
RESEARCH ARTICLE

Analysis of functional brain connections for positive–negative
emotions using phase locking value

Yasar Dasdemir1
• Esen Yildirim2

• Serdar Yildirim3

Received: 28 November 2016 / Revised: 24 May 2017 / Accepted: 6 July 2017 / Published online: 15 July 2017

� Springer Science+Business Media B.V. 2017

Abstract In this study, we investigate the brain networks

during positive and negative emotions for different types of

stimulus (audio only, video only and audio ? video) in

a; b, and c bands in terms of phase locking value, a non-

linear method to study functional connectivity. Results

show notable hemispheric lateralization as phase synchro-

nization values between channels are significant and high

in right hemisphere for all emotions. Left frontal electrodes

are also found to have control over emotion in terms of

functional connectivity. Besides significant inter-hemi-

sphere phase locking values are observed between left and

right frontal regions, specifically between left anterior

frontal and right mid-frontal, inferior-frontal and anterior

frontal regions; and also between left and right mid frontal

regions. ANOVA analysis for stimulus types show that

stimulus types are not separable for emotions having high

valence. PLV values are significantly different only for

negative emotions or neutral emotions between audio only/

video only and audio only/audio ? video stimuli. Finding

no significant difference between video only and

audio ? video stimuli is interesting and might be inter-

preted as that video content is the most effective part of a

stimulus.

Keywords EEG � Functional connectivity � Phase-locking
value � Valence � Stimulus

Introduction

Physiological signals based emotional processing has

recently drawn significant interest. Relations between

emotional states and brain activities have been discovered

employing EEG or fMRI imaging modalities. Among

those, EEG modality has gained more attention (Güntekin

and Başar 2014) in investigating brain dynamics during

affective tasks, although there are recent studies using

fMRI (Hattingh et al. 2013; Hooker et al. 2012; Lichev

et al. 2015). Previous studies show that, emotional stimulus

reveals responses in early time windows (Holmes et al.

2003; Palermo and Rhodes 2007; Pizzagalli et al. 1999).

EEG and MEG with excellent temporal resolution are more

prone to capture the brain dynamics than fMRI which fails

to detect early responses. There are studies, also showing

the response time differences between stimulus types used

for emotion elicitation (Baumgartner et al. 2006; Chen

et al. 2010; Zion-Golumbic et al. 2010). However, the

effect of stimuli types on brain dynamics are yet to be

discovered.

There are a vast number of studies on animals and

humans providing evidence that sensorimotor, visual and

cognitive tasks require the integration of numerous func-

tional areas widely distributed over the brain. Studies at the

level of EEG-based functional connectivity in the context

of emotion recognition have gained a momentum (Kassam

et al. 2013; Lee and Hsieh 2014; Lindquist et al. 2012;

Shahabi and Moghimi 2016). EEG-based functional con-

nectivity is used to investigate the brain areas involved in a

particular task. Functional connectivity is studied by
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considering the similarities between the time series or

activation maps. Various methods including linear coher-

ence estimation in the frequency domain to investigate

frequency locking (Bressler 1995; Brovelli et al. 2004;

Ding et al. 2000; Nunez et al. 1997) and nonlinear methods

to investigate synchronization are employed to explore the

dependencies between time series. Nonlinear methods

mostly focus on generalized synchronization (Stam and

Dijk 2002) or phase synchronization (Lachaux et al. 1999;

Mormann et al. 2000; Tass et al. 1998).

Various functional connectivity indices have been used

to show the existence of diverse functional brain connec-

tivity patterns for different emotional states for normal

(Khosrowabadi et al. 2010; Lee and Hsieh 2014; Ma et al.

2012) and abnormal (Li et al. 2015; Quraan et al. 2014)

cases. Emotional paradigms are used in research of evoked/

event-related oscillations in analysis of functional brain

connections (Güntekin and Başar 2014; Symons et al.

2016). In Lee and Hsieh (2014), emotional states are

classified by means of EEG-based functional connectivity

patterns. 40 participants viewed audio-visual film clips to

evoke neutral, positive (one amusing and one surprising) or

negative (one fear and one disgust) emotions. Correlation,

coherence, and phase synchronization are used for esti-

mating the connectivity indices. They stated significant

differences among emotional states. A maximum classifi-

cation rate of 82% was reported when phase synchroniza-

tion index was used for connectivity measure. In Ma et al.

(2012), EEG activities from 27 subjects while performing a

spatial search task for facial expressions (visual stimuli)

were recorded to explore the network organization of the

EEG gamma oscillation during emotion processing. They

reported that negative emotion processing showed more

effective and optimal network organization than positive.

Emotional states are also investigated in valence/arousal

dimensions by visual stimuli as film clips (Liu et al. 2017).

