• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
teknoversite
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | Web of Science
  • Araştırma Çıktıları | Web of Science İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | Web of Science
  • Araştırma Çıktıları | Web of Science İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Examining the receiver heat loss, parametric optimization and exergy analysis of a solar power tower (SPT) system

Thumbnail

View/Open

Tam Metin / Full Text (3.613Mb)

Date

2020

Author

Yağlı, Hüseyin

Metadata

Show full item record

Citation

Yağlı, Hüseyin. (2020) Examining the receiver heat loss, parametric optimization and exergy analysis of a solar power tower (SPT) system, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 42(17), 2155-2180. https://doi.org/10.1080/15567036.2020.1748765

Abstract

Thanks to the studies on the material properties of the future solar tower systems and together with the developments in the material science, it has been observed that higher operating temperatures can be possible for SPT and steam turbine systems. Therefore, in this study, by ignoring the thermal resistances of materials, a steam turbine cycle assisting SPT system was simulated for a tower outlet temperature reaching up to 1800 degrees C depending on the solar radiation rate, the receiver surface temperature and the steam temperature at the tower outlet. When all data obtained from the system was analyzed by considering the future development, it was obviously seen that no matter how the thermal resistance of the materials used in SPT systems advanced, system performance could only be improved up to a certain high temperature. Because the only factor influencing the efficiency of the system is not the tower outlet temperature on its own. There are many other factors like thermal heat losses, optical heat losses, solar radiation rate, environmental and climatic conditions. Hence, the maximum net power production of the SPT plant was calculated as 10,306 kW at 960 degrees C in December while it was found as 49,641 kW at 1500 degrees C in July. Throughout the months, above the maximum temperatures where maximum performance obtained from the SPT, it was observed that the system performance worsened due to increasing heat losses, receiver surface temperature limitation and limited solar radiation rate.

Source

Energy Sources Part A: Recovery Utilization and Environmental Effects

URI

https://doi.org/10.1080/15567036.2020.1748765
https://hdl.handle.net/20.500.12508/1115

Collections

  • Araştırma Çıktıları | Scopus İndeksli Yayınlar Koleksiyonu [1420]
  • Araştırma Çıktıları | Web of Science İndeksli Yayınlar Koleksiyonu [1460]
  • Makale Koleksiyonu [205]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@İSTE

by OpenAIRE
Advanced Search

sherpa/romeo
Dergi Adı / ISSN Yayıncı

Exact phrase only All keywords Any

Başlık İle Başlar İçerir ISSN


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed SourcesThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed Sources

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Iskenderun Technical University || OAI-PMH ||

Iskenderun Technical University, İskenderun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Iskenderun Technical University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@İSTE:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.