1
F(S)

n,q (x1, x2; x3) = [n]qF(S)
n−1,q(x1, x2; x3),

∂

∂x2
F(S)

n,q (x1, x2; x3) = [n]qF(C)
n−1,q(x1, qx2; x3).

Proof. In view of (27), it is observed that

∞

∑
n=1

∂

∂x1
F(C)

n,q (x1, x2; x3)
τn

[n]q!
=

1
1− x3(eq(τ)− 1)

∂

∂x1
eq(x1τ)COSq(x2τ) =

∞

∑
n=0

F(C)
n,q (x1, x2; x3)

τn+1

[n]q!

=
∞

∑
n=1

F(C)
n−1,q(x1, x2; x3)

τn

[(n− 1)]q!
=

∞

∑
n=1

[n]qF(C)
n−1,q(x1, x2; x3)

τn

[n]q!
,

which means the asserted result (43). The others can be performed similarly to that of
(43).

Theorem 6. For n ≥ 0, the following formulas hold

Cn,q(x1, x2) = F(C)
n,q (x1, x2; x3)− x3F

(C)
n,q (x1 + 1, x2; x3) + x3F

(C)
n,q (x1, x2; x3). (44)

Sn,q(x1, x2) = F(S)
n,q (x1, x2; x3)− x3F

(S)
n,q (x1 + 1, x2; x3) + x3F

(S)
n,q (x1, x2; x3). (45)

Proof. In terms of (2.1), it is seen that

eq(x1τ)COSq(x2τ) =
1− x3(eq(τ)− 1)
1− x3(eq(τ)− 1)

eq(x1τ)COSq(x2τ)

=
eq(x1τ)COSq(x2τ)

1− x3(eq(τ)− 1)
−

x3(eq(τ)− 1)
1− x3(eq(τ)− 1)

eq(x1τ)COSq(x2τ),
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which yield the following equality

∞

∑
n=0

Cn,q(x1, x2)
τn

[n]q!
=

∞

∑
n=0

[
F(C)

n,q (x1, x2; x3)− x3F
(C)
n,q (x1 + 1, x2; x3) + x3F

(C)
n,q (x1, x2; x3)

] τn

[n]q!
,

which mean the asserted result (44). The proof of (45) can be derived similarly to that
of (44).

Theorem 7. For n ≥ 0, the following formulas hold

x3F
(C)
n,q (x1 + 1, x2; x3) = (1 + x3)F

(C)
n,q (x1, x2; x3)−Cn,q(x1, x2), (46)

x3F
(S)
n,q (x1 + 1, x2; x3) = (1 + x3)F

(S)
n,q (x1, x2; x3)− Sn,q(x1, x2).

Proof. By means of Theorem 1, it is observed that

∞

∑
n=0

[
F(C)

n,q (x1 + 1, x2; x3)− F(C)
n,q (x1, x2; x3)

] τn

[n]q!

=
eq(x1τ)COSq(x2τ)

1− x3(eq(τ)− 1)
(eq(τ)− 1)

=
1
x3

[
eq(x1τ)COSq(x2τ)

1− x3(eq(τ)− 1)
− eq(x1τ)COSq(x2τ)

]

=
1
x3

∞

∑
n=0

[
F(C)

n,q (x1, x2; x3)−Cn,q(x1, x2)
] τn

[n]q!
,

which means the asserted result (46). The other proof can be performed similarly.

Theorem 8. Let z1 6= z2 and n ≥ 0; we have

n

∑
k=0

(
n
k

)
q
F(C)

n−k,q(x1, y1; z1)F
(C)
k,q (x2, y2; z2)

=
z2F

(C)
n,q (x1 + x2, y1 + y2; z2)− z1F

(C)
n,q (x1 + x2, y1 + y2; z1)

z2 − z1
, (47)

and
n

∑
k=0

(
n
k

)
q
F(S)

n−k,q(x1, y1; z1)F
(S)
k,q (x2, y2; z2)

=
z2F

(S)
n,q (x1 + x2, y1 + y2; z2)− z1F

(S)
n,q (x1 + x2, y1 + y2; z1)

z2 − z1
. (48)

Proof. By means of Theorem 1, it is readily seen that

∞

∑
n=0

∞

∑
k=0

F(C)
n,q (x1, y1; z1)F

(C)
k,q (x2, y2; z2)

τn

[n]q!
τk

[k]q!