In this study, interactions between brain regions are

investigated through phase locking value for positive and

negative emotions as it is demonstrated that this metric is

successful in inferring the functional connectivity between

brain regions using EEG signals (Dimitriadis et al. 2015;

Hassan et al. 2015; Hassan and Wendling 2015; Kang et al.

2015; Sakkalis 2011; Sun et al. 2012). For this purpose, we

constructed a multimodal emotional database from 25

voluntary subjects using 15 stimuli. Another major goal of

the study is to explore the effects of stimuli type on

interacting regions. Therefore, each stimulus was presented

in audio only, video only and audio ? video formats.

There are numerous studies on oscillatory responses in

perception of faces (see Güntekin and Başar 2014; Symons

et al. 2016 and references therein). In Güntekin and Basar

(2007) differences in alpha and beta bands between angry

and happy face perception are reported when stimuli with

high mood involvement are selected. Baumgartner et al.

(2006) used EEG-Alpha-Power-Density to analyze emo-

tion perception using face only stimulus and listening to

fearful, happy and sad music and listening to emotional

music while viewing pictures of the same emotional cate-

gories. Their results suggest that combined stimuli reveals

the strongest activation and therefore emotion perception is

enhanced when emotional music accompanies the affective

pictures. An MEG study showed enhanced functional

coupling in the alpha frequency range in sensorimotor

areas during facial affect processing (Popov et al. 2013).

Although functional role of beta-band oscillations in cog-

nitive processing is not well understood, there are recent

studies suggesting the involvement of beta-band oscilla-

tions in controlling the current sensorimotor or cognitive

state (Engel and Fries 2010). Beta power change was

reported over frontal and central regions for affective face

stimuli (Güntekin and Basar 2007). MEG study comparing

the evoked beta band activity between static and dynamic

facial expressions revealed greater response for dynamic

expressions (Jabbi et al. 2014).

Numerous studies on emotion perception observed the

effect of gamma band activity (Balconi and Lucchiari

2008; Keil et al. 2001; Luo et al. 2007, 2009; Müsch et al.

2014; Sato et al. 2011). Sato et al. (2011) and Keil et al.

(2001) reported higher gamma band activity in response to

emotional pictures than neutral face pictures. In Luo et al.

(2009), it was observed that, emotional stimuli induced

increased event related synchronization in amygdala,

visual, prefrontal, parietal, and posterior cingulate cortices

relative to neutral. Besides, right hemisphere was

announced to be effective in discriminating emotional

faces from neutral faces.

This paper is organized as follows: EEG data acquisition

is given in ‘‘Data acquisition’’ section. ‘‘Functional con-

nectivity’’ section explains the phase locking value as the

functional connectivity method. Results and conclusion are

given in ‘‘Results’’ section and ‘‘Discussion’’ section

respectively.

Data acquisition

A multimodal emotional database, which includes EEG

recordings and face videos, is collected for the study. Two

equipments were used for data acquisition; a wireless brain

signal monitoring system, Emotiv EPOC (Emotiv Systems

Inc., San Francisco, USA) wireless EEG headset with 14

channels, and a smart phone with 1920� 1080 HD 30 fps

resolution for capturing the facial images. Database is

collected from 25 voluntary subjects using 15 stimuli,

which are 60 s long clips extracted from movies, in native

and foreign languages. Note that, dubbed versions of
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foreign movies are used. Extracted movie segments are

used in audio, video and audio ? video format. Conse-

quently, 45 stimuli were used in total.

Stimuli selection

Several steps were followed for stimuli selection. First, 130

emotionally-evocative movie clips were manually selected

from 59 movies (9 in foreign and 50 in native language)

considering youtube evaluations. Numbers of movie clips

in different affective states and their distributions over

regions on Valence-Arousal dimension are given in

Table 1. We paid attention in selection of movie clips to

have a balanced number of emotions in different regions.

11 evaluators, (8 male, 3 female, average age: 20) who did

not participate to data collection experiments, watched the

movie clips, in audio ? video format, and evaluated the

clips via the Self-Assessment Form (Fig. 1) using Self-

Assessment Manikins (SAM) (Bradley and Lang 1994).

Emotion evoked by the clip and if the evaluator has seen

the movie clip before the assessment were filled in the Self-

Assessment Form. Besides, evaluators have chosen inter-

vals for each emotion dimension. Numbers of evoked

emotions after evaluations are given in Table 2.

Movie clips to be used in data collection were selected

according to these evaluations such that they are distributed

equally to 4 regions in 2-dimensional Valence/Arousal

space.

