• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
teknoversite
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | Scopus
  • Araştırma Çıktıları | Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | Scopus
  • Araştırma Çıktıları | Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Performance & emission analysis of HHO enriched dual-fuelled diesel engine with artificial neural network prediction approaches

Thumbnail

View/Open

Tam Metin / Full Text (1.778Mb)

Date

2020

Author

Kenanoğlu, Raif
Baltacıoğlu, Mustafa Kaan
Demir, Mehmet Hakan
Özdemir, Merve Erkınay

Metadata

Show full item record

Citation

Kenanoğlu, R., Baltacıoğlu, M.K., Demir, M.H., Erkınay Özdemir, M. (2020). Performance & emission analysis of HHO enriched dual-fuelled diesel engine with artificial neural network prediction approaches. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2020.02.108

Abstract

Most of the studies on conventional fuel types that can be used in internal combustion engines have been made in order to improve performance values. Nowadays environmental problems have shown that emission values are more important and interest in low carbon alternative fuels has highly increased in recent years. In this study, performance and emission values of soybean biodiesel (B25) fuel mixture used in diesel engine were investigated in detail by making different ratios of hydroxy (HHO) enrichment (3, 5 and 7 L/min). HHO enrichments increased brake torque and power outputs with direct correlation to flow rate amount; at the same time brake specific fuel consumption has decreased. Also, one of the main objectives of this study is to predict the optimum hydrogen requirement against performance reductions and NOx formations among test fuels (3, 5, and 7 L/min HHO enriched B25), too by using artificial intelligence. For developing the ANN structure, Levenberg-Marquardt (LM) learning algorithm was used to adjust the weights in the cascade forward network. The results show that the ANN model has 95,82%, 96,07%, and 92,35% estimation accuracies for motor torque, motor power, and NOx emission, respectively. © 2020 Hydrogen Energy Publications LLC

Source

International Journal of Hydrogen Energy

URI

https://doi.org/10.1016/j.ijhydene.2020.02.108
https://hdl.handle.net/20.500.12508/1044

Collections

  • Araştırma Çıktıları | Scopus İndeksli Yayınlar Koleksiyonu [1420]
  • Araştırma Çıktıları | Web of Science İndeksli Yayınlar Koleksiyonu [1460]
  • Makale Koleksiyonu [273]
  • Makale Koleksiyonu [205]
  • Makale Koleksiyonu [78]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@İSTE

by OpenAIRE
Advanced Search

sherpa/romeo
Dergi Adı / ISSN Yayıncı

Exact phrase only All keywords Any

Başlık İle Başlar İçerir ISSN


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed SourcesThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed Sources

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Iskenderun Technical University || OAI-PMH ||

Iskenderun Technical University, İskenderun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Iskenderun Technical University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@İSTE:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.