=
eq(x1τ)COSq(y1τ)

1− z1(eq(τ)− 1)
eq(x2τ)COSq(y2τ)

1− z2(eq(τ)− 1)

∞

∑
n=0

(
n

∑
k=0

(
n
k

)
q
F(C)

n−k,q(x1, y1; z1)F
(C)
k,q (x2, y2; z2)

)
τn

[n]q!
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=
z2

z2 − z1

eq[(x1 + x2)τ]COSq[(y1 + y2)τ]

1− z1(eq(τ)− 1)
− z1

z2 − z1

eq[(x1 + x2)τ]COSq[(y1 + y2)τ]

1− z2(eq(τ)− 1)

=
∞

∑
n=0

 z2F
(C)
n,q (x1 + x2, y1 + y2; z2)− z1F

(C)
n,q (x1 + x2, y1 + y2; z1)

z2 − z1

 τn

[n]q!
,

which means the claimed result (47). The proof of (48) can be performed similarly.

Theorem 9. For n ≥ 0, we have

x3

n

∑
k=0

(
n
k

)
q
F(C)

n−k,q(x1, x2; x3) + (x1 + x2)
n
q = (1 + x3)F

(C)
n,q (x1, x2; x3). (50)

and

x3

n

∑
k=0

(
n
k

)
q
F(S)

n−k,q(x1, x2; x3) + (x1 + x2)
n
q = (1 + x3)F

(S)
n,q (x1, x2; x3). (51)

Proof. By using the following equality,

1 + x3

(1− x3(eq(τ)− 1))x3eq(τ)
=

1
1− x3(eq(τ)− 1)

+
1

x3eq(τ)
,

it is observed that

(1 + x3)eq(x1τ)COSq(x2τ)

(1− x3(eq(τ)− 1))x3eq(τ)
=

eq(x1τ)COSq(x2τ)

1− x3(eq(τ)− 1)
+

eq(x1τ)COSq(x2τ)

x3eq(τ)

(1 + x3)
∞

∑
n=0

F(C)
n,q (x1, x2; x3)

τn

[n]q!

= x3

∞

∑
n=0

F(C)
n,q (x1, x2; x3)

τn

[n]q!

∞

∑
k=0

τk

[k]q!
−

∞

∑
n=0

(x1 + x2)
n
q

τn

[n]q!
,

which gives the asserted result (50). The proof of (51) can be completed similarly.

3. Connected Formulas

Here, we investigate many relationships for the bivariate q-sine and q-cosine Fubini
polynomials associated with q-Euler polynomials, q-Euler polynomials and q-Bernoulli
polynomials and q-Stirling numbers of the second kind.

Theorem 10. The following relationships hold for n ≥ 0:

F(C)
n,q (x1, x2; x3)

=
n+1

∑
s=0

(
n + 1
s

)
q

[
s

∑
k=0

(
s
k

)
q
Bs−k,q(x1)p(

k
2) −Bs,q(x1)

]
F(C)

n+1−s,q(0, x2; x3)

[n + 1]q
,

(52)

and

F(S)
n,q (x1, x2; x3)

=
n+1

∑
s=0

(
n + 1
s

)
q

[
s

∑
k=0

(
s
k

)
q
Bs−k,q(x1)p(

k
2) −Bs,q(x1)

]
F(S)

n+1−s,q(0, x2; x3)

[n + 1]q
.

(53)
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Proof. By using (6) and (27), we have(
1

1− x3(eq(τ)− 1)

)
eq(x1τ)COSq(x2τ)

=

(
1

1− x3(eq(τ)− 1)

)
τ

eq(τ)− 1
eq(τ)− 1

τ
eq(x1τ)COSq(x2τ)

=
1
τ

∞

∑
n=0

(
s

∑
k=0

(
s
k

)
q
ßτBs−k,q(x1)p(

k
2)

)
τs

[s]q!

∞

∑
n=0

F(C)
n,q (0, x2; x3)

øn

[n]q!

− 1
τ

∞

∑
s=0

Bs,q(x1)
øs

[s]q!

∞

∑
n=0

F(C)
n,q (0, x2; x3)

øn

[n]q!