Distance of the emotional content of the movie clip, ei,

named as emotional highlight in Koelstra et al. (2012), to

the origin is calculated as in Eq. 1:

ei ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2i þ v2i

q

ð1Þ

where ai is the ith movie clip’s arousal value and vi is the

ith movie clip’s valence value. Note that, small values of ei
show the proximity to the neutral emotion. Distribution of

130 points are shown in Fig. 2 and average values and

standard deviations of the points for each region are shown

in Table 3. In this study, 15 movie clips having highest and

lowest values of ei (shown in red in Fig. 2) are selected for

the experiments since they would represent dense emotions

and neutral emotions better, respectively.

Fig. 1 Self assessment form (SAM self assessment manikin)

Fig. 2 15 movie clips that have lowest and highest emotion scores

Table 1 Numbers of emotionally-evocative movie clips selected

manually from 59 movies for evaluations

Region Emotions Numbers

Region I Happy, surprised 39 (35, 4)

Region II Disgust, frustrated, scared 39 (9, 19, 11)

Region III Bored, sad 26 (4, 22)

Region IV Satisfied, calm 20 (12, 8)

Origin Neutral 6

Table 2 Numbers of evoked emotions after evaluations

Region Emotions Number of clips

Region I Happy 248

Surprised 50

Region II Disgust 69

Frustrated 29

Scared 126

Region III Bored 101

Sad 225

Region IV Satisfied 199

Calm 123

Origin Neutral 260

Total 1430
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Participants and experiment protocol

Twenty five right-handed participants (20 male and 5

female), aged between 18 and 27 years (average age

20.52±1.69), volunteered for the experiments. The exper-

imental procedure and processes were approved by the

Mustafa Kemal University Human Research Ethics Com-

mittee. Participants were informed about the approval and

signed a consent form. They were also informed about the

experiment protocol and meanings of Valence/Arousal/

Dominance used in self assessment form and were warned

about getting a good sleep, not to get any stimulants and

not to be hungry during the experiment, a day before the

experiment. On the experiment day, they filled out a

questionnaire on a dedicated computer about personal

information; such as use of medication, number of sleep

hours, tea and coffee consumption habits, date of birth, city

they were born in, city they currently live in etc., prior to

the experiment.

The experiment starts with 90 s of adjustments and 10 s of

baseline recordings and then the participant is left alone in

the experiment room. During the experiment, 15 movie clips

are shown in audio, video and audio ? video formats (a total

of 45 stimuli) in a random order. Each stimulus is shown for

60 s, followed by a self assessment form (Fig. 1) filled in for

30 s and then a black screen was shown for 10 s for relax-

ation. The experiment protocol is shown in Fig. 3.

EEG data collection

Emotiv EPOC is a light-weight and low cost wireless neu-

roheadset with a large user community. The device has been

used in a variety of research studies recently (Some of the

latest studies are McMahan et al. 2015; Rodrı́guez et al.

2015; Tripathy and Raheja 2015; Yu et al. 2015). There are

studies which validate the experimental results obtained

employing Emotiv EPOC (Badcock et al. 2013; Bobrov

et al. 2011). Emotiv EPOC is a wireless headset system for

EEG signal acquisitionwith 14 saline sensors; AF3,AF4, F3,

F4, F7, F8, FC5, FC6, P7, P8, T7,T8, O1, O2 and two

additional sensors that serve as CMS (Common Mode

Sense)/DRL (Driven Right Leg) reference channels (one for

the left and the other for the right hemisphere of the head).

The electrodes are located at the positions according to the

International 10–20 system forming 7 sets of symmetric

channels. Electrode positions are shown in Fig. 4.

The neuroheadset internally samples at a rate of

2048 Hz, and downsamples to 128 Hz per channel. Emo-

tive EPOC was forced to start at the same time by means of

a synchronization software written in Visual C# to start

both modules together. After the data collection step, all

collected data were transferred to Matlab for further pro-

cessing, as described in the next sections.

Pre-processing

Artifact removal

EEGLAB (Delorme and Makeig 2004), an interactive

MATLAB toolbox for electrophysiological signal pro-

cessing, was used for preprocessing. Raw EEG data were

first band-pass filtered to have only 0.16–45 Hz frequency

content through EEGLAB.

EEG recordings are time series of measured potential

differences between two scalp electrodes (active and

Fig. 3 Experimental protocol. Order of stimulus, expected emotions,

and number of subjects (S subjects)

Fig. 4 Electrode positions, according to the 10–20 systems, of the

Emotiv EPOC device

Table 3 Valence-arousal values for selected movie clips

Regions Stat. Valence Arousal ei

Origin Average 0.22 -0.09 0.39

Std 0.23 0.25 0.10

Region I Average 1.99 1.89 2.76

Std 0.26 0.39 0.43

Region II Average -1.12 1.37 1.85

Std 0.47 0.51 0.39

Region III Average -0.79 -1.50 1.84

Std 0.62 0.49 0.18

Region IV Average 0.57 -0.88 1.25

Std 0.53 0.58 0.28
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reference electrodes). The recorded EEG data might be

affected by artifacts (eye blinks, eye movements, scalp or

heart muscle activity, line or other environmental noise).