=
1
τ

∞

∑
n=0

[
n

∑
s=0

(
n
s

)
q

s

∑
k=0

(
s
k

)
q
Bs−k,q(x1)p(

k
2)

]
F(C)

n−s,q(0, x2; x3)
øn

[n]q!

− 1
τ

∞

∑
n=0

[
n

∑
s=0

(
n
s

)
q
Bs,q(x1)

]
F(C)

n−s,q(0, x2; x3)
øn

[n]q!
,

which means the asserted result (52). The proof of (53) can be carried out similarly.

Theorem 11. The following relationships hold for n ≥ 0:

F(C)
n,q (x1, x2; x3)

=
n

∑
s=0

(
n
s

)
q

[
s

∑
k=0

(
s
k

)
q
Es−k,q(x1)p(

k
2) +Es,q(x1)

]
F(C)

n−s,q(0, x2; x3)

[2]q
,

(54)

and
FS

n,q(x1, x2; x3)

=
n

∑
s=0

(
n
s

)
q

[
s

∑
k=0

(
s
k

)
q
Es−k,q(x1)p(

k
2) +Es,q(x1)

]
F(S)

n−s,q(0, x2; x3)

[2]q
,

(55)

Proof. By using definitions (7) and (27), we obtain(
1

1− x3(eq(τ)− 1)

)
eq(x1τ)COSq(x2τ)

=

(
1

1− x3(eq(τ)− 1)

)
[2]q

eq(τ) + 1
eq(τ) + 1

[2]q
eq(x1τ)COSq(x2τ)

=
1
[2]q

[
∞

∑
n=0

(
n

∑
k=0

(
n
k

)
q
En−k,q(x1)p(

k
2)

)
τn

[n]q!
+

∞

∑
n=0

En,q(x1)
τn

[n]q!

]

×
∞

∑
n=0

F(C)
n,q (0, x2; x3)

øn

[n]q!

=
1
[2]q

∞

∑
n=0

[
n

∑
s=0

(
n
s

)
q

s

∑
k=0

(
s
k

)
q
Es−k,q(x1)p(

k
2) +

n

∑
s=0

(
n
s

)
q
Es,q(x1)

]

×F(C)
n−s,q(0, x2; x3)

øn

[n]q!
,

which provides the asserted result (54). The proof of (55) can be performed similarly.
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Theorem 12. The following relationships hold for n ≥ 0:

F(C)
n,q (x1, x2; x3)

=
n

∑
s=0

(
n + 1
s

)
q

[
s

∑
k=0

(
s
k

)
q
Gs−k,q(x1)p(

k
2) +Gs,q(x1)

]
F(C)

n+1−s,q(0, x2; x3)

[2]q[n + 1]q
,

(56)

and

F(S)
n,q (x1, x2; x3)

=
n

∑
s=0

(
n + 1
s

)
q

[
s

∑
k=0

(
s
k

)
q
Gs−k,q(x1)p(

k
2) +Gs,q(x1)

]
F(S)

n+1−s,q(0, x2; x3)

[2]q[n + 1]q
,

(57)

Proof. By utilizing (8) and (27), we obtain(
1

1− x3(eq(τ)− 1)

)
eq(x1τ)COSq(x2τ)

=

(
1

1− x3(eq(τ)− 1)

)
eq(x1τ)COSq(x2τ)

[2]qτ

eq(τ) + 1
eq(τ) + 1
[2]qτ

eq(x1τ)COSq(x2τ)

=
1

[2]qτ

[
∞

∑
n=0

(
n

∑
k=0

(
n
k

)
q
Gn−k,q(x1)p(

k
2)

)
τn

[n]q!
+

∞

∑
n=0

Gn,q(x1)
øn

[n]q!

]

×
∞

∑
n=0

F(C)
n,q (0, x2; x3)

øn

[n]q!

=
1
[2]q

∞

∑
n=0

[
n

∑
s=0

(
n
s

)
q

s

∑
k=0

(
s
k

)
q
Gs−k,q(x1)p(

n
2) +

n

∑
s=0

(
n
s

)
q
Gs,q(x1)

]

×F(C)
n+1−s,q(0.x2; x3)

øn

[n + 1]q!
.

which proves the claimed result (56). The proof of (57) can be completed similarly.