Independent Component Analysis (ICA) can be used to

remove some of these artifacts (mainly ECG or EOG

artifacts) from EEG data.

In this study, MARA (Multiple Artifact Rejection

Algorithm) (Winkler et al. 2011), an open-source

EEGLAB plug-in, is used for automatic artifact rejection

using ICA. MARA is a supervised machine learning

algorithm which solves a binary classification problem:

‘‘accept vs. reject’’ the independent component. It uses

Current Density Norm and Range Within Pattern (these

two features extract information form the scalp map of an

IC), Fit Error, k, and 8–13 Hz (these three features are

extracted from the spectrum), and Mean Local Skewness

(this feature detects outliers in the time series) as the fea-

ture set. After applying MARA, AAR (Automatic Artifact

Removal) toolbox (Gomez-Herrero 2007) was used for

automatic correction of ocular and muscular artifacts in the

EEG data.

Baseline correction

Poor contact of the electrodes, perspiration or muscle

tension of the subject during the experiments might cause

artifacts on recordings. In order to remove this type of

noise from the EEG data, it is common to have a baseline

interval, which is the recordings several tens or hundreds

of milliseconds preceding the stimulus during which the

subject is asked to stay still and therefore the brain is

assumed to have no stimulus related activity. Mean signal

over this interval is subtracted from the signal recorded

during the stimulus at all time points for each channel

individually. This procedure is known as baseline cor-

rection. In this study 10 s baseline intervals preceding

each 60 s stimulus recordings are used for baseline

correction.

Functional connectivity

Most of the actions we do require the integration of

numerous functional areas widely distributed over the

brain. Underlying mechanism behind this large scale

network is generally described by the term functional

connectivity. Functional connectivity is studied by con-

sidering the similarities between the time series or acti-

vation maps obtained using a functional imaging

modality. Their excellent temporal resolutions make EEG

and MEG excellent candidates for exploring this facet of

neuronal activity. Similarities can be quantified using

linear methods such as cross-correlation and coherence

(Brovelli et al. 2004; Salenius and Hari 2003; Steyn-Ross

et al. 2012; Tucker et al. 1986). However methods like

coherence can only capture the linear relations between

time series and may fail to identify nonlinear interde-

pendencies. Various measures of synchronization, such as

synchronization likelihood (Tucker et al. 1986) and phase

synchronization (Bonita et al. 2014; Lachaux et al. 1999;

Tass et al. 1998; Wilmer et al. 2010; Yener et al. 2010),

have been proposed to detect more general inter-depen-

dencies. Applications of these measures in last two dec-

ades to EEG and MEG data have shown that nonlinear

relations between different brain regions indeed exist

(Mormann et al. 2000; Schoenberg and Speckens 2015;

Stam and Dijk 2002; Tass et al. 1998). For neural sys-

tems, synchronization is observed both in normal func-

tion, e.g. coordinated motion of several limbs, and

abnormal systems, e.g. trembling activity of a Parkinson’s

patient. Synchronization is also believed to be the central

mechanism behind the interaction between brain areas.

Results of micro electrode recording studies on animals

showed that synchronization of neuronal activity among

different areas of visual cortex can be interpreted as the

mechanism to link the visual features (Eckhorn et al.

1988; Singer and Gray 1995). Another study by Murthy

and Fetz (1992) showed the synchronous oscillatory

activity in sensorimotor cortex of rhesus monkeys. Syn-

chrony between widely separated areas, namely visual

and parietal cortex of an awake cat was reported in

Konigqt and Singer (1997). Neural synchronization also

plays an important role in several neurological diseases

like epilepsy (Mormann et al. 2000), pathological tremors

(Tass et al. 1998; McAuley and Marsden 2000), and

schizophrenia (Le Van Quyen et al. 2001). In phase

synchronization, the only important concept is phase

locking of the coupled oscillators while no restriction is

enforced on their amplitudes. Phase synchronization

occurs between interacting systems (or a system and an

external force) when their phases are related while their

amplitudes remain chaotic and, in general, uncorrelated.

In the context of this study, phase synchrony between

recording sites in predefined frequencies, namely fre-

quency ranges in alpha (8–13), beta (14–30) and gamma

(31–45) bands, are examined. Employed synchrony,

called phase-locking value, was introduced in Lachaux

et al. (1999).

Phase locking value

In order to compute the phase locking value (PLV)

(Lachaux et al. 1999) between two signals, namely, sxðtÞ
and syðtÞ, instantaneous phase values at the target
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frequency should be extracted. For this purpose, signals are

band-pass filtered in desired frequency band. Then,

instantaneous phase values are extracted by means of

Hilbert Transform (note that phases were extracted by

means of Gabor Wavelet Transform in Lachaux et al.

(1999)). Then the analytic signal of sxðtÞ is defined as:

zxðtÞ ¼ sxðtÞ þ jesxðtÞ ¼ AxðtÞej/xðtÞ ð2Þ

where Ax is the instantaneous amplitude, /xðtÞ is the

instantaneous phase (IP). esxðtÞ is the Hilbert transform of

sxðtÞ. Analytic signal for syðtÞ is determined accordingly.

Finally, PLV, between signals sxðtÞ and syðtÞ is computed

at time t by averaging over trials (Eq. 3) or by averaging

over time windows of a single trial, n (Eq. 4) (Lachaux

et al. 2000).

PLVt ¼
1

N

X

N

n¼1

expðjhðt; nÞÞ
�

�

�

�

�

�

�

�

�

�

ð3Þ

S� PLVt;n ¼
1

T

Z tþT=2

t�T=2

expðjhðs; nÞÞds
�

�

�

�

�

�

�

�

�

�

ð4Þ

where hðt; nÞ is the phase difference of signals sxðtÞ and

syðtÞ, namely /xðt; nÞ � /yðt; nÞ. PLV measures how this

phase difference changes across trials. If the phase differ-

ence is close to zero across trials, then PLV will be close to

1 and it is smaller otherwise. PLV is an important syn-

chronization measure when working with biosignals (par-

ticularly electrical brain activity). PLV uses narrow band

signals because of challenges of physical interpretation of

the instantaneous phase value for wideband signals.

The recorded EEG signals are collected from 14 chan-

nels. PLVs for each electrode pair (91 pairs of electrodes in

total) for neutral, positive and negative emotions in a; b,
and c bands are calculated separately to investigate the

functional connectivity between brain regions. Calculations

are conducted for all stimulus types (audio only, video only

and audio ? video) to determine the effects of stimulus

type on inter-regional functional connectivity. PLVs are

calculated by averaging across trials (N in Eq. 3 shows the

number of trials) which have the same properties; i.e. same

emotion and stimulus types. EEG signals were bandpass

filtered before the calculations, using Hamming-window

based linear-phase finite impulse response filter to obtain

signals in predetermined frequency bands in each case.

Permutation test is performed, in order to investigate

whether the obtained phase locking values are due to the

stimulus given to the subject and not due to the volume

conduction effect. PLVs are calculated for baseline and

stimulus periods and averaged over randomly shuffled tri-

als between these periods, three stimulus types and ran-

domly shuffled valence values. Permutation procedure is

repeated for 1000 times. Only significant channel pairs (72

out of 91 channel pairs are significant for all conditions;

p� 0:05) are kept for further studies.

PLV values between channels P7 and P8 for each

stimulus type averaged over all trials of all subjects (375

trials for each stimulus) and for each emotion class aver-

aged over trials (numbers of trials for each condition are

given in Table 6) with corresponding valence values for

each stimulus type are given in Figs. 5 and 6 respectively.

Results

In this study, interactions between brain regions through

phase locking value for positive and negative emotions in

alpha, beta and gamma bands and effect of stimuli type on

interacting regions are investigated.

Phase locking values for all electrode pairs are obtained

for positive (valence� 0.7), negative (valence� 0.3) and

neutral (0.4� valence� 0.6) emotional conditions for all

subjects.

Statistical significance

In order to determine the statistical significance of each

PLV, they are compared to the PLVs obtained between

shifted trials (Lachaux et al. 2000). Surrogate values are

acquired by computing phase differences over the shifted

trials:

PLV
surrogateðjÞ
t ¼ 1

N

X

N

n¼1

ejð/xðt;nÞ�/yðt;npermðjÞÞÞ

�

�

�

�

�

�

�

�

�

�

ð5Þ

Permutation test, with 1000 surrogate values, revealed that

most of the channel pairs have PLV values significantly

larger than chance (p\0:001). p Values and PLVs for

insignificant channel pairs are given in ‘‘Appendix’’. Note

that the synchronization for insignificant channel pairs are

too weak (PLVs are less than 0.16). Figure 7 shows strong

PLVs (PLV � 0:7) for each emotional case.