Theorem 13. The following relationships hold for n ≥ 0:

F(C)
n,q (x1, x2; x3) =

n

∑
l=0

(
n
l

)
q
Cn−l,q(x1, x2)

l

∑
k=0

xk
3k!Sq

2(l, k), (58)

and

F(S)
n,q (x1, x2; x3) =

n

∑
l=0

(
n
l

)
q
Sn−l,q(x1, x2)

l

∑
k=0

xk
3k!Sq

2(l, k). (59)

Proof. It is seen from (27) that

∞

∑
n=0

F(C)
n,q (x1, x2; x3)

τn

[n]q!
=

1
1− x3(eq(τ)− 1)

eq(x1τ)COSq(x2τ)

= eq(x1τ)COSq(x2τ)
∞

∑
k=0

xk
3(eq(τ)− 1)k

= eq(x1τ)COSq(x2τ)
∞

∑
k=0

xk
3

∞

∑
l=k

k!Sq
2(l, k)

τl

[l]q!
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=
∞

∑
n=0

Cn,q(x1, x2)
τn

[n]q!

∞

∑
l=0

xk
3

l

∑
k=0

k!Sq
2(l, k)

τl

[l]q!
.

Changing n by n− l, the above equation becomes the following relation

∞

∑
n=0

F(C)
n,q (x1, x2; x3)

τn

[n]q!

=
∞

∑
n=0

(
n

∑
l=0

(
n
l

)
q
Cn−l,q(x1, x2)

l

∑
k=0

xk
3k!Sq

2(l, k)

)
τn

[n]q!
,

which implies the asserted result (58). The proof of (59) can be completed similarly.

Theorem 14. The following relationships hold for n ≥ 0:

F(C)
n,q (x1 + r, x2; x3) =

n

∑
l=0

(
n
l

)
q
Cn−l,q(x1, x2)

l

∑
k=0

xk
3k!Sq

2(l, k : r), (60)

and

F(S)
n,q (x1 + r, x2; x3 : q) =

n

∑
l=0

(
n
l

)
q
Sn−l,q(x1, x2)

l

∑
k=0

xk
3k!Sq

2(l, k : r). (61)

Proof. It is observed from (27) that

∞

∑
n=0

F(C)
n,q (x1 + r, x2; x3)

τn

[n]q!
=

1
1− x3(eq(τ)− 1)

eq((x1 + r)τ)COSq(x2τ)

= eq(x1τ)COSq(x2τ)eq(rτ)
∞

∑
k=0

xk
3(eq(τ)− 1)k

= eq(x1τ)COSq(x2τ)
∞

∑
k=0

xk
3

∞

∑
l=k

k!Sq
2(l, k : r)

τl

[l]q!

=
∞

∑
n=0

Cn,q(x1, x2)
τn

[n]q!

∞

∑
l=0

xk
3

l

∑
k=0

k!Sq
2(l, k : r)

τl

[l]q!
,

which implies that
∞

∑
n=0

F(C)
n,q (x1 + r, x2; x3)

τn

[n]q!

=
∞

∑
n=0

(
n

∑
l=0

(
n
l

)
q
Cn−l,q(x1, x2)

l

∑
k=0

xk
3k!Sq

2(l, k : r)

)
τn

[n]q!
,

which means the claimed result (60). The proof of (61) can be completed similarly.

4. Some Applications for Bivariate q-Cosine Fubini Polynomials

Here, we analyze some properties of the q-cosine Fubini polynomials. We now provide
the lists of the first few q-cosine Fubini polynomials as follows:
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F(C)
0,q (x1, x2; x3) = 1,

F(C)
1,q (x1, x2; x3) = x1 + x3,

F(C)
2,q (x1, x2; x3) = x2

1 − qx2
2 + x3 + x1x3[2]q! + x2

3[2]q!,

F(C)
3,q (x1, x2; x3) = x3

1 + x3 + x1x2
3[3]q! + x3

3[3]q!−
qx1x2

2[3]q!
[2]q!

+
x1x3[3]q!
[2]q!

,

+
x2

1x3[3]q!
[2]q!

−
qx2

2x3[3]q!
[2]q!

+
2x2

3[3]q!
[2]q!

,

F(C)
4,q (x1, x2; x3) = x4

1 + q6x4
2 + x3 + x1x3

3[4]q! + x4
3[4]q!−

qx2
1x2

2[4]q!
([2]q!)2 +

x2
1x3[4]q!
([2]q!)2 −

qx2
2x3[4]q!
([2]q!)2

+
x2

3[4]q!
([2]q!)2 −

qx1x2
2x3[4]q!
[2]q!

+
2x1x2

3[4]q!
[2]q!

+
x2

1x2
3[4]q!

[2]q!
−

qx2
2x2

3[4]q!
[2]q!

+
3x3

3[4]q!
[2]q!

+
x1x3[4]q!
[3]q!

+
x3

1x3[4]q!
[3]q!

+
2x2

3[4]q!
[3]q!

,

F(C)
5,q (x1, x2; x3) = x5

1 + x3 + x1x4
3[5]q! + x5

3[5]q!−
qx1x2

2x3[5]q!
([2]q!)2 −

qx2
1x2

2x3[5]q!
([2]q!)2 +

x1x2
3[5]q!

([2]q!)2

+
2x2

1x2
3[5]q!

([2]q!)2 −
2qx2

2x2
3[5]q!

([2]q!)2 +
3x3

3[5]q!
([2]q!)2 −

qx1x2
2x2

3[5]q!
[2]q!

+
3x1x3

3[5]q!
[2]q!

+
x2

1x3
3[5]q!

[2]q!
−

qx2
2x3

3[5]q!
[2]q!

+
4x4

3[5]q!
[2]q!

+
2x1x2

3[5]q!
[3]q!

+
x3

1x2
3[5]q!

[3]q!
+

3x3
3[5]q!
[3]q!

−
qx3

1x2
2[5]q!

[2]q![3]q!
+

x2
1x3[5]q!
[2]q![3]q!

+
x3

1x3[5]q!
[2]q![3]q!

−
qx2

2x3[5]q!
[2]q![3]q!

+
2x2

3[5]q!
[2]q![3]q!

+
q6x1x4

2[5]q!
[4]q!

+
x1x3[5]q!
[4]q!

+
(x4

1x3[5]q!
[4]q!

+
q6x4

2x3[5]q!
[4]q!

+
2x2

3[5]q!
[4]q!

.

By choosing n = 30, the zeros of the aforementioned polynomials are represented by
the following Figures.

In Figure 1 (top-left), we choose (x2, x3, q) = (2, 3, 1
10 )
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Figure 1. Zeros of F(C)
n,q (x1, x2; x3) = 0.
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In Figure 1 (top-right), we choose (x2, x3, q) = (2, 3, 3
10 )

In Figure1 (bottom-left), we choose (x2, x3, q) = (2, 3, 7
10 )

In Figure 1 (bottom-right), we choose (x2, x3, q) = (2, 3, 9
10 ).

By choosing n = 30, the stacks of zeros of the aforementioned polynomials are
represented by the following Figures, which form a 3D structure (Figure 2):

Figure 2. Zeros of F(C)
n,q (x1, 2; 3) = 0.

In Figure 2 (top-left), we plot stacks of zeros of F(C)
n, 9

10
(x1, 2; 3) = 0.

In Figure 2 (top-right), the zeros are shown by x and y axes but no z axis in 3D.
In Figure 2 (bottom-left), the zeros are shown by y and z axes but no x axis in 3D.
In Figure 2 (bottom-right), the zeros are shown by x and z axes but no y axis in 3D.
By choosing n = 30, the zeros of the aforementioned polynomials are represented by

the following Figures.
In Figure 3 (top-left), we choose (x2, x3, q) = (2, 3, 1

10 )

Figure 3. Zeros of F(C)
n,q (x1, x2; x3) = 0.
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In Figure 3 (top-right), we choose (x2, x3, q) = (2, 3, 3
10 )

In Figure 3, (bottom-left), we choose (x2, x3, q) = (2, 3, 7
10 )

In Figure 3, (bottom-right), we choose (x2, x3, q) = (2, 3, 9
10 ).

Approximate solutions that hold the q-cosine Fubini polynomials F(C)
n, 9

10
(x1, 2; 3) = 0

are provided by Table 1.

Table 1. Numerical solutions of F(C)
n, 9

10
(x1, 2; 3) = 0.