Three-way repeated Analysis of Variance (ANOVA)

involving type of stimulus (three levels: audio, video and

audio ? video), emotion (three levels: positive, negative

and neutral) and oscillations (three levels: a; b and c).
Single trial phase locking values (S-PLV) are calculated for

each condition, in order to generate the PLV distributions

for ANOVA analysis. S-PLV values are averaged over 58-s

time windows for each trial. First and last seconds of 60-s

of EEG data are removed to avoid the startle effects.

ANOVA analysis showed that there is no channel pair that

has significant three-way interaction. All of the factors are

significant with p\0:0001, and no significant interaction

was found between factors type of stimulusxoscillations

and oscillationsxemotion. However, type of stimu-

lusxemotion is significant with p\0:0001.
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Significance for emotions

One-way ANOVA test with the factor emotion (three

levels: positive, negative and neutral) is realized to deter-

mine whether the degrees of phase locking values between

electrode locations are significantly different between

positive, negative and neutral emotions for each stimulus

type and oscillation pair. Channels with significant PLVs

are shown in Fig. 8. Test results are evaluated at signifi-

cance level of 0.01.

Fig. 5 Grand average of PLV values for audio, video and audio ? video stimuli between left and right parietal channels

Fig. 6 Group average PLVs for positive (left column), negative (middle column) and neutral (right column) emotion class for audio (upper row),

video (middle row) and audio ? video (lower row) stimulus between left and right parietal channels
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Tukey’s post hoc test showed that there is no channel

pair having significant PLV difference between positive/

negative and between negative/neutral emotions in a-
oscillations for any stimulus type.

a-oscillations are only significantly different when audio

stimulus is used and the difference is observed between

channel pairs F3–AF4 and P7–P8 (p ¼ 0:006 and p ¼
0:007 respectively). The only significant difference

between emotions types is apparent between positive and

negative emotions in channel pair T8–F8 (p ¼ 0:0044)

when video only stimulus is used for emotion elicitation.

Significant inter hemisphere synchronizations are apparent

between positive/neutral (p ¼ 0:0038) and negative/neutral

(p ¼ 0:0062) cases in b-oscillations for audio stimulus

between left and right parietal electrodes. Positive

emotions are observed to have significant b-oscillation
differences from other emotions between channels T7 and

P7 for audio ? video stimulus (p � 0:001 for both cases).

Our results also show that O1 has significant long range

synchronization in c-band between positive and negative

emotions, with AF3 (p ¼ 0:0044), T8 (p ¼ 0:0056), FC6

(p ¼ 0:0035), F4 (p ¼ 0:0015) for audio only stimulus and

with AF4 (p ¼ 0:006) for audio ? video stimulus. Another

difference in c-band is observed between negative and neu-

tral emotions between F4–F8 for audio ? video stimulus.

Significant differences among stimulus types

Phase synchronization values may differ depending on the

stimuli types. One of the focusing point of this study is to

Fig. 7 Significant and strong (PLV � 0:7) phase locking values between electrodes for positive/negative/neutral emotions. Columns represents

stimulus types and rows represents oscillations in a;b, and c bands

Fig. 8 Channel pairs with significantly different PLVs between positive, negative and neutral emotions. Test results are evaluated at significance

level of 0.01
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investigate the effect of the stimuli type on functional

connections for emotional cases. One-way ANOVA test

with one factor; type of stimulus (three levels: audio, video

and audio ? video) is applied to uncover the stimulus type

effects on couplings between brain regions. Interestingly

no significant difference is found for positive emotions.

Considering negative emotions, however, stimulus type

affects the phase locking values. Significant differences are

shown in Table 4.

Tukey’s post hoc test revealed the differences between

stimulus types. Results show that, channel pair O1–T8 has

significantly different PLV values between audio and video

stimuli in all bands (p ¼ 0:0044, 0.0057 and 0.0046 for a; b
and c bands respectively) for negative emotions. Phase

locking values for pair T7–P8 differ between audio and

audio ? video stimuli in all bands (p ¼ 0:0049, 0.0044 and

0.0037 for a; b and c bands respectively). Only difference

is found in c band between FC6 and F4 for neutral stimuli

between audio and audio ? video stimulus (p ¼ 0:0027).

Results reveal that stimulus involving a video is only

separable from audio only stimulus for negative or neutral

emotions. It is worth to note that, although weak, there

exist significant couplings between hemispheres for dif-

ferent stimulus types.

Discussion

In this study, interactions between brain regions are studied

through phase locking values for positive, negative and

neutral emotions in a; b, and c bands. Effects of stimulus

type are also studied. For this purpose, we constructed an

emotional EEG database using audio, video and

audio ? video stimuli.

PLVs for each channel pair are tested for significance

using permutation test. Original PLVs are compared to

PLVs calculated using the phase differences computed over

randomly shuffled trials. Most of the channel pairs were

approved to be significant in permutation test with a ¼ 0:01,

showing that the PLVs are significantly larger than chance.