Degree n x1

1 −3.0000
2 −2.8500 −2.8944 i, −2.8500 + 2.8944 i
3 −5.3928, −1.3686 − 5.2991i, −1.3686 + 5.2991 i
4 −5.5540 − 2.4948 i, −5.5540 + 2.4948 i ,

0.3955 − 7.2453 i, 0.3955 + 7.2453 i
5 −7.3029, −4.7486 − 4.9065i, −4.7486 + 4.9065 i,

2.2574 − 8.7792 i, 2.2574 + 8.7792 i
6 −7.5564 − 2.3290 i, −7.5564 + 2.3290 i, −3.6043 −7.0651 i ,

−3.6043 + 7.0651 i, 4.1323 − 9.9831 i, 4.1323 + 9.9831 i
7 −8.9349, −7.0653 − 4.6682 i, −7.0653 + 4.6682 i, −2.2656 − 8.9090 i,

−2.2656 + 8.9090 i, 5.9728 − 10.9218 i, 5.9728 + 10.9218 i
8 −9.2292 − 2.2401 i, −9.2292 + 2.2401 i, -6.2532 − 6.8519 i,

−6.2532 + 6.8519 i, −0.8124 - 10.4654 i, −0.8124 + 10.4654 i,
7.7519 − 11.6451 i, 7.7519 + 11.6451 i

9 −10.372, −8.9243 − 4.5002 i, −8.9243 + 4.5002 i,
−5.2321 − 8.7953 i, −5.2321 + 8.7953 i, 0.6992 − 11.7703 i,

0.6992 + 11.7703 i, 9.454 − 12.192 i, 9.454 + 12.192 i

5. Some Applications for Bivariate q-Sine Fubini Polynomials

Here, we analyze some properties of the q-sine Fubini polynomials. We now provide
the lists of the first few q-sine Fubini polynomials as follows:

F(S)
0,q (x1, x2; x3) = 0,

F(S)
1,q (x1, x2; x3) = x2,

F(S)
2,q (x1, x2; x3) = x1x2[2]q! + x2x3[2]q!,

F(S)
3,q (x1, x2; x3) = −q3x3

2 + x1x2x3[3]q! + x2x2
3[3]q! +

x2
1x2[3]q!
[2]q!

+
x2x3[3]q!
[2]q!

,

F(S)
4,q (x1, x2; x3) = x1x2x2

3[4]q! + x2x3
3[4]q! +

x1x2x3[4]q!
[2]q!

+
x2

1x2x3[4]q!
[2]q!

+
2x2x2

3[4]q!
[2]q!

+
x3

1x2[4]q!
[3]q!

−
q3x1x3

2[4]q!
[3]q!

+
x2x3[4]q!
[3]q!

−
q3x3

2x3[4]q!
[3]q!

,

F(S)
5,q (x1, x2; x3) = q10x5

2 + x1x2x3
3[5]q! + x2x4

3[5]q! +
x2

1x2x3[5]q!
([2]q!)2 +

x2x2
3[5]q!

([2]q!)2

+
2x1x2x2

3[5]q!
[2]q!

+
x2

1x2x2
3[5]q!

[2]q!
+

3x2x3
3[5]q!

[2]q!
+

x1x2x3[5]q!
[3]q!

+
x3

1x2x3[5]q!
[3]q!

−
q3x1x3

2x3[5]q!
[3]q!

+
2x2x2

3[5]q!
[3]q!

−
q3x3

2x2
3[5]q!

[3]q!
−

q3x2
1x3

2[5]q!
[2]q![3]q!

−
q3x3

2x3[5]q!
[2]q![3]q!

+
x4

1x2[5]q!
[4]q!

+
x2x3[5]q!
[4]q!

,

F(S)
6,q (x1, x2; x3) = x1x2x4

3[6]q! + x2x5
3[6]q! +

x1x2x2
3[6]q!

([2]q!)2 +
2x2

1x2x2
3[6]q!

([2]q!)2 +
3x2x3

3[6]q!
([2]q!)2
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+
3x1x2x3

3[6]q!
[2]q!

+
x2

1x2x3
3[6]q!

[2]q!
+

4x2x4
3[6]q!

[2]q!
−

q3x3
1x3

2[6]q!
([3]q!)2 −

q3x3
2x3[6]q!

([3]q!)2

+
2x1x2x2

3[6]q!
[3]q!

+
x3

1x2x2
3[6]q!

[3]q!
−

q3x1x3
2x2

3[6]q!
[3]q!

+
3x2x3

3[6]q!
[3]q!

−
q3x3

2x3
3[6]q!

[3]q!

+
x2

1x2x3[6]q!
[2]q![3]q!

+
x3

1x2x3[6]q!
[2]q![3]q!

−
q3x1x3

2x3[6]q!
[2]q![3]q!

−
q3x2

1x3
2x3[6]q!

[2]q![3]q!
+

2x2x2
3[6]q!

[2]q![3]q!

−
2q3x3

2x2
3[6]q!

[2]q![3]q!
+

x1x2x3[6]q!
[4]q!

+
x4

1x2x3[6]q!
[4]q!

+
2x2x2

3[6]q!
[4]q!

+
x5

1x2[6]q!
[5]q!

+
q10x1x5

2[6]q!
[5]q!

+
x2x3[6]q!
[5]q!

+
q10x5

2x3[6]q!
[5]q!

.

By choosing n = 30, the zeros of the aforementioned polynomials are represented by
the following Figures.

In Figure 4 (top-left), we choose (x2, x3, q) = (2, 3, 1
10 )

In Figure 4 (top-right), we choose (x2, x3, q) = (2, 3, 3
10 )

In Figure 4, (bottom-left), we choose (x2, x3, q) = (2, 3, 7
10 )

In Figure 4, (bottom-right), we choose (x2, x3, q) = (2, 3, 9
10 ).

Figure 4. Zeros of F(S)
n,q (x1, x2; x3) = 0.

Approximate solutions that hold the q-sine Fubini polynomials F(S)
n, 9

10
(x1, 3; 2) = 0 are

provided by Table 2.
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Table 2. Numerical solutions of F(S)
n, 9

10
(x1, 3; 2) = 0.

Degree n x1

2 −2.0000
3 −1.9 − 1.88917i −1.9 + 1.88917 i
4 −3.85538, −0.782309 − 3.57922 i, −0.782309 + 3.57922 i
5 −3.92997 − 1.60973i, −3.92997 + 1.60973 i,

0.490973 − 4.96534 i, 0.490973 + 4.96534 i
6 −5.26729, −3.28268 − 3.2959 i, −3.28268 + 3.2959 i ,

1.82123 − 6.06415i, 1.82123 + 6.06415 i
7 −5.40013 − 1.5182 i, −5.40013 + 1.5182 i, −2.43885 − 4.82753 i,

−2.43885 + 4.82753 i, 3.15339 − 6.93064 i, 3.15339 + 6.93064 i
8 −6.44059, −4.98389 − 3.14942 i, −4.98389 + 3.14942 i,

−1.46959 − 6.14118 i , −1.46959 + 6.14118 i,
4.45675 − 7.60899 i, 4.45675 + 7.60899 i

9 −6.60749 − 1.48201i, −6.60749 + 1.48201 i, −4.37523 − 4.69502 i,
−4.37523 + 4.69502 i, −0.426537 − 7.25441 i, −0.426537 + 7.25441 i,

5.71393 - 8.13385 i, 5.71393 + 8.13385 i
10 −7.45808, −6.33513 − 3.05623i, −6.33513 + 3.05623 i,

−3.62958 − 6.07483 i, −3.62958 + 6.07483 i, 0.652655 − 8.19076 i,
0.652655 + 8.19076 i, 6.9153 − 8.53262 i, 6.9153 + 8.53262 i

6. Conclusions
In the present paper, the q-sine-based and q-cosine-Based q-Fubini polynomials have

been considered, and several properties for these polynomials have been derived. Fur-
thermore, some correlations covering q-analogues of the Genocchi, Euler and Bernoulli
polynomials and the q-Stirling numbers of the second kind have been provided. Moreover,
some approximate zeros of the q-sine-based and q-cosine-Based q-Fubini polynomials in a
complex plane and a real plane have been analyzed. Finally, these zeros have been shown
by figures, and numerical solutions for special cases are given by tables.

It can be added that not only can the idea of the present paper be utilized for sim-
ilar polynomials, but also the mentioned polynomials possess possible utilizations and
applications in scientific fields other than the applications provided at the end of the paper.
Moreover, advancing the purpose of this article, we will proceed with this idea in our next
research studies in several directions.
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