Significant PLVs with strong couplings are shown in Fig. 7.

Strong connections are found to be between regions on the

same hemisphere as expected. Note that hemispheric later-

alization is remarkable as phase synchronization values

between channels are significant and high in right hemi-

sphere for all emotions. This finding supports the theory

stating the dominance of right hemisphere over the left for

processing primary emotions (Holtgraves and Felton 2011).

Similar results are also reported for processing affective

stimuli in Borod et al. (1998), Joczyk (2016), Mashal and

Itkes (2016), Mitchell et al. (2003).

Besides all electrodes in right hemisphere and left

frontal electrodes have control over emotion in terms of

functional connectivity. In left hemisphere, significantly

different mean PLV values are detected between frontal

and anterior-frontal regions for all cases. Strong synchro-

nization values are observed between AF3–F3 in left

hemisphere and P8–T8 and FC6–F8 in right hemisphere.

PLV values for these channel pairs are shown in Fig. 10.

Maximum PLV values are observed between FC6 and

F8 channels for positive emotions; whereas for negative

and neutral emotions synchronization between right pari-

etal and temporal regions are higher in a and b oscillations.

It is known that a oscillatory activity plays an important

role in cognitive processing (Başar and Güntekin 2012).

Del Zotto et al. (2013) reports important changes in low

alpha range spectral power and stresses the role of right

frontal regions in differentiating emotional valence. Our

findings confirms the importance of a oscillations as con-

nectivity between electrodes are stronger in a band than

that of in b and c bands. Besides, our results agree with the

literature in terms of the importance of the anterior regions

(Balconi and Lucchiari 2006; Balconi and Mazza 2009;

Del Zotto et al. 2013; Güntekin and Basar 2007). A very

interesting finding is the strong connectivity (PLV � 0:7)

between AF3–F8 and AF3–F4 when processing neutral

emotions using video (in a and b oscillations) and

audio ? video (a oscillations) stimuli respectively.

It is not strange that interhemisphere connectivity is

weaker than that of within hemisphere regions. Therefore,

we examine the inter-hemisphere connectivity values for a

weaker threshold, namely 0.6 in Fig. 9. These results show

that both left and right frontal regions contribute emotion

processing in terms of functional connectivity. Significant

and strong phase locking values are observed between left

anterior frontal and right mid-frontal, inferior-frontal and

anterior frontal regions; and also between left and right mid

frontal regions.

Major goals of this study were to investigate the dif-

ferences between emotion types and stimulus types. For

this purpose, ANOVA analysis is conducted between

conditions. Significant differences between emotions are

detected between AF3–O1, P7–T7, P7–P8, T8–F8, F4–F8

and inter-hemisphere regions F3–AF4 and between O1 and

AF4, F4, FC6, T8 (Fig. 10).

It is accepted that the right hemisphere has more control

over emotion than left hemisphere, and there also are

studies on complementary specialization of hemispheres

for control of different emotion types (Harmon-Jones 2003;

Iwaki and Noshiro 2012; Lane and Nadel 2002). In these

studies, it is stated that left hemisphere primarily process

positive emotions whereas right hemisphere primarily

process negative emotions. Similarly, Alfano and Cimino

(2008) showed that right hemisphere gets more active than

left hemisphere when subjects were primed with a negative

stimulus. Our findings show that, significant differences are
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observed between right temporal/right inferior frontal and

left temporal/right parietal regions for video only and

audio ? video stimuli in b band respectively. For both

cases PLV values for negative emotions are higher than

that of for positive emotions. Therefore, we do not have the

results that would support this statement about comple-

mentary specialization of hemispheres in terms of phase

locking values. However, this issue should be investigated

deeper as the difference is apparent in b oscillations and it

should be clarified if this result is due to emotional dif-

ference or oscillations.

Besides, in Güntekin and Basar (2007), increased

amplitudes of alpha and beta responses are found for angry

stimulation than happy face stimulation. Face pictures were

used for emotion elicitation. Significant differences were

found in posterior and central regions for alpha and beta

responses respectively. Although our results show no sig-

nificant differences for PLV values in alpha oscillations,

PLV values are significantly different for high and low

valence trials between left posterior (P7) and central (T7)

locations for audio ? video stimulus and between right

central (T8) and inferior frontal (F8) in beta oscillations.

Note that, PET (Morris et al. 1996) and fMRI (Adolphs

2002) studies presented the role of the amygdala,

specifically in perception of negative facial emotion. Sup-

porting this statement, our findings show the existence of

interaction between temporal lobe and frontal and parietal

lobes. In addition, Adolphs (2002) also declares the

importance of occipital and temporal lobes for detailed

representation in early emotion processing and subsequent

structures involving amygdala and orbitofrontal cortex. In

this study, we observed significant phase locking value

differences in gamma-band oscillations, for audio only

stimulus, between occipital lobe (O1) and left orbitofrontal

(AF3), right temporal (T8), mid-frontal (F4) and fronto

central (FC6) electrodes, and between O1 and AF4 for

audio ? video stimulus, showing the existence of a net-

work between these regions.

We also monitored significant differences in phase

coupling between high and low valence in c oscillations for
left occipital electrode and right temporal, mid-frontal and

fronto-central electrodes when audio only stimulus is used.

Besides, it is significantly coupled to the right anterior-

frontal regions if audio ? video stimulus is used. For video

stimulus there is no channel pair having significantly dif-

ferent PLVs for emotional and neutral stimuli.

In this paper, we also investigated the effect of stimulus

type for high, low and moderate valence values. ANOVA

Table 4 List of significant differences betwen stimulus types

Negative Neutral

Alpha Beta Gamma Gamma

O1–T8 O1–T8 O1–T8 FC6–F4

p ¼ 0:0045 p ¼ 0:008 p ¼ 0:007 p ¼ 0:005

F ¼ 5:466 F ¼ 4:861 F ¼ 4:994 F ¼ 5:483

PLVA ¼ 0:219 PLVA ¼ 0:251 PLVA ¼ 0:239 PLVA ¼ 0:512

PLVV ¼ 0:336 PLVV ¼ 0:347 PLVV ¼ 0:327 PLVV ¼ 0:604

PLVAV ¼ 0:280 PLVAV ¼ 0:293 PLVAV ¼ 0:277 PLVAV ¼ 0:664

T7–P8 T7–P8 T7–P8

p ¼ 0:0057 p ¼ 0:007 p ¼ 0:006

F ¼ 5:206 F ¼ 5:083 F ¼ 5:225

PLVA ¼ 0:244 PLVA ¼ 0:243 PLVA ¼ 0:227

PLVV ¼ 0:277 PLVV ¼ 0:269 PLVV ¼ 0:252

PLVAV ¼ 0:295 PLVAV ¼ 0:289 PLVAV ¼ 0:274

O2–T8

p ¼ 0:007

F ¼ 5:066

PLVA ¼ 0:488

PLVV ¼ 0:572

PLVAV ¼ 0:516
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analysis show that stimulus types are not separable for

emotions having high valence. For negative emotions,

however, PLV values between left occipital and right

temporal electrodes for audio only and video only stimuli

and between left temporal and right parietal electrodes for

audio only and audio ? video stimuli are found to be

significantly different. Considering neutral emotions, audio

only stimulus is separable for audio ? video stimulus in c
band between FC6 and F4.

Results reveal that PLV values significantly differ only

between audio only stimulus and video only or audio ? -

video stimulus and video only stimulus is not separable

from audio ? video stimulus for any emotion type in terms

of phase locking. This result might be interpreted as video

content is the most effective stimulus type, since adding

audio content to video stimulus do not significantly change

PLV values. These results are in accordance with previous

studies on classification of two valence classes using film

clips (Liu et al. 2017) and picture and classical music

(Jatupaiboon et al. 2013) which reported accuracies of

86.63 and 75.62%, showing that the video content is more

effective than music or just a sequence of pictures. These

correspondence should be double-checked by performing

classification studies on subject dependent and independent

studies on different stimulus types and the effect of the

Fig. 9 Significant and strong (PLV � 0:6) inter-hemisphere phase locking values between for positive/negative/neutral emotions

Fig. 10 Phase locking values between specific electrode pairs (AF3–F3, P8–T8, FC6–F8 and AF3–F4, AF3–AF4, F3–F4) for positive and

negative emotions
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stimulus type should be discovered to select the best

method for real time systems.

Appendix

Insignificant channels

Insignificant channel pairs after performing permutation

test with 1000 surrogate values are shown in Table 5.

Significance level is set to a ¼ 0:01. In the table, corre-

sponding p values and PLV values are shown below the

channel pair.

Number of trials

PLVs are calculated for each electrode pair by averaging

across trials which have the same properties; same stimulus

type (audio, video, audio ? video), same emotion (posi-

tive, negative, neutral) for each oscillation (a; b; c). Num-

ber of EEG segments collected from all subjects for each

condition pair is given in Table 6.

Single trial phase locking values (S-PLV) are calculated

for each condition, in order to generate the PLV distribu-

tions for ANOVA analysis. S-PLV definition is defined in

Lachaux et al. (2000) and shown in Eq. 4.
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